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Abstract: Adverse weather conditions have become a critical issue when developing autonomous vehicles and driver 
assistance systems. Training and testing autonomous vehicles in a simulation environment before deploying 
them into the market have many benefits due to lower costs and fewer risks. However, there are only a few 
works about weather influences on sensors in the simulated environment. A more systematic study of weather 
effects on the sensors used on autonomous cars is required. This paper presents a multi-sensor simulation 
environment under different weather conditions and examines the influence on environmental perception and 
obstacle detection for autonomous cars. The simulation system is being developed as part of a collaborative 
project entitled: Artificial Learning Environment for Autonomous Driving (ALEAD). The system 
incorporates a suite of sensors typically used for autonomous cars. Each sensor model has been developed to 
be as realistic as possible – incorporating physical defects and other artefacts found in real sensors. The 
influence of weather on these sensors has been simulated based on experimental data. The multi-sensor system 
has been tested under different simulated weather conditions and analysed to determine the effect on detection 
of a dynamic obstacle and a road lane in a 3D environment. 

1 INTRODUCTION 

In recent years, there has been a significant move 
towards the development of semi-autonomous and 
fully autonomous vehicles. Autonomous transport 
offers increased convenience and an improved quality 
of life. It could help elderly and physically disabled 
people to have independence. Autonomous cars could 
reduce CO2 emissions and lead to a revolution in 
urban transportation; less traffic congestion and lower 
transportation costs (in fuel and for infrastructure). 
According to the definition used by the Society of 
Automotive Engineers (SAE), the maximum 
autonomy level of autonomous vehicle is currently at 
level 3 out of 6 levels (Badue et al., 2019) – 
autonomous driving is possible under the supervision 
of an operator. The main reason for this limit is 
because of the difficulty in detecting and dealing with 
unexpected events, particularly when sensor 
performance is degraded due to environmental effects 
(weather, dirt, and possible damage). Such 
                                                                                                 
a  https://orcid.org/0000-0002-8695-1522 
b  https://orcid.org/0000-0001-8477-9071 
c  https://orcid.org/0000-0003-1917-2913 
d  https://orcid.org/0000-0002-4946-9948 

unexpected events could even lead to fatal crash 
(Nyholm, 2018). A close relation exists between 
autonomous driving and weather recognition, since in 
adverse weather conditions such as rain, fog, or snow, 
driving is more difficult than during fair conditions. 
The ability to tackle real life problems is critical to 
improve the autonomy level of cars and to reduce 
accidents. Because of the costs and risks associated 
with road trials, the trend is to train algorithms using 
simulations before putting autonomous cars into 
service on the road. 

The demand for realistic simulation environments 
and recent advances in computer technology has led 
to significant improvements in simulation systems for 
autonomous cars. In traditional self-driving software, 
sensor data collected from real world are imported to 
test the reaction of the vehicle’s control software to 
environmental changes, for example using recorded 
video streams to avoid other cars and pedestrians on 
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road (Ess et al., 2009; Xu et al., 2017). To improve 
the stability and robustness of self-driving software, 
road networks, other vehicles, bicycles, pedestrians 
and even animals need to be included in the 
simulation (Tideman and van Noort 2013; Kehrer et 
al., 2018). In this way, developers can use virtual 
worlds to test and retest a variety. of scenarios found 
in everyday life and identify potential problem cases. 
Recently, sensor models, advanced visual perception 
and intelligent guidance systems have been integrated 
into simulation systems for sensing the vehicle’s 
surroundings and to help avoid collisions.  

Cameras and LiDAR are the two most popular 
sensors in visual navigation and car localization 
(Miklic et al., 2012; Shimchik et al., 2016; Häne et 
al., 2017). Radar simulation is gaining attention due 
to its robustness in most adverse weather conditions 
(Apollo, 2019; RFpro, 2019). One common problem 
with these simulated systems is that they are not 
suitable for real-time tests, especially when the 3D 
environment is complex. To solve the real-time 
problem, LGSVL combines the real world video data 
and the simulated sensing data together to train 
autonomous cars ( LGSVL Simulator, 2019). VIRES 
Virtual Test Drive (VTD) improves the simulation 
environment that can be adjusted to different weather 
conditions (VIRES, 2019).   

However, current systems do not generally 
provide models for the influence of weather on the 
sensors used on autonomous vehicles. As in human 
vision, these sensors are negatively impacted by 
adverse weather conditions. For example, rainy and 
foggy conditions cause significant degradation to the 
functions of camera and LiDAR (Dannheim et al., 
2014), significantly reducing operating range and 
signal contrast. Therefore, accurate simulations of 
sensor performance in adverse weather conditions are 
particularly important for the further development of 
simulation software for autonomous vehicles.  

Based on the multi-sensor system developed for 
the Artificial Learning Environment for Autonomous 
Driving (ALEAD) project (Song et al.,2019), shown 
in Figure 1, a range of different weather effects on 
onboard sensors have been simulated in this paper. To 
investigate the influence of these effects on 
autonomous vehicle navigation, a scene with a ball 
bouncing in a street has been simulated in Unity3D. 
A tracking algorithm has been developed and 
implemented to detect the movement of the bouncing 
ball and to separate it from the surrounding clutter. 

                                                                                                 
1  ALEAD is capable of doing online testing, but also 
rerun problematic cases (using stored random number 
seeds) and run at less than real-time (e.g. to facilitate 

The paper is organized as follows. Section 2 details 
the ALEAD project and the multi-sensor system. 
Section 3 and 4 explain the methods used in weather 
simulation and object detection, respectively. Results 
are shown and discussed in Section 5. The paper is 
summarized, and conclusions drawn in Section 6. 

 

Figure 1: Structure of ALEAD simulator. 

2 ALEAD PROJECT 

2.1 Project Overview 

ALEAD is a digital environment that provides 
autonomous vehicles a virtual space to learn to drive 
and to respond to external stimuli, thereby reducing 
costs and time associated with road tests1. ALEAD is 
being based around industry standard software 
components. As shown in Figure 1, most simulations 
are run in the Unity3D graphics engine, and is 
interfacing with the Robot Operating System (ROS) 
and autonomous car models, including the Baidu 
Apollo (Apollo, 2019) open driving solution. 

Existing computer game simulation technologies 
developed by the industrial partner CGA are being 
applied to autonomous vehicle training, using novel 
improvements to existing simulation systems and 
applying these systems in a new sector. By using 
artificial intelligence (AI) and machine learning (ML) 
to train vehicles in an extensive simulated world, 
designed with real world inputs and benefiting from 
the integration of multiple sensors, ALEAD is 
combining technologies to create a wholly new 
environment which could have a significant impact 
on the time required to get autonomous vehicles on 
the road. ALEAD focuses on the merging fields of 
machine learning, virtual reality, augmented reality in 
realistic simulations of urban environments.  

The ALEAD project will significantly reduce the 
need for live trials of autonomous vehicles. Using a 

testing of new algorithms). It can give control of time to 
the user and generate multiple images simultaneously. 
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large number of parallel simulated environments, it 
will be possible to train systems much faster than 
running live trials and across a range of exceptional 
weather conditions, such as fog or ice. 

2.2 Sensor Suite 

Current testing systems mainly use video information 
and live trials. The key to simulating the environment 
in as realistic way as possible is the use of physically 
realistic sensor models and environmental factors. 
This contrasts with work to accurately model the 
physics of the sensor platform (Which has been the 
focus of the development of VTD). The ALEAD 
system is developing a representative sensor suite 
including models for each of the key sensors that are 
likely to be present in future autonomous vehicles, 
including short range Radar, IR cameras, LiDAR 
scanners, and GPS. The aim is to identify the factors 
that determine or limit sensor performance, thereby 
having an adverse effect on the robustness and safety 
of an autonomous vehicle: including, precipitation 
and other atmospheric effects, such as high humidity 
or fog, bright sources of illumination, such as the sun 
being low in the sky and reflections from buildings, 
erratic behavior from other road users, debris in the 
road, and deliberate jamming of the sensor data. The 
sensor modelling will make the training physically 
realistic for computer vision, which operates very 
differently from human perception.  

2.2.1 Image 

A standard visible band camera model uses the simple 
scene as a basis. The angle of the field of view (FOV) 
will be defined based on the interface with the 
coverage of other sensors. In this paper, the camera 
sensor is used directly from the original camera of 
Unity3D. To accelerate processing, only objects near 
the camera are rendered. The output of the camera 
only includes these rendered objects and objects out 
of range are ignored. The FOV of the camera is set as 
38o, and a perspective projection is used. 

Infrared Band camera generates thermal images of 
the scene are based on the three-dimensional 
geometry of the scene and require objects within the 
scene to be labelled with temperature information. 
Also requires some indication of the atmospheric 
properties to derive path radiance and attenuation 
properties. The infrared scene shares the same 3D 
scene rendered for the visible band camera, since the 
physical objects are the same in each case. Moreover, 
the infrared scene includes a temperature map, where 
temperature profiles to different surfaces present in 

the visible band scene are allocated. The IR camera 
model utilizes this temperature map and converts the 
temperatures into thermal intensities/photon fluxes 
(Griffith et al., 2018). The thermal radiation is 
propagated through an atmospheric model (including 
attenuation and path radiance) and then detected 
using a bespoke infrared camera model with 
properties representative of a commercial infrared 
camera (pixel non-uniformities, limited pixel 
resolution, dead/saturated pixels, etc.) (Ahire, 2014). 
The FOV of IR camera is set as 59o, with limited 
resolution to reflect the smaller focal plane arrays 
typically available in infrared cameras. 

 

Figure 2: A simple constructed scene. 

 
(a) Image captured from the visible band camera model 

 
(b) Image captured from the simulated IR camera 

Figure 3: Rendering results from imaging sensors. 

To test the functionality of simulated sensors, a 
simple scene shown in Figure 2 has created with a 
cottage and several sphere and cubic objects around 
an autonomous car. The cameras are mounted behind 
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the windshield of the autonomous car to get realistic 
data in the rain. The position of the IR camera is set 
beside the camera. The rendering results from camera 
and IR camera are shown in Figure 3(a) and (b), 
respectively.  

2.2.2 LiDAR 

LiDAR is an active near visible band sensor (Near 
Infrared Band), which measures the time of flight of 
pulsed light to build up a three-dimensional map of 
the scene. The scanning processes will be presented 
while vehicle is in motion and reflection of light from 
the surfaces of objects in the scene. 

A commercial LiDAR sensor is simulated to ensure 
that the representation is as realistic as possible. The 
Velodyne HDL-64E (Velodyne Manual, 2014), a 
vertical LiDAR sensor is used because it is the most 
popular type used in self-driving cars ((Bergelt et al., 
2017). To simulate this type of LiDAR sensor, 
parameters such as the number of lasers, position of 
each individual laser and its angle, and the rotational 
speed have been included in the model.  

In Unity3D, each laser can be represented using 
ray-casting. From a mathematical perspective, ray-
casting is a directional 3D vector, which checks for 
intersections with other geometries. The coordinate of 
the intersected point will be sent back. In such a way, 
the ray-casting can be considered to be a realistic 
representation of a laser scanner. Note that this 
requires the creation of a collider for each object built 
in the constructed scene. Unity3D uses the physics 
engine to handle ray-casting. Multiple ray-casts can 
be executed within a single physics frame. In this way, 
it can provide simultaneous actions. Figure. 4 shows 
the result of a 360o LiDAR scanning in the scene. 

2.2.3 Radar 

Radar is a simple distance measuring device with 
relatively broad beam width and short range – but 
with better bad weather performance than LiDAR or 
cameras. Usually, in the driving environment, the 
radar cross section (RCS) of obstacles is relatively 
small. Therefore, the type of radar used in an 
autonomous car is a broadband Frequency Modulated 
Continuous Wave (FMCW) radar (Belfiore et al., 
2017). It detects multiple objects and their respective 
distances by performing a fast Fourier transform (FFT) 
on the interference beat-frequency signal. 

Figure 4 illustrates the radar sensing result. In the 
scene, each object has a defined radar signature with 
RCS information (green circles). Ray-casts (green 
lines) are used to represent radar beams. It can be seen 

that the cubic object, pointed by a red arrow is not 
detected by the radar as it is out of the detection range. 

 

Figure 4: LiDAR sensing result with a scanning of 360o in 
the simple constructed scene. Laser beams are represented 
by red lines. 

 

Figure 5: Radar using ray-casting, with detection of RCS. 

2.2.4 GPS 

GPS/GNSS Satellite Navigation Systems use basic 
radio navigation based on very low power satellite 
signals, and it requires WGS’84 Earth model 
information for realistic satellite data, including an 
interface for live GPS/GNSS feed or recorded 
satellite ephemeris data (e.g. RINEX format). The 
position of the vehicle, in terms of longitude, latitude 
and altitude, is calculated using the distance between 
the vehicle and the satellites within view. To get an 
accurate position, at least 4 satellites should be 
visible, although often six to eight may actually be 
visible. The total number of satellites is 32. 
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3 WEATHER EFFECTS ON 
SENSORS 

From the investigations of (Rasshofer and Gresser, 
2005), the influence of weather on sensors can be 
summarized as shown in Figure 6. It can be seen that 
image sensors, camera and IR camera, and LiDAR 
are most prone to be influenced in rainy and foggy 
weather. Therefore, this paper focuses on simulation 
of these sensing technologies for autonomous 
vehicles and their respective issues under adverse 
weather conditions of rain and fog. 

 

Figure 6: Typical strengths and weaknesses of automotive 
sensors in different weather environments. 

3.1 Rainy Conditions 

In Unity3D, rain is simulated using a particle-based 
system, where the intensity of rain can be adjusted. 
The shape of droplet spread on the windshield is 
assumed to be an ellipse.  

3.1.1 Camera and IR camera 

Rainy weather introduces sharp intensity fluctuations 
due to increased atmospheric scattering and general 
obscuration, which degrade the quality of images and 
videos taken from a standard camera (Garg and 
Nayar, 2005). IR cameras perform similarly in the 
presence of rain. Because both visible and IR cameras 
are set behind windshield, raindrops that stay on the 
glass can create a raindrop pattern on the image, 
which decreases the image intensity and blurs the 
edges of other patterns behind it (Bernard et al., 
2014).  

Figure 7 (a) and (b) show the results of images 
captured from the visible band and IR camera models, 
respectively under rainy weather. Comparing Figure 
7 with Figure 3, it can be seen that the contrast of both 
the visible band and IR camera images have reduced 
slightly. The areas that have strong contrast in color 
and covered by raindrops are distorted with reflection 
of some patterns behind raindrops. Whereas those 
areas with less contrast were blurred. 

 
(a) 

 
(b) 

Figure 7: Results of captured images in rainy conditions.  
(a) Camera image, (b) IR camera image. 

(a) (b) 

(c) (d) 

Figure 8: LiDAR scanning results in rainy conditions with 
different rate of rain. From (a) to (d), the rain rate increases 
from 10 mm/h to 40 mm/h. 

3.1.2 LiDAR 

There are several studies on laser pulse transmission 
through rain Rasshofer et al., 2011; Hasirlioglu et al., 
2016; Filgueira et al., 2017). The relationship 
between rain rate and laser power is modeled by 
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(Goodin et al., 2019). In this paper, the detection 
range Z influenced by rain can be modeled using: 

 Z'=Z+	0.02Z(1-e-R)
2
 (1) 

where Z’ is the modified detection range affected by 
rain, and 0.02 is the variance factor. The rate of rain 
is denoted as R. Note that the sizes of the raindrops 
are assumed to be the same. 

The scanning results from LiDAR model at 
different rain rates predicted by Equation (1) are 
shown in Figure 8. By comparing Figure 4 and Figure 
8(a), it can be seen that the detected maximum 
distance of target is reduced. When the rain rate 
increases from 10 mm/h to 40 mm/h, the detection 
range decreases further, and the number of detected 
objects were reduced accordingly. Moreover, the 
shapes or outlines of some objects cannot be 
presented completely by point clouds. 

3.2 Foggy Conditions 

From the definition, fog can be considered to be 
microscopic water droplets. Therefore, the influence 
of fog on LiDAR scanning is similar to the effect of 
rain, as presented in Section 3.1.2, but the variance 
factor in Equation (1) changes to 0.17 (Heinzler et al., 
2019). 

When light passes through the atmosphere or 
liquid, it can be absorbed, scattered, and reflected 
anywhere in space without hitting a solid surface. As 
with rain, the scattering due to fog can lead to 
extinction of an optical signal. The relationship 
between visibility and the extinction coefficient due 
to fog can be expressed as: 

 V	= ln(0.05)

k
	≈	

3

k
 (2) 

where V is the distance that the value through fog is 
reduced to 5% of its original value. k is the extinction 
coefficient (Duthon et al., 2019).  

The extinction coefficient also varies with 
wavelengths (Nebuloni, 2005). Table 1 below 
summaries the extinction coefficient (per km) value 
of different wavelengths with different visibility. 

Table 1: Extinction coefficient values of different 
wavelengths (Nebuloni 2005). 

Wavelength Visibility V (km) k 
Visible V>0 3.91 
Near IR 

(Inc) 
0.06 <V < 0.5 3.65 

0.5 < V < 2 2.85 

IR 
0.06 <V < 0.5 3.01 

0.5 <V <10 2.40 
 

To simulate fog, an approximation method using 
exponential model is applied: 

 f	=	e-cd (3)  

where c is the coordinate of fog (is where to render 
colour of fog), and d is the density of fog. After 
adopting the extinction coefficients for the visible 
band and IR camera into image rendering, the results 
are shown in Figure 9 and Figure 10, respectively. As 
shown in Figure 9(a) and (b), when the density of fog 
increases from 0.4 to 0.8 (fog density varies between 
0 to 1), the spherical object indicated by the red arrow 
can hardly be seen due to the longer distance. 
However, comparing to IR camera results, the 
intensity reduction is less and the spherical object can 
still be seen. When the car moves closer to objects in 
the scene, those objects initially at longer distances 
can be seen clearly. 

(a) (b) 

(c) (d) 

Figure 9: Image results from camera in foggy conditions. 
(a) Fog density=0.4, (b) fog density=0.8, (c) and (d) same 
fog density, but camera moves forward.  

(a) (b) 

(c) (d) 

Figure 10: Image results from IR camera in foggy 
conditions. (a) fog density=0.4, (b) fog density = 0.8, (c) 
and (d) same fog density, but IR camera moves forward. 
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4 OBJECT DETECTION 

After understanding how weather affects sensor data, 
the next task is to investigate how autonomous 
driving and navigation will be affected. A more 
complex scene shown in Figure 11 was created, 
consisting of a road network, vegetation and houses. 
The models of sensors and weather effects simulated 
in Section 3 are integrated into the scene to allow the 
autonomous car detecting and tracking objects while 
driving. The data received from sensors are presented 
in a display window (Figure 12), where the left 
represents point clouds generated by LiDAR data and 
GPS information is displayed at the top left corner. 
The right side shows the rendering images from IR 
camera and visible band camera, respectively. Radar 
beams are plotted as green lines in the camera image.  

 

Figure 11: Complex scene. Road network, including road 
marks, buildings and vegetation are simulated.  

 

Figure 12: Display window of multi-sensor results. 

In this paper, the weather influences on object 
detection are considered. Two simulation scenarios 
are proposed: 
 Scenario 1: detection of road lanes while driving; 
 Scenario 2: detection of a ball bouncing in the 

street.  
Video streams recorded from the cameras are 

selected as data for detection. Rain is added, as an 
example of adverse weather effect, in both scenarios. 
The main methodologies used for detections in these 
two scenarios are Hough transformation (Duda and 
Hart, 1972) and Background difference method 
(Philip, 2013), respectively. 

4.1 Road Lane Detection 

A flow chart of the procedures to detect road lanes 
using Hough transformation is shown in Figure 13. 
Firstly, the rendered image from the camera is 
converted into a ‘birds-eye view’ image. A Sobel 
operator is applied to calculate thresholds of gradient 
and color that represented by hue, saturation and 
lightness (HSL) values. The lane line on both side of 
car can be extracted thereafter. Then, the curve of 
each line is fitted using sliding window technique to 
derive the corresponding second degree polynomial 
function. In such a way, the positions of pixel points 
of lines can be obtained. The last step is to warp the 
‘birds-eye view’ back to camera view with lines 
projected. 

 

Figure 13: Flow chart of Hough transformation. 

4.2 Ball Detection 

In Scenario 2, it is assumed that the bouncing ball is 
the only dynamic obstacle in the scene, whereas the 
car is not moving (for simplicity). The background 
difference method is usually used where a scene is 
relatively static – the stationary constraint for the car 
can be relaxed by aligning the background between 
frames using image registration, but this is not 
considered here.  

In the background difference method, a 
background frame is selected first by taking an 
average over a certain number of frames. In such a 
way, the slow motion of raindrops can be neglected. 
Then, a grayscale subtraction operation is performed 
on the current frame image and the background image, 
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and the absolute values are taken. The values are 
compared with a threshold value to generate 
foreground pixels (values greater than the threshold). 
Foreground pixels are determined thereafter. The 
center of the ball can be calculated by enlarging the 
foreground pixels. 

5 RESULTS 

5.1 Scenario 1 

In Scenario 1, two simulations (Simulation 1.1 and 
1.2) are tested. The car is set to start at the same 
location and drive along the same road. Simulation 
1.1 is driven in clear sky environment, while 
Simulation 1.2 is driven in rainy weather. The results 
for road lane detection are shown in Figure 14 and 15, 
respectively. The lane region is coloured in green, 
with the outline plotted in red/yellow. 

It can be seen from Figure 14 that road lanes can 
be detected successfully, but with slight offsets at the 
bottom of Figures 14(a) and (b). This is because the 
lane color vanishes which leads to lower contrast.  
However, in rainy conditions, offsets increase due to 
distortions of the road lanes. Comparing Figure 15(a) 
to (c), it can be seen that when the number of 
distortion areas increases (more rain drops), offsets 
increase as well. Moreover, in Figure 15(d), only the 
road lane on the right side of car is segmented. 

 
(a) 

 
(b) 

Figure 14: Road lane detection in clear sky. (a) and (b) are 
the car driving at different time steps. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15: Road lane detection in rainy conditions. (a) to 
(d) are the car driving at different time steps. 

5.2 Scenario 2 

In Scenario 2, two simulations (Simulation 2.1 and 
2.2) are tested in clear sky and rainy conditions, 
respectively. The results for detecting the bouncing 
ball in these two simulations are presented in Figure 
16 to 20 at different time steps. The centres of the 
detected ball positions are marked using green boxes. 

All segmentations of the ball in Simulation 2.1 are 
successful. For Simulation 2.2, the ball can be 
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detected if the ball is not covered by raindrops, as 
shown in Figure 16(b) and Figure 17(b). When the 
ball is partly covered by raindrops (Figure 19b) or 
near a raindrop (Figure 20b), the ball can still be 
detected, but the center will be shifted. Whereas, 
when the ball is fully covered by raindrops, it cannot 
be detected at all. In this case, a red box is plotted in 
the middle of the image, as shown in Figure 18(b).  

 
(a) 

 
(b) 

Figure 16: Ball detection at time step 1. (a) Simulation 2.1, 
(b) Simulation 2.2. 

 
(a) 

 
(b) 

Figure 17: Ball detection at time step 30. (a) Simulation 2.1, 
(b) Simulation 2.2. 

The detected positions of the bouncing ball are 
plotted in Figure 21. The results of Simulation 2.1 and 
2.2 are presented in red and blue color, respectively. 
It can be investigated that there are offsets between 
red and blue plots. The main reason is because of the 
noise generated by raindrops. 

 
(a) 

 
(b) 

Figure 18: Ball detection at time step 100. (a) Simulation 
2.1, (b) Simulation 2.2. 

 
(a) 

 
(b) 

Figure 19: Ball detection at time step 110. (a) Simulation 
2.1, (b) Simulation 2.2. 
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(a) 

 
(b) 

Figure 20: Ball detection at time step 180. (a) Simulation 
2.1, (b) Simulation 2.2. 

 

Figure 21: Detected positions of the bouncing ball. Results 
of Simulation 2.1 and 2.2 in clear sky and rainy weather are 
presented in red and blue colour, respectively. 

6 CONCLUSIONS 

In this paper, a multi-sensor system has been 
developed for the ALEAD project allowing 
autonomous car models to perceive surrounding 
environment in simulated scenes. The influence of 
weather on the sensing data for each of the sensors 
has been implemented to make the simulation as close 
to a realistic environment as possible. Image 
processing methods have been applied to detect road 

lanes and a moving obstacle in rainy conditions. 
Simulation results show that adverse weather can 
have a significant effect on lane following and object 
detection. In the case of moving object detection, the 
ability to track and evade moving obstacles may 
deteriorate significantly in rainy conditions. 

For future work, more advanced segmentation 
algorithms, such as deep learning methods, will be 
applied to improve the accuracy of object detection 
and tracking. Edge case usages for the sensors will be 
simulated to enhance the realism and to explore the 
‘worst case’ scenarios that are possible for 
autonomous vehicles, for example, various light 
conditions and sever rain, and to investigate the 
response of automated driving systems in such cases. 
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