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Abstract: Rehabilitation or Prehabilitation are vital healthcare practices that allows people to recover their muscle 

strength and return to their normal daily life activities or be ready for operating on respectively. Each type of 

injury or operation would require its own specific movement activities that need to be conducted over a 

predefined supervised or unsupervised program. Tracking, recording and monitoring the daily movement 

activities can significantly help in follow up the correct implementation of a predefined program. The recent 

advancement in digital health could be leveraged upon in benefiting the above indicated processes. Internet 

of Things (IoT) is the technological revolution that allows objects to be interconnected, related movement 

activities to be tracked and online gathering of real time and history data to be collected. This in effect should 

offer the possibility of converting regular rehabilitation into a smart rehabilitation care. This paper proposes 

a generic IoT based testbed using three layered solution for human activity movement monitoring. These are 

wireless sensing layer, the local processing and internet access layer and remote cloud service layer. 

Functionality for each of these layers are explored and tested based on hip fractured rehabilitation use cases. 

Experimental results reflect the ability to drive the system in a software defined mode for accommodating 

different use cases.

1 INTRODUCTION 

With an unprecedented advancement in IoT, 

numerous services and prototypes have been 

developed and proposed (Dang, Piran et al. 2019). 

Integrating IoT with healthcare can help significantly 

in reducing the cost, enrich user experience and 

improve the quality of life (Salunke and Nerkar 

2017). However, it possesses a lot of growing 

challenges like data storage, management, latency, 

constrained resources, exchange of data between the 

devices, mobility, security , network connectivity, 

ubiquitous access and system performance (Buyya 

and Srirama 2019).  In fact, different multi-layer IoT 

based architectures have been proposed by many 

researchers that include the sensing, networking, 

service and the user interface layer (Kowal, Kuzio et 

al. , Lee and Lee 2015, Farahani, Firouzi et al. 2018). 

A wearable IoT architecture for home based and 

personalised healthcare services is proposed by 

(Kumari, López-Benítez et al. 2017) based on edge 

computing. In their work, the system architecture 

component is composed of the wearable human 

activity tracking device comprising of many different 

sensors like 9-axis motion sensors, responsible for 

data collection, storage and processing. Edge 

computing device is used for storage, processing and 

for communicating information to the cloud. Cloud 

computing and other analytical services are used for 

real time visualisation of subject data. Their 

architecture provides an explanation as how each of 

these device functions in formulating a complete 

system. However, the system lacks technical detailed 

explanation about the frequency of data acquisition, 

different types of storage available, data 

communication frames and protocols by providing 

examples. The paper has given examples as how their 

architecture could be suitable for clinical practises. 

However, there is no discussion on real-life testing on 

any of the application to see what challenges the 

system can offer and how the researchers can benefit 

at each level while addressing application 

requirement. 

(Cabra, Castro et al. 2017) have presented a work-

in-progress IoT approach for deploying WSN applied 

to the environmental monitoring of temperature and 
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humidity within hospitals or clinic laboratories. The 

work aimed at developing an IoT architecture capable 

of autonomously sensing the environmental 

conditions and providing to the user real-time remote 

monitoring. The authors have structured their 

architecture based on three layers starting with the 

node layer based on WSN, the local management 

layer, and the cloud-based layer for remote 

monitoring. In their approach, the sink module 

receives all the data sent by different sensing nodes 

based on MTM-CM5000-MSP module then sends to 

the local PC in which it can be sent to the cloud. The 

information of data packets is ID node, humidity and 

temperature values. From the findings, node layer 

factors like data packet size, sampling rate etc. have 

not been presented in detail. 

However, the current focus is now shifting 

towards two different types of IoT architecture i.e. 

centralised and decentralised approach. In the 

centralised approach, the operational and 

computational processes are placed within the cloud. 

All the involved devices forward the data to the cloud 

before any decision making can take place. This may 

lead to challenges in handling the unnecessary 

increase in the traffic and load of resources (Verma, 

Kawamoto et al. 2017). Whereas in the decentralised 

approach, utilizing the other layers of the architecture 

for distributing the computational and decision-

making capabilities from the cloud to the edge and 

fog layer represented by the end and intermediate  

devices (gateway) respectively. This can lead to 

significant reduction in the transferred data, thus 

decreasing the communication delay (Mocnej, Seah 

et al. 2018).  However, this concept has not been 

employed to cloud based WSN and can be of great 

interest while proposing and implementing the 

layered architecture by considering the computation 

process to be done in the various spots of the network. 

This paper attempts to underline and address all 

the competent functions involved in IoT based testbed 

architecture for human activity movement 

monitoring. The concept could support many 

different healthcare monitoring applications. 

Moreover, the paper also validates the proposed 

architectural functionality at each level by 

considering the case of hip fracture rehabilitation 

movement activity monitoring. 

2 HUMAN ACTIVITY 

MOVEMENT MONITORING 

SYSTEM 

The architecture for the proposed human movement 

activity monitoring IoT testbed is illustrated by 

Figure 1. The design is based on three main layers. 

These are Wireless Sensing layer, Gateway layer and 

Cloud layer. Each layer has its own unique role in the 

overall movement monitoring process. 

 

Figure 1: Activity movement monitoring testbed design.
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The wearable sensors report to a gateway through 

embedded protocol(s) such as Bluetooth, Wi-Fi or 

ZigBee. Other customized protocol may also be 

facilitated. The rate of data acquisition and reporting 

could be configured to suit the application. This may 

involve one or more sensing types and the gateway 

may handle one or more wireless sensors. These may 

relate to multiple users or multiple wearable sensors 

on the same subject. Both wearable sensor and 

gateway offers the role of communicating the data. 

They could be involved in edge computing and 

backup storage. Hence, this could be handled as 

generic solution.  

Alternatively the two network components 

(wearable sensor and the gateway level) could be 

driven as a software defined functions. This could be 

done by utilising the two components for data 

processing, compression and some level of activity 

recognition. It will significantly help in relieving the 

cloud from detailed signal processing and in reducing 

the data size. At the Cloud, real-time and history data 

will be managed. Visualization modelling and more 

involved processing take place. The Cloud facilitates 

the key interaction with the various types of users 

including the subject, health service providers such as 

caretaker, physiotherapist, clinician etc. 

2.1 Wearable Sensor Function 

The wearable sensor function can be seen by Figure 

2. It involves four key functionalities for offering a 

software driven configurable system.  

 

Figure 2: Wearable sensing node layer involved 

components. 

First, data acquisition that is responsible for 

sensing type selection (such as accelerometer, 

gyroscope, magnetometer, compass, temperature and 

humidity), data sampling selection (such as data rate 

and sampling frequency). Second, data computation 

that encompasses signal calibration, signal process-

ing, data compression, communication messages 

formation and analysis, clock synchronisation, 

operational modes and power management. Third is 

data repository for short term buffer at main memory 

and long-term back storage (SD card). Last is the 

communication which involves data and messages 

frames and communication protocol management. 

In this research, a wearable monitoring device 

prototype is designed based on Microduino system. 

The main components involved are Microduino 

CoreRF, SD card, Real Time Clock, and Microduino 

nRF board holding the Nordic nRF24Lo1+ 

transceiver, Microduino 10 DOF sensor board 

comprising MPU6050 that contains triaxial 

accelerometer and gyroscope, magnetic field strength 

(HMMC583L) and barometer sensor (BMP180). A 

Microduino Real time clock for capturing the human 

subject activity movement event period and Core RF 

processor for computational purposes.  The device is 

battery powered through a rechargeable battery. 

Figure 3 shows the proposed wearable device and 

its placement at ankle location along with the device 

components stack. Ankle location is selected as 

favourable location for recognising post hip-fracture 

rehabilitation movements activities (Gupta, Al-

Anbuky et al. 2018). Moreover, commercial fabric 

strip is tailored based on the wearable sensor design 

to make it comfortable for the user wearing the 

sensor. 

 

Figure 3: Wearable device placed on the right ankle and its 

components stack. 

Among all the available sensors within the 

proposed device, only triaxial accelerometer sensor is 

used in this article which is responsible for sensing 

real-time human activity data. The data is collected at 

a sampling frequency of 128 Hz. It offers four 

different ranges of acceleration ±2g, ±4g, ±8g, ±16g 

where g is the acceleration due to gravity in m/s2. 

Acceleration range of ±2g is considered sufficient for 

appreciating ambulatory activities (Gupta, Al-

Anbuky et al. 2018).As part of testing, data is 

collected for a time period of two hours where 

different set of post-operative hip-fracture 

rehabilitation activities like lying on stomach , lifting 

thigh upwards, slow and fast walking are performed 

in an ad-hoc manner only during the first five minutes 

and for the remaining time the device is in static state 

to investigate the operational reliability and 

continuity in data collection. 
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Two storage space has been provided within a 

wearable device. A circular buffer has been used for 

short term storage of the continually processed data 

whereas SD card is used as a long-term storage 

purpose here. Firstly, it can be used for long-term 

storage of the continuous raw activity accelerometer 

data. SD card of 16GB was used in this research 

which can store data for around 10 days when run 

continually for 24 hours a day. However, any size SD 

card can be used for extending the longevity of the 

data storage depending on the application need. 

Secondly, the availability of the data can help 

researchers or clinicians for carrying out further 

detailed intelligent computational analysis. Also, it 

act as a backup in the event of misconnection of 

connectivity to the gateway and the cloud. 

The screenshot and trend of the sample or 

unfiltered activity data stored in the SD card can be 

seen from Figure 4 and 5. Figure 4 sample the 

unfiltered type of activity data stored in the SD card 

i.e. node id, date, timestamp and 3 axis (x, y and z 

axis) accelerometer readings. 

 

Figure 4: Sample activity movement SD stored data. 

 

Figure 5: Sample trend of the activity movement data. 

Whereas in Figure 5, the continuous ripples 

portray that human subject is dynamic and is 

performing some type of activity movements. 

However, there are scenarios when the accelerometer 

data is steady at fixed value which means that subject 

is static (exercise no movements). 

After capturing the raw activity data, one option 

is to then subject the raw data to filtering methods. 

This is done by combining all the three axis samples, 

taking the mean, removing the DC offset and taking 

average of every four samples, down-sizing the 

sampling rate to 32 Hz (Gupta, Al-Anbuky et al. 

2018) to comply with the 20 Hz suggested for 

everyday activities by (Sharma, Purwar et al. 2008). 

In order to establish a communication between the 

wearable device and gateway node different 

communication protocols can be used for instance 

Wi-Fi, Bluetooth and ZigBee. However, for data 

packet transmission and reception, Nordic nrf24 

chipset has been used that works on an enhanced 

shock burst protocol. It supports three air data rate i.e. 

250kbps, 1Mbps and 2 Mbps and is suitable for ultra-

low power wireless applications. 

For preliminary testing purpose, point to point 

communication is established for transmission of data 

packet once every four seconds from the wearable 

node to the gateway. A portable Raspberry Pi 

attached with a Microduino nrf24 radio module is 

acting as a gateway here. 

The transmission of radio data packet from node 

to the gateway takes place at a data rate of 250kbps. 

It has a 5 byte radio pipe address for transmission and 

reception, 2 byte for node id, 2 byte for packet 

transmission id for packet trace, 2 byte for date, 2 byte 

for time and 4 byte for the processed data as portrayed 

in Figure 6. In total, one reading has a data packet size 

of 12 byte and 128 such reading are send to the 

gateway layer accommodating a total of 1536 byte of 

data. 

 

Figure 6: Data packet communication frame. 

Considering the radio packet transmission in 

mind, analysing the energy consumption and how 

long the wearable device would last is essential. This 

is done by studying the device in idle mode and that 

of fully functional. As the Microduino hardware can 

run on 3.3 V, the wearable nodes are powered by a ½ 

AA rechargeable battery of 700 mAh at 3.7V where 

the cut-off voltage is 2.75 V. This is a random 

selection of the battery so that the device can almost 

cover a day. The current in idle and operational (op) 

mode of each module can be seen from Table 1.  
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Table 1: Current consumption of the node components. 

S.no Sensing 

Board 

Idle 

Mode 

Current 

(mA) 

Operational 

Mode 

Current 

(mA) 

1 Core RF 22 22-24 

2 10 DOF 0.01 0.02-0.06 

3 SD card 1.5 5-7 

4 Nrf24 2.8 3-4.5 

5 RTC 0.032 0.05-0.1 

Total Current Consumed 26.3 mA 30-36 mA 

Total Power Consumed 97.4 mW 111-132 mW 

From the practical measurement of the device, a 

total current of 26.33 mA and between 30-36 mA in 

idle and operating mode is used by the device.  

Whereas, a total power consumption of 97.4 mW and 

between 111-132 mW has been used for both the 

modes. 

However, a slight fluctuation in the current is 

observed during transmission and reception and the 

variation is mostly between 30-36 mA. This could be 

due to several reasons for example when the data is 

stored in the SD card, it draws more current. Based 

on our calculations and as shown by Table 1, battery 

capacity is sufficient to collect, store and transmit 

data continuously for a time period of 20 hrs and 

needs to be recharged using a USB cable when human 

subject is going to bed. 

2.2 Gateway Function 

A portable Raspberry Pi is attached with a 

Microduino nrf24 radio module and the 

functionalities involved at the gateway layer is 

represented in Figure 7.  

There are four key functionalities involved. First 

is the wearable device communication interface. This 

relate to the protocol used and act as the protocol 

convertor. It will help receiving the data through 

 

Figure 7: Gateway layer involved components. 

wireless and pass it through serial communication. 
Example for a gateway could be a raspberry pi, 
smartphone or laptop. Second is the incoming data 
from the wearable device and locally processed data 
storage and management. This can be short term 
storage available within the main memory (1GB 
RAM), long-term storage at SD card (16 GB) and 
data can be managed using database like SQL and 
MongoDB. Third is the computational capability 
analysed locally at gateway layer like signal 
processing, data aggregation and priority before 
connecting to the cloud and transmitting using 
internet protocols like TCP-IP, 6LowPAN, Cellular. 

In this research, the main purpose of making the 

device portable is to allow subject to carry it 

anywhere and with ease if they move out of the 

allocated residence. The radio module used is 

attached serially to raspberry pi for data reception 

using serial peripheral interface (SPI). 

A complete packet of 128 pieces of data is 

received regularly (representing the 4 second data 

acquired by the wearable sensor) by Raspberry Pi 

(Rpi) . This data packet is stored continually in the SD 

card residing within Rpi in form of a text file. The 

screenshot of the data packet received at raspberry pi 

is shown in Figure 8. Here “1” represents the node id, 

“0” is the packet track count that increments by 1 

whenever the new packet is received. This is to keep 

a track which packet has been received or lost during 

the transmission. 2019/11/21 represents the date and 

“15:0:12” represents the time and “-1.6545” 

represents the processed data at wearable sensor node 

level. 

 

 

Figure 8: Wearable sensor processed data packet format 

received at Raspberry Pi. 

The representation of the wearable sensor 

processed/filtered data vs the one minute activity time 

period event stored in the raspberry pi is represented 

in Figure 9. In contrast to the raw graph as shown in 

Figure 5, the graph below is smoother and consistent 

due to cleaned pre-processing. Moreover, based on 

the ripples observed at different point in the graph 

marked with different coloured circles, indicates 

subject has performed different types of activity 

movements instead of being static all the time. Red 

circle indicates that subject was static whereas other 

different circles portrays different sets of activities 
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that cannot be recognised on the basis of this data. 

Therefore, it is difficult to discriminate the activities 

based on the wearable sensor processed data and 

require further data compression. Compressing of the 

data acquired by the wearable sensor taken place by 

Raspberry Pi gateway using FFT based signal 

processing as discussed by (Gupta, Al-Anbuky et al. 

2018). 

 

Figure 9: 1-min filtered values vs activity time period event 

plot received at the Raspberry Pi. 

The process identifies the dominant amplitude 

and the corresponding frequency of the maximum 

amplitude (CfMA) for each of the 4 seconds data batch. 

The timestamp is associated with the end time of that 

sampling snap. In fact, the final compressed long-

term data is stored in the Rpi SD card in form of a text 

file due to following reasons. First, to validate the 

data packet loss. Second in case of connectivity to the 

cloud is lost but the activity recognition data can still 

be recovered. The screenshot of the FFT process data 

packet format is shown in Figure 10: 

 

Figure 10: Gateway FFT based signal processing data 

packet. 

Each activity threshold condition is set based on 

the if-else condition for a user as depicted by (Gupta, 

Al-Anbuky et al. 2018) in table: Activity 

classification overall summary at the ankle location. 

Therefore, activity recognition is performed at 

gateway level based only on maximum amplitude and 

corresponding spectrum. On recognising an activity, 

maximum amplitude, corresponding spectrum and 

the recognised activity code is sent to the cloud. Here, 

the recognised activity code is a number that ranges 

from 0-8 and is respectively identified as static state, 

slow walking, fast walking, leg movement, lifting 

thigh upwards, swinging leg to a side, lying on back, 

lying on stomach and unrecognised activity. For 

example, if a recognised activity is slow walking, the 

gateway will send a value 1 to the cloud. The 

visualisation of all these data is represented in Figure 

13. Moreover, communication between the 

Raspberry Pi and ThingSpeak cloud platform is 

established using TCP-IP internet protocol. 

The research investigated power consumption of 

the portable device theoretically based on the 

information available from the datasheet. In this 

research, gateway device is powered by two AA 

battery of 2500 mAh (equivalent to 5000 mAh) at 

3.6V. The recommended input voltage for Rpi is 5V 

with a ±5% tolerance. This means the voltage could 

be supplied between 4.75-5.25V. Table 2 represents 

the current and power consumption of the Rpi3 when 

it is in idle mode versus to its fully operational mode. 

Table 2: Current and power consumption of the Rpi3 in idle 

and operation modes. 

Raspberry Pi3 Current 
Consumption 

(mA) 

Power 
Consumption 

(W) 

Idle Mode 260 1.3 

Storing/opening 

File from SD Card 

285 1.425 

Operational Mode 670 3.35 

If we consider the fully operational mode current 

consumption of Rpi3. The calculations shows that 

battery capacity is sufficient to collect, store and 

transmit data continuously for a time period of only 7 

hrs. Considering that the battery power is only needed 

when the subject is outdoor, the 7 hours should be 

sufficient to cover the data collection time before 

recharging again.  

2.3 Cloud Function 

The key involved functions within the cloud layer are 

represented in Figure 11. At cloud layer, the 

“ThingSpeak” open source IoT based platform has 

been used. This platform provides the capability of 

collecting and storing the data in real time and allows 

for developing IoT based processing and 

visualization for the application. Importantly, Matlab 

data tools are available to process, elaborate and 

analyse the data further. The data is transmitted from 

the Raspberry Pi using HTTP protocol to the 

ThingSpeak cloud. The data is stored in the 

ThingSpeak cloud (in JSON, XML and CSV format)  
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Figure 11: Cloud layer involved components. 

repository across six different fields (Field 1: Node 

Id, Field 2: Date, Field 3: Time, Field 4: Maximum 

Amplitude, Field 5: Spectrum with Peak Intensity, 

Field 6: Preliminary Recognition ID). 

Utilising Matlab analytical tools provided within 

ThingSpeak for computational purpose, a human 

subject activity monitoring track vs time visualisation 

has been created (refer Figure 12) from the data 

available within the cloud repository. 

 

Figure 12: Activity monitoring track Vs time using Matlab 

analytical tools. 

This plot provides the overall view of the different 

type of activity movements performed (represented 

by red coloured circles) by a subject vs time. Findings 

shows that patient has performed lifting thigh 

upwards, lying on stomach, slow and fast walking 

whereas some of the activities was not recognised. 

The approach we used at this stage is simply rule-

based approach using the FFT outcome. There are 

areas of overlap among activities and further and 

more involved recognition approach is needed. 

3 TESTBED PERFORMANCE 

This section reflects the testbed performance by 

considering the examples of activities related to post-

operative hip fracture rehabilitation activity 

movement as a use case.  

Hip fracture is a common incident among older 

adults and results in poor outcomes. Although, many 

rehabilitation programmes are available that focus on 

improving the physical functionality, mobility and 

help in returning back to their daily life routine 

activities. But, the effectiveness of the program is still 

uncertain (Pol, ter Riet et al. 2019). In fact, most of 

the rehabilitation occurs when the patient has been 

discharged from the hospital and is living 

independently or in rehabilitation homes. As a result, 

healthcare professionals lacks real time precise data 

of the daily functioning of the patient activity 

movements. This prevents the person to achieve their 

personalised and realistic goals. This is due to the 

non-existence of remote activity movement 

monitoring system using wearable sensors that can 

track patient’s activity movement levels in long-term 

(Pol, ter Riet et al. 2019).Therefore, by addressing it, 

the gap can be filled. 

For hip fracture rehabilitation monitoring, the 

activities that need to be recognised are similar to the 

ones proposed by (Gupta, Al-Anbuky et al. 2018). 

These are leg movement (while sitting), lifting thigh 

upwards, swinging leg to a side, lying on back and 

stomach, slow and fast walking and static state i.e. 

sitting and standing. Patients are advised to perform 

these activity movements at least two times a day by 

repeating each movement 5 to 10 times (Buyya and 

Srirama 2019). We make use of the proposed testbed 

architecture in designing and implementing the 

complete system at each layer. As part of our 

preliminary testing, a healthy young individual was 

asked to perform few activities like slow and fast 

walking, lifting thigh upwards and lying on stomach 

in any order and based on their comfortability. 

Findings shows that the testbed was successful in 

implementing the functionalities at each layer and 

based on the activity movement data collected and 

analysed. No concerns with the data storage across 

different layers has been observed. The system was 

able to recognise some of the performed activities in 

real time that can be seen from Figure 13. The rule 

based approach used is limited at this stage and 

require further support through either additional 

sensing or more involved deep learning.  

Apart from that, further research work is required 

to enhance the testbed functionality so that system 

can be implemented on large scale like hospitals, 

rehabilitation home etc. This include establishment of 

multiple wireless sensor connectivity, multiple sensor 

sending data to gateway and then to cloud, investigate 

packet loss, data drop rate when multiple sensors are 
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involved, investigate what is the suitable number of 

sensors that can accommodate with a single gateway 

in establishing secure connectivity and in data 

transmission and reception, how to optimize data 

traffic and process, overall system communication 

performance, more involved activity movement 

recognition with the use of machine and deep 

learning. Also, how the system can be personalised 

and adaptive to a particular subject automatically. 

 

Figure 13: Data presentation of maximum amplitude, 

corresponding frequency of the maximum amplitude, 

activity recognition ID and activity monitoring track. 

4 CONCLUSIONS 

This paper proposed a generic IoT test-bed 

architectural design for human movement activity 

monitoring. The design is driven towards modular 

structure that allow both hardware and software 

modules to be tested and can be applied to wide range 

of healthcare applications. The paper implemented 

the proposed testbed functionality pragmatically by 

considering post-operative hip fracture rehabilitation 

activity movement recognition as one of the use case. 

Experimental results represent that the system was 

able to implement the testbed functionalities across 

all layers and also in recognising most of the 

activities. Further involvement will look into testing 

the performance measures on activity classification 

recognition accuracy, users acceptability and 

usability of the proposed device. It will also look into 

the compliance of the system with IIOT or Industry 

4.0 direction and ability for software defined 

infrastructure. 
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