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Abstract: A large number of heterogeneous and mobile devices interacting with each other, leading to the execution of 
tasks with little human interference, characterizes the Internet of Things (IoT) ecosystem. This interaction 
typically occurs in a service-oriented manner facilitated by an IoT middleware. The service provision 
paradigm in the IoT dynamic environment requires a negotiation process to resolve Quality of Service (QoS) 
contentions between heterogeneous devices with conflicting preferences. This paper proposes a negotiation 
model that allows negotiating agents to dynamically adapt their strategies using a model-based reinforcement 
learning as the QoS preferences evolve and the negotiation resources changes due to the changes in the 
physical world. We use a simulated environment to illustrate the improvements that our proposed negotiation 
model brings to the QoS negotiation process in a dynamic IoT environment.  

1 INTRODUCTION 

The IoT ecosystem emerges from a core of a 
heterogeneous mix of several technologies. The 
identification, sensing, communication and 
middleware technologies form the fundamental 
building blocks required to incorporate “intelligence” 
into “things” (Patel and Patel, 2016). Several research 
initiatives have structured these IoT enabling 
technologies into n-layered technology architectures. 
Most of the proposed technology architectural models 
add more abstractions to the primary 3-layer 
architecture, which consists of the 
application/service, communication/network and 
perception/physical layers as illustrated in Figure 1. 

Alongside these layers, it is important to address 
QoS management concerns to avoid situations that 
may lead to serious problems especially in IoT 
systems that are characterised by stringent QoS needs 
such as embedded IoT medical devices and 
autonomous vehicle control systems. Beyond these 
are many IoT systems for which providing best-effort 
QoS may not be adequate for the successful operation 
of such systems.    

Guaranteeing the QoS requirements demands that 
all the layers in the IoT architecture provide both 
effective and efficient QoS management strategies 
(Duan, Chen and Xing, 2011). A recent survey by  

 

Figure 1: The IoT technology layer. 

White, Nallur and Clarke (2017) shows that the 
current QoS research initiatives largely focuses on the 
perception/physical and communication/network 
layers in the IoT architecture with minimal attention 
paid to the application/service layer. According to the 
authors, the application/service layer accounts for 
only 13 per cent of all the published works that 
examine the QoS in IoT. 

This paper focuses on the QoS in the 
application/service layer. Given that the 
functionalities of the interconnected devices in IoT 
can be provided as a service,  this layer provides the 
framework that allows these devices to interact with 
each other in a service-oriented manner (Thoma, 
Meyer, Spenser, Meissner and Braun, 2012). The IoT 
middleware, a key technology in this layer provides 
both functional services (e.g service abstraction, 
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discovery, composition and semantic 
interoperability) and non-functional support (e.g QoS 
negotiation and monitoring) (Razzaque, Milojevic-
Jevric, Palade and Clarke, 2015).  

QoS has been identified as a pivotal element that 
must be considered in IoT middleware in order to 
provide useful IoT services to end-user applications 
and actuators in critical IoT infrastructures. As IoT 
becomes increasingly dynamic, due to the changes in 
the physical world, there have been growing concerns 
about the best way to ensure QoS. As service 
consumers with varied QoS requirements (e.g hard 
QoS and soft QoS) interact with service providers 
with different QoS policy-driven behaviours (e.g 
energy conscious and resource-conscious), in a 
dynamic environment (e.g high resources and low 
resources), it is important to provide a mechanism 
that allows service providers and consumers with 
different QoS requirements and expectations to reach 
a mutually agreeable QoS resolution. 

This paper presents a QoS negotiation model that 
uses reinforcement learning to reach a QoS agreement 
in an IoT dynamic environment. Considering the 
importance of QoS negotiation in IoT middleware, 
this paper presents related works in Section II, 
followed by the description of the negotiation 
environment, main assumptions and components of 
the QoS model. Section IV models the QoS 
negotiation process and section V provides details of 
the reinforcement learning-based QoS solution. 
While Section VI describes the experimental setup 
and the evaluation of the simulation results, section 
VII summarizes the paper and discusses future 
research directions. 

2 RELATED WORKS 

Negotiation is becoming an increasingly popular 
mechanism in maintaining QoS in IoT. Current 
negotiation approaches use software agents for the 
formation of Service Level Agreement (SLA) 
between service consumer and providers in IoT (Bala 
and Chishti, 2017). SLA-based negotiation is an 
important mechanism to manage the variety of 
requirements that characterise the IoT environment. 
Ghumman, Schill and Lassig (2016) designed a flip-
flop negotiation strategy using the concession 
extrapolation and 3D utility for generation of SLA. 
The proposed model is useful in applications where 
time is a  critical resource during negotiation as an 
agreement is reached quickly. However, this 
approach is characterised with a low social 
welfare(the sum of the utility gained by each agent) 

as each negotiating participant reduces their utility 
until the contention is resolved. Zheng, Martin, 
Brohman and Xu (2014) used game theory to resolve 
QoS contention between IoT devices and 
applications. This approach demonstrates a good 
balance between success rate and social welfare. 
However, it ignores the changes that may occur in the 
negotiating environment as it only considers the 
negotiating participant's action. 

Alanezi and Mishra (2018) allowed negotiating 
parties to define their privacy requirements. while this 
QoS solution satisfies the privacy requirements of the 
negotiating participants, it is difficult for the 
negotiation model to be used in multi-parameter 
scenarios. Li and Clarke (2019) designed a QoS 
model that integrates a mixed negotiation strategy 
with the WS-Agreement Negotiation protocol for IoT 
service providers and consumers with intersected 
negotiation space. The authors considered the 
domain-specific properties of IoT services in their 
approach. However, in a multi-attribute negotiation 
scenario, the adopted negotiation model increases the 
overhead time. 

Several QoS negotiation mechanisms have been 
proposed for web service-oriented systems such as 
the works of  Zulkerine and Martin (2011) and Al-
Aaidroos, Jailani and Mukhtar, (2011). However, due 
to several differences between web services and IoT 
services,  web service negotiation methods may not 
be able to address the idiosyncrasies of IoT. For 
instance, resource-constrained and mobile devices 
provide IoT services, while stationary data-centres 
with immense computing capabilities usually host 
traditional web services. Thus, QoS parameters in 
web service systems are relatively stable and are not 
affected by changes that might occur in the real 
world, unlike the IoT ecosystem that is highly 
dynamic and characterised with uncertainties.  

Given the dynamism of the negotiating 
environment of IoT, we proposed a QoS negotiation 
model that uses reinforcement learning and software 
agents to generate SLA. The idea of using 
reinforcement learning for QoS negotiation has been 
explored in the telecommunication domain. For 
example, Pouyllau and Carofiglio (2013) used 
reinforcement learning to find a QoS guaranteed path 
in a network that satisfies the QoS requirements and 
maximizes the long term goals. While their focus is 
on a network federation environment, our approach is 
directed towards the IoT middleware.  Using 
reinforcement learning, our approach allows agents to 
learn how to negotiate by choosing the appropriate 
negotiating strategy at each stage of the negotiation 
process based on the changes observed in the 
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negotiation environment and the agent’s opponent 
offer. This approach tends to lead to a negotiation 
process in which an agreement is found before the 
deadline and offers a better balance between success 
rate and social welfare compared to other existing 
approaches. 

3 QoS NEGOTIATION IN IoT 
MIDDLEWARE 

The primary goal of this paper is to design a 
negotiation model that addresses the QoS contention 
in a dynamic environment. In order to do this, It is 
important we describe the environment in the 
middleware which the negotiation process takes 
place. The negotiation environment is characterized 
by the following: 

(1) The environment contains software agents that 
represent IoT service providers and consumers. The 
service providers are IoT devices that provide sensing 
capabilities while the service consumers are IoT 
devices that provide actuation capabilities or end-user 
applications that provides an interface through which 
an IoT service can be accessed. 

(2) The agents negotiate over a set of negotiable 
QoS parameters e.g response time and availability 

(3) The environment is dynamic in nature as the 
QoS parameters profile, negotiation deadline and 
negotiation resources(e.g. CPU time and memory 
allocation) could change due to changes that may 
occur in the physical world. For example, the battery 
of an IoT device running low can automatically 
change the QoS parameters profile and an increased 
workload on the CPU of the IoT edge node can 
change the CPU time for a negotiation process. 

(4) The environment is characterized by some 
uncertainties as agents do not have complete 
information about the state transitions in the 
environment and the preferences of other agents. 

(5) Agents can only observe actions taken 
previously by other agents during the negotiation 
process and the negotiation deadline. 

Having described the negotiation environment, 
we now focus our attention on the underlying 
assumptions our QoS negotiation model is based on 
Assumption1 (Utility function-based offers). 
Agents take turns in a making offer in each round in 
the set {R = 0,1…Rdeadline}.An offer contains an n 
number of negotiable QoS parameters and each QoS 
parameter can take a value of (ݍ) within its range of 
permissible values (ݍௗ ௦௩ௗݍ ... ) in the 
QoS profile. We adopted the microeconomics utility 

function described in Besanko and Braeutigam  
(2010) for the agents to generate offers. To model the 
non-linear changes associated with the QoS 
parameters of IoT devices, the negotiating agents use 
the general exponential function to map each QoS 
parameter value to a utility value (ܷ(ݍ)) as seen in 
(1):    
 														ܷݍ)		൝		 ିଵ × (݁ି − ݁ିଵ)ଵିଵ × (݁ି − 1)  

 
where ݍ is a real number (0≤ ݍ ≤ 1)   

 
With the utility value of each parameter defined,  

we assume that the utility of each of the  QoS 
parameter is linearly additive. Thus the utility value 
of an offer can be defined as the weighted sum of the 
individual utility as in (2): 
 

               U(s) = ∑ ݓ 	×	ܷ	(ݍ)		ୀଵ              (2) 
 
where  ݓ  = normalized weight for each QoS 
parameter (	∑ ୀଵݓ =1) 

       
Based on equation (2), an agent reserved offer is the 
sum of the utility value derived from ݍ௦௩ௗ and an 
agent preferred offer is the sum of the utility value 
derived from ݍௗ. 
Assumption 2 (Difference in Preference). We 
assume agents have different, sometimes opposite 
preferences over QoS parameters and pursue their 
self-interests.  
Assumption 3(Dynamic and Unknown Agreement 
Zone ). For all negotiation sessions, there exists an 
agreement zone which can change during the 
negotiation process and the agents are unaware of its 
location or presence.   
Assumption 4 (Termination of Negotiation). The 
negotiation process terminates only when an 
agreement is found or the deadline elapses as agents 
are not permitted to withdraw from the negotiation 
process.   

Now that the assumptions have been highlighted, 
the main components of the proposed model are 
described below 

 QoS parameter: These are the non-
functional attributes of an IoT service over 
which agents negotiate over. Agents can 
negotiate over more than one attributes in a 
negotiation session; 

 Negotiation Protocol: This specifies the set 
of rules that characterise the interaction 
between agents (Parkin, Kuo and Brooke, 
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2006). It defines the negotiation states, 
events that can cause a change in the 
negotiation state and the valid actions of the 
agents in the different states. In our model, 
we adopted the stacked alternating offer 
protocol (Aydogan, Festen, Hindriks and 
Jonker, 2017). This protocol was chosen 
because of its support for both bilateral and 
multilateral negotiations as the IoT 
middleware is required to support both 
forms of negotiation; 

 Negotiation Strategy:  This is the function 
that enables agents to generate offers. In our 
model, agents can decide to choose either 
the concession strategy or the trade-off 
strategy(Zheng, Martin and Brohman, 
2012). These strategies use the utility 
function to generate an offer. Agents are 
required to decide which strategy to use for 
each step in the negotiation process, that will 
maximize their utility and reach an 
agreement before the deadline elapses. 

4 MODELLING THE QoS 
NEGOTIATION  

The dynamism that characterizes the negotiation 
environment necessitated the modelling of the QoS 
negotiation as a Markov Decision Process (MDP) as 
agents are required to make decisions under these 
conditions. MDP presents a standard formalism to 
describe multistage decision making in a dynamic 
environment (Puterman, 2005).  MDP is defined by 
the following elements: 

 S = a set of possible states, known as the 
state- space, with an initial state s0; 

 A = a set of possible actions in a state s, 
known as the action-space; 

 P = the transition model, where P(s′|s,a)  is 
the probability that action a∈A executed in 
state s∈S will transition to  state s′∈S; 

 R = the reward function, where R(s|a) is the 
reward function received by executing 
action a∈A in state s∈S; 

 π =  the sequence of decisions(policy) that is 
responsible for the mapping of states to 
actions.  The policy can be stationary (π = π, 
π…. π) or  non-stationary(π = π0 , π1, π2… πn).  

The objective in a standard  MDP is to find the 
optimum policy (π*) that yields the maximum sum of 
discounted rewards over an infinite period.  

Based on these key concepts of MDP, we model 
the QoS negotiation as a set of n MDPs. We have n 
processes with each agent having its own view of the 
dynamics of the negotiating environment. Given the 
description of the negotiation environment and the 
assumptions made, the MDP inspired negotiation 
process is characterized by the following: 

 Finite deadline: Unlike the standard MDP, 
the negotiation process has a finite deadline, 
so agents are required to maximise the 
expected reward over a finite timeframe; 

 Discrete state-space: The negotiation space 
is defined by the availability of resources for 
the negotiation process, negotiation deadline 
and QoS profile parameters. The changes 
associated with the elements of the 
negotiation state-space results in the 
transition from one discrete state to another; 

 Non-stationary policy: Since the negotiation 
environment is dynamic, the policy 
associated with the negotiation process is 
non-stationary. The optimum policy is 
determined by a reinforcement learning 
method; 

 Estimated transition model: Due to the 
dynamics of the negotiation environment, 
agents do not exactly know the probability 
of state transition. In modelling this 
uncertainty in this QoS negotiation context, 
we defined a non-stationary  estimation 
function, Tn to estimate the transition model 
and is given as: 
 
  Tn(s, a, s′): Pn(s, a, s′) → [0,1]              (3) 

      
where n ∈ 0,1……N (nth  time-step); 

 
 Action-space: This defines the negotiation 

strategy. In our negotiation problem, agents 
can choose either the concession strategy or 
the trade-off strategy. The concession 
strategy enables an agent to generate offers 
that are of lower utility value to the offer 
received. Selecting the tradeoff strategy 
allows an agent to generate offers that are 
attractive to other agents while maintaining 
its desired utility value.  This is achieved by 
yielding on its less preferential QoS 
parameters and demanding more on its more 
preferential QoS parameters; 

 Reward function: Agents are rewarded based 
on the strategy chosen at a given state. An 
agent is rewarded for choosing the trade-off 
strategy when there is sufficient time and 
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resources for the negotiation process and the 
current range of permissible values of the 
QoS parameters is large. Similarly, an agent 
is rewarded for choosing the concession 
strategy if the time and resources for the 
negotiation process is running out and the 
current range of permissible values of the 
QoS parameters are small.    

5 THE REINFORCEMENT 
LEARNING NEGOTIATION 
ALGORITHM 

In this section, we begin by first introducing how we 
can to approximately compute the optimal policy, the 
optimal sequence of strategies to be adopted by the 
negotiating agents during the negotiation process to 
generate a QoS agreement. To achieve this, we 
adopted a model-based reinforcement learning 
method, value iteration in estimating the optimum 
policy (Schwartz, 2014). The value iteration method 
was chosen based on the fact that it is not 
computationally expensive and it uses less time to 
compute the optimal policy. 

The first step in computing the optimal policy is 
to introduce the concept of state value-function. In 
reinforcement learning, the state value-function 
defines the expected cumulative reward for an agent 
beginning at a particular state s and under a specific 
policy π (Alpaydin, 2014). Formally, the state value-
function at the nth time-step during the negotiation 
process is defined as: 

          Vn(s, π)= ∑ ௧,ே௧ୀݏ)௧ܴ)ܧ π୲)|	ݏ =  (4)           (ݏ
 
where sn is the system state at the nth time-step, Rt is 
the reward at the nth time-step and E(Rt(st,π)|sn = s) is 
the expected reward value at state sn = s and based on 
policy πt. Equation (4) can be rewritten as: 
 

 Vn(s, π)= R(s,a) +∑ ܲ(s, a, (ᇱݏ × ܸାଵ(ݏᇱ,௦ᇱ  π)   (5)             
 
where ݏᇱ  ∈ Sn+1 and a is the action (strategy) 
determined by policy π. Amidst all the possible state 
value functions, it has been proven that an optimal 
policy π* that has the highest value exists for any         
s ∈	S	.		Additionally, for an arbitrary V0, the sequence 
of Vn has been proven to converge to V* under the 
same conditions that guarantee the existence of V* 
(Russell and Norvig, 2014).	The state value-function 
of the optimal policy is given by: 
 

Vn(s,π*)=maxa[Rn(s,a)+∑ ܲ(s, a, (ᇱݏ × ܸାଵ(ݏᇱ,௦ᇱ π*)]        
                                                                                (6) 

Given the uncertainty of the state-transition in the 
negotiation process, we adapted equation (3) to 
determine the expected transition model, which is 
given by: 
    En(Pn(s, a, s′))= ∑ ( ܶ(ݏ, ܽ, (ᇱݏ ×ௌᇲ  Pn(s, a, s′))   (7)     
 
Combining Equation (6) and (7), we have: 

Vn(s,π*)=maxa{Rn(s,a)+∑ )ܧ ܲ(s, a, (ᇱݏ ×௦ᇱܸାଵ(ݏᇱ,π*)}                                                           (8) 
 

Apart from the state value-function, reinforcement 
learning presents another function known as the Q-
function, which is a  function of a state-action pair 
that returns a real value. The fundamental notion of 
the optimal Q-function is that it can be defined by the 
right-hand side of  equation (8) as : 

Q*(s,a) = Rn(s,a)+∑ )ܧ ܲ(s, a, (ᇱݏ × ܸାଵ(ݏᇱ,௦ᇱ π*)                             
                                                                                (9) 
 
By this definition, the optimal Q-function Q*(s,a) 
equals the sum of the immediate reward carrying out 
action a in state s and the discounted expected reward 
after transiting to the next state ݏᇱ .  Thus we can 
obtain the relationship between Vn(s,π*) and  Q*(s,a) 
and this is expressed as : 
 
                     Vn(s,π*) = maxa[Q*(s,a)]                   (10) 
 
Once the Q*(s,a) for all the states is known, then the 
optimal policy can be found. Based on this, an agent 
can always select an action a that maximizes  Q*(s,a) 
in each state. 

Based on the negotiation environment state-space 
and the agent’s opponent’s offer, an agent is required 
to either accept the opponent offer or decide which 
strategy(concession or trade-off) to adopt to generate 
an offer.  An offer is accepted by an agent if the utility 
value of the received offer is far greater than its utility 
value of its reserved offer. The algorithmic 
descriptions of both the concession and trade-off 
strategy are presented in (Zheng et al., 2012). These 
strategies were chosen in our proposed algorithm 
because we can control the rate at which they 
converge. 

Having specified the negotiation strategies for 
generating offers and reinforcement method for 
selecting at a strategy at a specific time-step, we now 
introduce our reinforcement learning negotiation 
algorithm as shown in Algorithm1. This algorithm 
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will enable negotiating agents to appropriately map a 
strategy to a negotiation state resulting in the timely 
discovery of a QoS solution. The algorithm begins by 
allowing an agent to observe the negotiating 
participant’s offer which is usually an offer with a 
high utility for the agent’s opponent. Given that the 
condition in line 2 is true, it proceeds to iteratively 
compute Vn(s,π*) for each time-step and all the states 

 

Algorithm 1: Reinforcement Learning Negotiation 
Algorithm. 

 
Input : - The negotiating opponent offer (Yi) 
             - The deadline criterion 

- Array B with the best and worst values for n QoS 
parameters           

- Array C with the weights of n QoS parameter 
- Array D with flags of n QoS parameter; A flag 

indicates if a QoS parameter preferred value is 
greater than its reserved value. 

             -The reward function Rn(s,a) for each (s,a) 
             -Parameter λ1  and λ2 (0 < λ1, λ2 ), indicating the             

degree of concession and  trade-off at instant n 
respectively 

 -The estimation function for  the state transition, 
En(Pn(s, a, s′)) at instant n              

Output: true if it is a success, otherwise false. 
 

1.  Offer Yi  is presented 
2.  while Yi  is not accepted  
3.  Compute iteratively  

                
4.  select the action that       

 maximises  Vn(s,π*)   
5.  if a=concession then 
6.     k1←k1+1 
7.     Yi+1 ← concession(A,B,C,k1,λ1) 
8.  else 
9.     k2←k2+1 
10.     Yi+1 ← trade-off (A,B,C,k1,λ2) 
11.  k ← k1+k2  
12. if Yi+1 is out of bounds or   

deadline criterion is reached 
then  

13.    return FALSE 
14. else 
15.    offer Yi+1 is presented 
16. return TRUE 

 
including the terminal states((i.e states. indicating 
that the deadline is reached, an agreement is found or 
the negotiating resources in the IoT middleware are 
exhausted). With the present state of the system 
determined, it selects the action(i.e concession 
strategy or trade-off strategy) that maximizes the 
optimum Q function. The selected strategy is used in 

generating a counter-offer. If the generated offer is 
beyond the defined bounds or the deadline criterion is 
reached, FALSE is returned; otherwise, TRUE is 
returned and the counter-offer is presented. A QoS 
solution is found when the condition in line 2 is true. 
The reinforcement learning paradigm described in 
Russel et al. (2014)  and  Zheng, et al. (2012) provides 
proof that the reinforcement learning negotiation 
algorithm converges and terminates after a finite 
number of time-steps. 

6 EVALUATION   

To evaluate our algorithm, we considered a simple 
bilateral negotiation scenario involving two 
negotiation agents where the first agent represents the 
IoT service provider and the other agent represents 
the IoT service consumer. These agents were 
implemented using the open-source project, Java 
Agent DEvelopment Framework (JADE) 
(Bellifemine, Giovanni and Dominic, 2007). We 
implemented the reinforcement learning negotiation 
algorithm using Java and all the experiments were 
conducted on a Lenovo laptop with a 2.50GHz Intel 
i5 processor with 8GB memory running Windows 10. 
The concept of multi-threading in Java was used to 
model the behaviour of both agents as we utilize the 
thread synchronization method to model the 
exchange of offers and counter-offers. We developed 
a QoS profile in a JSON format based on the ideas in 
the IoT literature of Villalonga, Bauer, Aguilar, 
Huang and Strohbach  (2010), which defines its 
service and three QoS parameters: response-time 
(RT), availability(AVAL) and throughput(TP). The 
agents preference over these QoS parameters are kept 
private and the negotiation process begins with the 
IoT service consumer presenting its preferred offer. 
We compared the reinforcement learning negotiation 
model with the mixed strategy negotiation model 
described in Zheng et al. (2014) that uses a random 
probabilistic model for the selection of a strategy 
during the negotiation process. This strategy was 
chosen for the comparison because it inspired our 
algorithm and it provides a good balance between the 
success rate and social welfare. We used three metrics 
for the comparison: negotiation turns, success rate 
and social welfare. 

To simulate the dynamics in the negotiation 
environment, we had 8 states(2 negotiation 
deadlines[D1, D2], 2 states of resource availability 
[low, high] and 2 utility values for the reserved  [U1, 
U2]) and 64 state transitions. Each of the state 
transitions is associated with a strategy, estimation 
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function and reward function. Table 1 below shows a 
snippet of this association. We conducted a series of 
experiment with different permissible values and 
weights for each of the QoS parameters of each agent. 
In all the experiments, the values of  λ1 and λ2  were 
fixed at 0.10.  While the difference between the 
preferred value of both agents for the RT, AVAL and 
TP  was set at a maximum 0.45, 0.60 and 0.55, that of 
the reserved value was set to a maximum of 0.30,0.23, 
0.15 respectively. Similarly, the difference in the 
deadline criterion was set at 15. Table 2 shows an 
example of a specific set of values for the negotiation 
parameters. 

Table 1: The State Transitions Table. 

Current 
State 

(s) 

Next 
State (s′) 

Action 
(strategy) EF 

   
RD  

  Concession PCS RCS

  Concession PCS RCS

  Trade-off PTO RTO

  Trade-off PTO RTO

EF→ Estimation Function Pn(s, a, s′) 
RD→Reward Definition R(s,s′|a) 

Table 2: Sample Negotiation Parameters. 

 IoT Service 
Consumer 

IoT Service 
Provider 

RT weight 0.3 0.4
range ~0.92  -  0.76*      0.95* -   0.74~

AVAIL weight 0.2 0.4
range ~0.95  -  0.81*      0.93* -   0.81~

TP weight 0.5 0.2
range ~0.90  -  0.83*     0.91* -  0.76~

Deadline criterion 35 rounds 50 rounds

* indicates the preferred value and ~ indicates the 
reserved value 

 
In these experiments, we observed that the 

reinforcement learning model consistently had a 
better performance compared to the mixed strategy 
negotiation model. The average round taken to 
discover an agreement using our algorithm was 38% 
less than average rounds of the mixed strategy 
negotiation algorithm. In terms of social welfare, 
there was an average increase of 19% in the utility 
gained with our algorithm. These improvements in 
performance are primarily based on the selection of a 
reward scheme that maintained a balance between 
reaching an agreement before the deadline and a high 
social welfare thereby making the agents select the 
appropriate strategy based on the changes that occur 
in the negotiation environment. To demonstrate this, 

Figure 2 and Figure 3 illustrates the results of some 
selected negotiation sessions comparing both 
approaches in terms of social welfare and negotiation 
turns.    Since the reinforcement learning model and 
the mixed strategy model made use of algorithms that 
have been proven to converge at a finite period, they 
achieved roughly the same average success rate of 
98.74% and 95.12% respectively. 

 

Figure 2: Negotiation rounds results for reinforcement 
learning model and mixed strategy model. 

 

Figure 3: Social welfare results for reinforcement learning 
model and mixed strategy model. 

7 CONCLUSION   

This paper introduces a model-based reinforcement 
learning algorithm for the QoS negotiation in the IoT 
ecosystem. The algorithm selects the best strategy to 
be used by negotiating agents at each time-step during 
the negotiation process when the IoT environmental 
dynamics are probabilistically known. This selection 
is based on the observed changes in the negotiation 
environment. Preliminary results demonstrate that 
our approach of using reinforcement learning tends to 
lead to a negotiation process in which an agreement 
is found before the deadline and offers a better 
success rate and social welfare compared to the 
approach that uses a random a probabilistic 
algorithm.  

Although in this paper we restricted our 
negotiation model to bilateral negotiation scenario, it 

[low, U1,D1] 

[low, U1,D2]

[high, U1,D1]

[low, U1,D2] [high, U1,D2]

[high, U2,D2]

[low, U1,D1] 

[low, U1,D1]
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can be easily extended to multilateral negotiation 
scenario given that the negotiation protocol adopted 
supports multilateral negotiation. In the future, we 
plan to extend the QoS model that takes into account 
situations where system dynamics is not 
probabilistically known. 
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