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Abstract: Two typical Unmanned Aerial Vehicles (UAV) countermeasures involve the detection and tracking of the UAV
position, as well as of the human pilot; they are of critical importance before taking any countermeasure, and
they already obtained strong attention from national security agencies in different countries. Recent advances
in computer vision and artificial intelligence are already proposing many visual detection systems from an
operating UAV, but they do not focus on the problem of the detection of the pilot of another approaching unau-
thorized UAV. In this work, a first attempt of proposing a full autonomous pipeline to process images from a
flying UAV to detect the pilot of an unauthorized UAV entering a no-fly zone is introduced. A challenging
video sequence has been created flying with a UAV in an urban scenario and it has been used for this prelim-
inary evaluation. Experiments show very encouraging results in terms of recognition, and a complete dataset
to evaluate artificial intelligence-based solution will be prepared.

1 INTRODUCTION

Aerial robotics is steadily gaining attention from the
computer vision research community as the chal-
lenges involved in an autonomous flying system pro-
vide a prolific field for novel applications. In partic-
ular, the video-photography coverage guaranteed by
drone mobility is exploited for precision agriculture,
building inspections, security and surveillance, search
and rescue, and road traffic monitoring (Shakhatreh
et al., 2019). Hence, the large volume of generated
imagery data drives the development of more sophis-
ticated algorithms for its analysis and of systems for
real-time onboard computation (Kyrkou et al., 2018).
Moreover, the popularity of Unmanned Aerial Ve-
hicles (UAV) has exponentially increased as a busi-
ness’s opportunity to convert manual work into an
automated process for a diverse range of industries.
In confirmation of this, a recent report from Price-
waterhouseCoopers (Mazur et al., 2016) identifies the
businesses which will be impacted the most from the
development of “drone powered solutions” in those
that need high-quality (visual) data or the versatile
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capabilities of surveying an area. Nonetheless, in re-
cent years, commercial drones filled the market bring-
ing the outcome of applied computer vision research
into small devices used by hobbyist as recreational
tools. As a consequence of the widespread adoption
of UAVs, security-related issues start to arise demand-
ing for clear regulations and for solutions to intervene
against violations of such rules. With this regard, De-
loitte outlines the different risk scenarios, classified
either as physical or as cyber risk, and the type of
actors involved, e.g., unintentional subjects unaware
of flight restrictions or deliberately malicious actors,
proposing a strategy to continuously monitor the state
of active countermeasures and to properly respond
to a particular threatening situation (Deloitte, 2018).
Hartman and Giles (Hartmann and Steup, 2013) ex-
pose the past incident caused by violations of re-
stricted aerial space, for example, in the vicinity of
airports, and warn against the critical issues implied
by the large availability of UAVs for the general pub-
lic. Regarding economic implications, an article of
Fortune (Fortune, 2019) estimates that the recent in-
cident occurred at Gatwick airport costs for the air-
lines was more than 50 million in conjunction with
the cancellation of over 1.000 flights.

Hence, the search for robust and safe countermea-
sures against potential misuses of UAVs, e.g., flying
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in protected airspace, is of critical importance. There-
fore, it is not surprising that the identification of UAVs
represents a very popular research topic (Korobiichuk
et al., 2019), especially in defence and security do-
mains where drones are, currently, often under real-
time human control or with small levels of autonomy.
While the visual detection and tracking of unautho-
rized UAVs are already considered in the recent state
of the art research (Guvenc et al., 2018; Wagoner
et al., 2017), the problem of a vision-based identifica-
tion of the pilot controlling the drone still represents
a missing research area.

Herein, we assume that a sensor system for the
detection and tracking of UAVs intruding restricted
airspace is already in place. We then propose to
extend this system by a counter UAV for automatic
detection and identification of the pilot(s) of the in-
truder UAV(s). In this work, we provide a preliminary
study on how to perform the identification of the pi-
lot with a vision system on-board of the counter UAV.
The proposed approach opportunely couples two deep
learning solution to extract the area and the skele-
ton of each person present in the scene. 2D features
of joints positions are extracted and used to distin-
guish between the pilot and the position of other sur-
rounding people. A first long video sequence simu-
lating an operational scenario, with multiple people
even framed at the same time, has been recorded and
labelled, and a laboratory evaluation has been per-
formed in benchmark videos with different partici-
pants and background, obtaining very encouraging re-
sults.

The rest of the manuscript is organized as follows:
Section 2 reports the related work; in Section 3, the
proposed approach is illustrated, and each block is de-
tailed. Section 4 reports the scenario used for creating
training and test data, used in Section 5 to validate the
system, where the obtained results are discussed. Sec-
tion 6 concludes the manuscript with future work.

2 STATE OF THE ART

Detection of unauthorized UAVs typically involves
the usage and fusion of different signals and means,
like radio-frequency (Zhang et al., 2018; May et al.,
2017; Ezuma et al., 2019), WiFi fingerprint (Bisio
et al., 2018), or integration of data coming from
different sensors (Jovanoska et al., 2018), often re-
quiring special and expensive hardware (Biallawons
et al., 2018; May et al., 2017). Additionally, so-
lutions based on pure image processing have been
proposed exploiting recent advances in artificial in-
telligence and, in particular, deep learning (Carnie

et al., 2006; Unlu et al., 2018; Unlu et al., 2019).
If vision-based surveillance has massively been taken
into account from the research community (Kim et al.,
2010; Morris and Trivedi, 2008), very few works
to directly identify the human operator have been
proposed. Knowing who is piloting the UAV could
lead to proper measures from the legal authorities, as
well as having the effect of hijacking risk mitigation.
These works usually consider radio frequency of the
remote controller or vulnerabilities on the commu-
nication channel (Hartmann and Steup, 2013). One
example is represented by GPS spoofing (Zhang and
Zhu, 2017) that consists in deceiving a GPS receiver
by broadcasting incorrect GPS signals; this vulner-
ability can be exploited to deviate the UAV trajec-
tory (Su et al., 2016) with malicious intents, and it
has been also utilized as a means to capture unau-
thorized flying vehicles (Kerns et al., 2014; Gaspar
et al., 2018). Furthermore, modelling the pilot flight
style through the sequence of radio commands has
been investigated (Shoufan et al., 2018); here tempo-
ral features are exploited together with machine learn-
ing techniques to identify the pilot based on its be-
havioural pattern. Anyway, Shoufan et al. used be-
haviour as a mean for soft-biometrics without the in-
tent of providing spacial localization. Finally, meth-
ods for visual-based action recognition (Poppe, 2010)
do not consider the piloting behavior, whose presence
in popular datasets, e.g., NTU-RGB+D (Liu et al.,
2019) or UCF101 (Soomro et al., 2012), is absent.
Therefore, from an analysis of the state of the art
emerges that this specific problem has never been
dealt before with a computer vision approach.

3 PROPOSED METHOD

In Figure 1, a block diagram displays an overview of
the proposed pipeline. As a first step, imagery data is
recorded from a camera mounted on a flying UAV. In
each frame, the presence of people is detected defin-
ing the bounding box around the person body and,
successively, the skeleton is estimated. Then, human
joints’ positions are extracted and normalized with re-
gards to the size of the bounding box containing the
body. These body features are the input for a Sup-
port Vector Machine (SVM) classifier, which has been
trained on manually labelled video-sequences, to as-
sess if the detected person represents or not a pilot.
The class label is given back to the UAV in order to
take proper action, like flying closer to the target, ac-
tivating a tracker, etc. In the next subsections, each
block will be detailed.
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Figure 1: A block diagram of the pilot detection method. The final output is the class label that can be transmitted back to the
UAV in order to take proper action, as represented by the dashed line.

3.1 RGB Acquisition

Colour images are taken from the UAV onboard cam-
era. The scenario under consideration has one or
more UAVs flying autonomously and with a pre-
planned trajectory for the detection and tracking of
other UAVs intruding in restricted airspace. In the
case of a swarm or when multiple UAVs are operat-
ing, many data is produced for each instant of time;
thus, a semi-automatic support system that automat-
ically can identify the pilot becomes critical for tak-
ing proper countermeasures and/or defining any hu-
man intervention from the legal authorities.

3.2 Person Segmentation

People are recognized and their region is segmented
by means of Mask R-CNN (He et al., 2017), an ex-
tension of the Faster R-CNN (Ren et al., 2015), i.e., a
region proposal network (RPN) that shares full-image
convolutional features with another network trained
for detection. RPNs are fully-convolutional neural
networks that take an image as input and output a
set of rectangular object proposals, i.e., a group of re-
gions of interest (RoI) with an objectness score; such
regions are warped by a RoI pooling and are finally
used by the detection network. Mask R-CNN intro-
duces a binary mask for each region of interest and a
RoI alignment layer that removes the harsh quantiza-
tion of RoI pooling, obtaining a proper alignment of
the extracted features with the input.

The output of Mask R-CNN is the list of object
classes that are detected in the image and the respec-
tive mask, labelling the pixels that belong to each ob-
ject instance. From the original 80 MS COCO (Lin
et al., 2014) categories, we extract any occurrence of
the person class.

Figure 2 reports some example of processed im-
ages in this first algorithmic step.

3.3 Skeleton Estimation

For each mask containing a person, a bounding box
enlarged of 5 pixels in each direction is extracted and
its content is processed with OpenPose (Cao et al.,

2018) in order to estimate the 2D locations of anatom-
ical keypoints for each person in the image (skeleton).
OpenPose is a multi-stage CNN that iteratively pre-
dicts affinity fields that encode part-to-part associa-
tion and confidence maps. The iterative prediction
architecture refines the predictions over successive
stages with intermediate supervision at each stage.

Only people that are in frontal or in a lateral view,
i.e., in the range of ±90◦ from the frontal pose, are
considered for the classification. Since the difference
between a UAV pilot and a person doing other activi-
ties cannot be noticed using solely visual clues when
the person is turned around, this is a realistic assump-
tion. Hence, when the pose is in the aforementioned
range, the pixel positions (2D) of the 25 joints are ex-
tracted. Following, all the correctly detected joints’
positions, specified by their (x,y) pixel coordinates,
are normalized inside the interval [0− 1] w.r.t. to the
bounding box size previously obtained. Otherwise, if
a joint is not detected, its (x,y) coordinates are set to
-1. Finally, a feature vector of 50 elements is formed.
Two outputs of this phase are shown in Figure 3.

3.4 Pilot Detection

Each feature vector is processed by an SVM classi-
fier (Cortes and Vapnik, 1995) that outputs the label
class, i.e., “pilot” or “non-pilot”, for each detected
person. Radial Basis Functions (RBF) is employed as
the kernel. The classifier has been previously trained
on six different video sequences of four pilots and
two non-pilots, using manually labelled data for the
class to which it corresponds (see Section 5). Thus,
we used k-fold cross-validation technique (Han et al.,
2011) to find the best SVM parameters. Random-
ized search strategy (Bergstra and Bengio, 2012) has
been applied, performing k-fold cross-validation with
diverse parameter’s combinations by randomly sam-
pling from the distribution of each parameter. At last,
the predicted class label can be transmitted back to the
UAV in order to take a proper countermeasure for the
case under consideration, i.e., a sensor system for the
detection and tracking of UAVs intruding restricted
airspace.
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Figure 2: Outputs of the person segmentation step.

Figure 3: Two outputs of the skeleton estimation block.

4 EXPERIMENTAL SETUP

Since the objective of this work is to detect and
recognize people that are possibly controlling UAVs
through visual clues, the creation of a dataset is fun-
damental for the use of machine learning techniques.
A dataset that is challenging and that pushes the clas-
sifier to generalise for a particular vision task should
certainly provide different points of view and differ-
ent scene situations of the subject under analysis. Be-
cause the complete pilot detection task is going to be
carried out on a drone at certain levels of altitude,
it was thought appropriate for the training image se-
quence to be filmed from a consumer camera placed
at a variable height in the range of [2.5−3.0] meters.
Particularly, six videos with a single person present
in all the frames, either a pilot or a non-pilot, were
created. In Figure 4, four random frames of the afore-
mentioned sequences are visualized to exemplify.

Therefore, to evaluate the proposed approach, a
realistic test sequence in an urban scenario has been
prepared. In particular, a DJI M600 mounting a sta-

bilized DJI Zenmuse X5R camera has been used and
manually piloted, changing its orientation and height,
recording different parts of the area while exploring
it. The UAV is flying in the range [2.5− 10.0] me-
ters. The background varies and it includes buildings,
parked cars, a field and an alleyway. Different people
without constraints about the behaviour, appearance
and clothes are present in the scene. Different peo-
ple can be present at a given frame; among them, two
pilots holding a controller. The video has been cre-
ated using Mask-R CNN to extract the bounding box
around detected people and manually assigning a bi-
nary label representing the action of (non-)piloting.

The size of the training and test dataset is sum-
marized in Table 1. Note that, while the classes are
almost completely balanced among the training se-
quences, in the case of the test sequence this number
is different from the number of images containing the
video since multiple, as well as or no person, can be
present in the scene at a given instant.

Table 1: The number of images used for each class label in
the training and test sequences.

Class label Training Test

Pilot 3699 1879

Non-pilot 2960 663

Total 6659 2542

About implementation details, all the code has
been written in Python and with the support of
OpenCV utility functions. The Mask R-CNN imple-
mentation in (Abdulla, 2017) has been used for person
detection and segmentation. The Python wrapper of
OpenPose (Cao et al., 2018) with pre-trained weights
for 25-keypoint body/foot estimation has been em-
ployed for the body-joint position extraction. The fi-
nal phase of the classification adopts the implementa-
tion of SVM found into Scikit-Learn (Pedregosa et al.,
2011). The software has been executed on an Intel
Xeon(R) CPU E3-1505M v6 @3.00GHz x8 with an
NVIDIA Quadro M1200 during all the phases.
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Figure 4: Four images that belong to the training set. Note that it is asked to the same actor to behave both as pilot and
non-pilot in different video sequences.

5 EXPERIMENTAL RESULTS

First of all, an evaluation of the person segmentation
and the skeleton estimation modules is provided. In
the training sequences, each person appearance has
correctly detected by Mask-R CNN (100% detection
rate). For each RoI containing a person, a skeleton has
always been extracted by OpenPose (again, 100% de-
tection rate). It was not possible to establish a ground
truth of the skeleton, thus the obtained information
has been directly used for training. In the sequence for
tests, some misdetection occurs, mainly due to partial
and/or too top-angled views.

Results of this experimental evaluation are
summed up by Table 2. The usage of Mask R-CNN
upstream from OpenPose had the advantage of dras-
tically reduced false positives, and for two reasons:
from one side, it reduced false positives of Mask-R
CNN, since no skeleton data was found on such re-
gion. From the other side, we tested the usage of
OpenPose without any previous step, and it generated
a significant quantity of false positives. At this pur-
pose, it can be observed that all false positives gen-
erated by Mask-R CNN have been removed by the
skeleton estimation phase. Samples of these patches
are reported in Figure 5. On the other side, with the
proposed pipeline, it is not possible to restore false
negatives. Anyway, they occurred only in 30 frames,

Figure 5: Examples of false positives detected by Mask R-
CNN. The skeleton estimation step removed all of them.

related to the visual appearance of the three patches
reported in Figure 6; in particular, these cases are al-
ways related to positions close to the border of the
image, and there are 22 missed frames for Person #1
(Figure 6a), 8 frames for Person #2 (Figure 6b), 2
frames for Person #3 (Figure 6c). Finally, there are
few cases of multiple skeleton estimation instead of
one. In this case, simple ratio and dimension filters re-
move the majority of them, while the skeleton related
to the framed person results noisy. Notwithstanding
the pre-filtering of the dataset, the removal of all noisy
skeletons from the dataset is not ensured. The solu-
tion can work also in the case of multiple people with
overlapping and occlusions, as shown in Figure 7.

The second experimental phase aims at evalu-
ating the classification performance. K-fold cross-
validation has been performed with k=5 to validate a
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Table 2: Analysis of errors of first algorithmic steps for the test sequence. Before the classification, there are 0 false positives
and 30 false negatives out of 2542 bounding boxes (1.18% of errors).

After person segmentation After skeleton estimation
False positives 53 0
False negatives 30 30

(a) Person #1 (b) Person #2 (c) Person #3
Figure 6: Three frames in which no person was detected.

Figure 7: An example of overlapping bounding box; also,
in this case, the two different skeletons were estimated.

choice of C and γ for tuning the SVM. Hence, we sam-
ple 500 values from two different distributions to ran-
domly search the parameters space for the best combi-
nations. In particular, C was extracted from a uniform
distribution inside the interval [0,3] and γ from an ex-
ponential distribution with λ = 0.02. Results of the
random search gave the following set of parameters,
which obtained about 90% of accuracy on average be-
tween the 5 folds:

• C = 2.6049

• γ = 0.02759

Results obtained on the test data introduced in
Section 4 are illustrated in Table 3 and the Receiver
Operating Characteristic (ROC) curve is reported in
Figure 8.

In particular, a correct detection occurs around

Table 3: Classification performance for the pilot detection
task.

Precision Recall F1-Score

Non-pilot 0.61 0.90 0.72
Pilot 0.96 0.79 0.87

Accuracy 0.82

Figure 8: ROC curve results of the probabilistic SVM with
Platt’s method (Platt et al., 1999).

82% of the time, even using different video sequences
from training and test, recorded at different heights,
sensors and background. An example of correct clas-
sification of pilots and non-pilots is reported in Figure
9a. Also the case of the two pilots whose appearance
presents an overlapping (see Figure 7) has been cor-
rectly classified.

Figure 9b reports an example of misclassification.
In general, the majority of errors is due to a noisy
detection of the skeleton and/or with missing data of
OpenPose when the UAV is flying close to the max-
imum height, as well as partial and occluded views.
Surprisingly, possible wrong perspective due to oper-
ating with 2D data is not representing an issue, proba-
bly as consequence of the operational interval for the
orientation range. Indeed, frames in which a person is
holding a tablet or a mobile could be misinterpreted,
but this raises a new problem since a controller for
a UAV could be also represented by a mobile or a
tablet. In this preliminary work, we decided to do
not consider this case; adding a new class, i.e., poten-
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(a) (b)
Figure 9: Examples of the classification results: a) Two pilots (blue and red mask) and one non-pilot (green mask) correctly
classified; b) A non-pilot wrongly classified as pilot.

tial pilot, depending on the specific hold object will
be evaluated. About the neural networks employed
by the system for detecting a person and its pose, we
have chosen Mask-R CNN for person segmentation
even if it is not the state of the art solution in terms
of real-time performance; this is motivated since our
goal of this preliminary study was to evaluate the fea-
sibility of the problem under consideration, thus we
have chosen a state of the art network in terms of de-
tection performance.

6 CONCLUSION

In this work, a fully autonomous pipeline to process
images from a flying UAV to recognize the pilot in
challenging and realistic environment has been intro-
duced. The system as been evaluated with a dataset
of images taken from a flying UAV in urban scenario,
and the feasibility of an approach for piloting behav-
ior classification based on human body joint extracted
features has been evaluated. The system obtained a
classification rate of 82% after being trained with dif-
ferent video sequences, with large precision in pilot
detection and a few generations of false positives.

In the future work these results will be exploited
in order to propose a faster and complete pipeline
that can be directly processed on-board and with lim-
ited hardware capabilities, also introducing spatio-
temporal information and data association schemes.
The integration of a depth sensor to increase perfor-
mance will also be investigated. Finally, we will pro-
pose a complete and labelled dataset composed by
different scenes of UAVs flying at different altitudes
and operative scenarios, and it will be made publicly
available.

REFERENCES

Abdulla, W. (2017). Mask r-cnn for object detection and
instance segmentation on keras and tensorflow. https:
//github.com/matterport/Mask RCNN.

Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. Journal of Machine
Learning Research, 13(Feb):281–305.

Biallawons, O., Klare, J., and Fuhrmann, L. (2018). Im-
proved uav detection with the mimo radar mira-cle ka
using range-velocity processing and tdma correction
algorithms. In 2018 19th International Radar Sympo-
sium (IRS), pages 1–10. IEEE.

Bisio, I., Garibotto, C., Lavagetto, F., Sciarrone, A., and
Zappatore, S. (2018). Unauthorized amateur uav de-
tection based on wifi statistical fingerprint analysis.
IEEE Communications Magazine, 56(4):106–111.

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh,
Y. (2018). OpenPose: realtime multi-person 2D pose
estimation using Part Affinity Fields. In arXiv preprint
arXiv:1812.08008.

Carnie, R., Walker, R., and Corke, P. (2006). Image pro-
cessing algorithms for uav” sense and avoid”. In
Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., pages
2848–2853. IEEE.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

Deloitte (2018). Unmanned aircraft systems (uas) risk man-
agement: Thriving amid emerging threats and oppor-
tunities.

Ezuma, M., Erden, F., Anjinappa, C. K., Ozdemir, O., and
Guvenc, I. (2019). Micro-uav detection and classifica-
tion from rf fingerprints using machine learning tech-
niques. In 2019 IEEE Aerospace Conference, pages
1–13. IEEE.

Fortune (2019). Gatwicks december drone closure cost air-
lines $ 64.5 million.

Gaspar, J., Ferreira, R., Sebastião, P., and Souto, N. (2018).
Capture of uavs through gps spoofing. In 2018 Global
Wireless Summit (GWS), pages 21–26. IEEE.

VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications

588



Guvenc, I., Koohifar, F., Singh, S., Sichitiu, M. L., and Ma-
tolak, D. (2018). Detection, tracking, and interdiction
for amateur drones. IEEE Communications Magazine,
56(4):75–81.

Han, J., Pei, J., and Kamber, M. (2011). Data mining: con-
cepts and techniques. Elsevier.

Hartmann, K. and Steup, C. (2013). The vulnerability of
uavs to cyber attacks-an approach to the risk assess-
ment. In 2013 5th international conference on cyber
conflict (CYCON 2013), pages 1–23. IEEE.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017).
Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969.

Jovanoska, S., Brötje, M., and Koch, W. (2018). Multisen-
sor data fusion for uav detection and tracking. In 2018
19th International Radar Symposium (IRS), pages 1–
10. IEEE.

Kerns, A. J., Shepard, D. P., Bhatti, J. A., and Humphreys,
T. E. (2014). Unmanned aircraft capture and con-
trol via gps spoofing. Journal of Field Robotics,
31(4):617–636.

Kim, I. S., Choi, H. S., Yi, K. M., Choi, J. Y., and Kong,
S. G. (2010). Intelligent visual surveillancea survey.
International Journal of Control, Automation and Sys-
tems, 8(5):926–939.

Korobiichuk, I., Danik, Y., Samchyshyn, O., Dupelich, S.,
and Kachniarz, M. (2019). The estimation algorithm
of operative capabilities of complex countermeasures
to resist uavs. Simulation, 95(6):569–573.

Kyrkou, C., Plastiras, G., Theocharides, T., Venieris, S. I.,
and Bouganis, C.-S. (2018). Dronet: Efficient con-
volutional neural network detector for real-time uav
applications. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 967–
972. IEEE.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.

Liu, J., Shahroudy, A., Perez, M. L., Wang, G., Duan, L.-Y.,
and Chichung, A. K. (2019). Ntu rgb+ d 120: A large-
scale benchmark for 3d human activity understanding.
IEEE transactions on pattern analysis and machine
intelligence.

May, R., Steinheim, Y., Kvaløy, P., Vang, R., and Hanssen,
F. (2017). Performance test and verification of an
off-the-shelf automated avian radar tracking system.
Ecology and evolution, 7(15):5930–5938.

Mazur, M., Wisniewski, A., and McMillan, J. (2016). Clar-
ity from above: Pwc global report on the commer-
cial applications of drone technology. Warsaw: Drone
Powered Solutions, PriceWater house Coopers.

Morris, B. T. and Trivedi, M. M. (2008). A survey of vision-
based trajectory learning and analysis for surveillance.
IEEE transactions on circuits and systems for video
technology, 18(8):1114–1127.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,

A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Platt, J. et al. (1999). Probabilistic outputs for support vec-
tor machines and comparisons to regularized likeli-
hood methods. Advances in large margin classifiers,
10(3):61–74.

Poppe, R. (2010). A survey on vision-based human action
recognition. Image and vision computing, 28(6):976–
990.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.

Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z.,
Almaita, E., Khalil, I., Othman, N. S., Khreishah, A.,
and Guizani, M. (2019). Unmanned aerial vehicles
(uavs): A survey on civil applications and key re-
search challenges. IEEE Access, 7:48572–48634.

Shoufan, A., Al-Angari, H. M., Sheikh, M. F. A., and Dami-
ani, E. (2018). Drone pilot identification by classify-
ing radio-control signals. IEEE Transactions on Infor-
mation Forensics and Security, 13(10):2439–2447.

Soomro, K., Zamir, A. R., and Shah, M. (2012). Ucf101:
A dataset of 101 human actions classes from videos in
the wild. arXiv preprint arXiv:1212.0402.

Su, J., He, J., Cheng, P., and Chen, J. (2016). A stealthy
gps spoofing strategy for manipulating the trajectory
of an unmanned aerial vehicle. IFAC-PapersOnLine,
49(22):291–296.

Unlu, E., Zenou, E., and Riviere, N. (2018). Using shape
descriptors for uav detection. Electronic Imaging,
2018(9):1–5.

Unlu, E., Zenou, E., Riviere, N., and Dupouy, P.-E. (2019).
Deep learning-based strategies for the detection and
tracking of drones using several cameras. IPSJ
Transactions on Computer Vision and Applications,
11(1):7.

Wagoner, A. R., Schrader, D. K., and Matson, E. T. (2017).
Survey on detection and tracking of uavs using com-
puter vision. In 2017 First IEEE International Con-
ference on Robotic Computing (IRC), pages 320–325.
IEEE.

Zhang, H., Cao, C., Xu, L., and Gulliver, T. A. (2018). A
uav detection algorithm based on an artificial neural
network. IEEE Access, 6:24720–24728.

Zhang, T. and Zhu, Q. (2017). Strategic defense against de-
ceptive civilian gps spoofing of unmanned aerial ve-
hicles. In International Conference on Decision and
Game Theory for Security, pages 213–233. Springer.

A Preliminary Study on the Automatic Visual based Identification of UAV Pilots from Counter UAVs

589


