
WOBCompute: Architecture and Design Considerations
of a P2P Computing System

Levente Filep a
Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Mihail Kogălniceanu, Cluj-Napoca, Romania

Keywords: Peer-to-Peer Networks, Super-Peer Topology, Distributed Computing, Middleware.

Abstract: Regarding large-scale scientific computing, many alternative solutions to Cloud Computing Services exits,
which combine existing, cheap, commodity hardware into computational clusters. The majority of these, due
to their ease of deployment, are based on Client-Server architecture. Decentralized approaches employ some
form of Peer-to-Peer (P2P) design, however, due to their increased design complexity, and without major
benefits over the Client-Server ones, none of these systems gained wide popularity. The P2P system presented
in this paper features decentralized task coordination, the possibility of suspending, migrating and resuming
workload on different nodes, employs remote checkpoints to allow partial result recovery, and workload
tracking, which offers the possibility to initiate communication between them. Design considerations and
choices for this system are presented and discussed. The chosen topology is super-peer managed clusters
arranged in an extended start topology and evaluated by simulation. Such a system comes with enormous
design complexity; however, a middleware can hide these complexities, while providing the applications a
simple interface to access network resources. Harnessing idle computing resources, the system can be
deployed on a combination of in-house computer networks, personal and volunteer devices, as well as Cloud-
based VMs.

1 INTRODUCTION

In recent years Cloud Computing, in the form of
Cloud Services, has become the defacto choice for
large-scale scientific computing due to its availability
and low cost. Despite this, there are many instances
where this is out of reach for individuals or small
research groups.

Many alternative solutions exist that combine
existing, cheap, commodity hardware into
computational clusters, such as grid computing or
volunteer computing (Lavoie and Hendren, 2019).
The latter is achieved by utilizing a specialized
middleware to harness the idle computational
resources of volunteers. Such a middleware can also
be deployed in a combination of personal devices, in-
house computer networks, and even Cloud VMs.
Existing solutions are mostly centralized in nature,
based on Client-Server architecture, where the
centralized server(s) are responsible for task
coordination (creation, deployment and result
collection), while volunteer resources are utilized to

a https://orcid.org/0000-0003-2095-0161

run these tasks. Due to their ease of deployment, this
kind of system, such as BOINC (Anderson, 2004),
has become the most widespread. Decentralized
approaches employ some form of Peer-to-Peer (P2P)
architecture, where each node takes part in both the
execution and the coordination of tasks. However,
P2P solutions have an increased design complexity
compared to the simplicity of Client-Server based
systems, and without providing additional benefits
(Lavoie and Hendren, 2019), these never gained
popularity, despite having the advantage of
decentralized task coordination, which, in case of
large projects, eliminates the need for costly, high-
performance centralized servers.

In this paper, a new P2P system is presented;
based on a previously presented model (Filep, 2019),
which is characterized by decentralized task
coordination (creation, deployment, and result
dissemination) as well as task tracking and remote
backups, which allows recovering partially
completed computation. Task tracking, in other
words, the ability to query task location, brings the

Filep, L.
WOBCompute: Architecture and Design Considerations of a P2P Computing System.
DOI: 10.5220/0009343100390049
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 39-49
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

39

possibility of parallel-branch communication. Such a
system comes with enormous complexity, however,
employing a specialized middleware, these
complexities can be hidden from the application. As
the middleware harness idle resources, the system can
also be deployed on a combination of in-house
computer networks, personal and volunteer devices,
as well as Cloud-based VMs. Design considerations
and choices regarding the system's topology and
middleware are also present and discussed.
Application design for such a computational system
is discussed in a different paper.

2 RELATED WORK

P2P systems are commonly used nowadays in data
networks, such as data sharing or streaming. As the
basis of computational networks, the P2P architecture
has not gained a wide interest in the literature,
arguably due to their design complexity. In Grids and
Volunteer Computing (VC), where the parallel tasks
can be computed independent of each other, the
client-server architecture is the popular choice for
such systems, as in the before-mentioned BOINC
(Anderson, 2004).

2.1 P2P Computing Systems

P2P architecture also influenced several computing
system designs. CompuP2P by Gupta et al. (2006) is
a lightweight architecture for internet computing,
using node clustering, called markets of computing
resources. Tiburcio and Spohn (2010) presented a
P2P based open-source computing grid. Gomathi and
Manimegalai (2013) presented the Hierarchically
distributed Peer-to-Peer (HP2PC) as a solution to
heterogeneity problems. Pérez-Miguel et. al. (2013)
presented a prototype P2P-HTC (P2P High
Throughput Computing) system based on Cassandra
(a distributed DHT based database) for distributed
queue based scheduling utilizing an FCFS (First
Come First Served) scheduling policy. DisCoP
(Castella et. al., 2015) is also a P2P system that
harnesses idle CPU cycles and a clustered topology
for resource location. These implementations,
however, didn’t gain huge popularity when compared
to BOINC.

2.2 Virtual Topology

P2P networks create a virtual topology over the
physical one, which directly results from the set of
rules the nodes use to connect between themselves.

Such an overlay can be structured or unstructured.
Structured P2P networks maintain a virtual topology
on top of the physical network layout (Ratnasamy et
al., 2001) aimed at increasing reliability, availability,
and search speed. Chord (Stoica et. al., 2001)
employs a ring topology and uses finger tables to
improve search efficiency. Tapestry (Zhao et al.,
2004) introduced the concept of backup- neighbor to
maintain the virtual overlay if a node becomes
unavailable.

The concept of super-peer with redundancy to
maintain cluster stability was proposed and evaluated
by Yang and Garcia-Molina (2003). However, the
super-peers concept by itself introduces a single point
of failure in the network. In the before-mentioned
paper, the authors also used redundancy and
concluded that this does not significantly affect the
overall bandwidth usage. They also proposed cluster
splitting for the network topology to adapt to an
increasing number of connecting nodes and cluster
merging in case of decreasing node number when
some clusters become too small; however, no exact
solution was proposed on how to perform these two
operations.

We often think of P2P systems as where all nodes
are equal; however, each node differs regarding their
computational performance, storage capabilities, and
available bandwidth (Jesi et. al., 2006). In the SG-2
protocol (Jesi et. al., 2006), a proximity-based super-
peer election is proposed, where each node has an
associated latency distance. The authors also state
that due to the constant change in the peers, the
maintained overlay is highly dynamic.

Clustering of peers as a search improvement was
proposed by Ye Feng et al. (2009) for the Gnutella
protocol, but also as recent as by Vimal and Srivatsa
(2019) for file sharing system search.

Several studies have analyzed the reliability of
super-peer based P2P networks. A study by Mitra et
al. (2008) finds that a super-peer ratio of less than 5%
sharply decreases reliability. Super-peer based
networks are also vulnerable to churn (De et. al.,
2016), where a large number of simultaneously
connecting or disconnecting nodes can divide the
network into isolated parts. In such cases, data
replication was proposed by Qi et al. (2019) as a
solution to data survivability.

3 SYSTEM ARCHITECTURE

WOBCompute is a P2P based computing system
based on a previously published model (Filep, 2019).

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

40

We can briefly summarize this model by its
characteristics:

- Workload (or task) creation is offloaded from
centralized servers to the peers; each workload starts
as a whole, and it is split based on other peer’s
requests for computation while also accounting for
their performance. In this case, the application itself
is responsible for splitting the workload, which
allows for multiple types of workloads, offering
better load balancing.

- The completed child workload result is
transferred to the parent task. The dissemination
process is also controlled by the application itself.

- Gateway(s) are used for the overall workload
injection and result collection.

- Computation of a workload can be suspended,
transferred to a different node and resumed.

- Workload locations can be queried by the
application for initiating communication between
them. The connection is opened directly to the target
node or via a super-peer if the target is behind NAT.

- The use of periodic remote checkpoints allows
the recovery of a partially computed workload, which
then can be resumed and even further split. The
application can choose whether to wait or recover a
workload.

To achieve the above objectives, the previously
presented model extends the notion of workload unit
with additional data fields: unique identifier (ID),
application identifier, parent and children identifier
(for result merging), checkpoint data (allows the
transfer and continuation of computation), boundary
information (identify data-set boundaries; if
required), estimated total and remaining
computational effort, state of computation, result data
(contains the partial result of the workload) and
metadata (for any application-specific use).

For ease of processing, transfer with minimal
bandwidth usage, and storage, the above fields are
incorporated into a single data-object represented as
a JSON structure, named Workload Object or WOB
in short. Furthermore, WOB size is to be kept at
minimal, therefore large analyzable data-sets are to be
acquired separately.

The concept of WOB based computing allows the
system to incorporate in-house computer networks
with volunteer provided resourced and Cloud-based
VMs. Furthermore, the possibility to track WOBs
opens possibility to initiate communication between
the parallel branches of an application. Due to
arbitrary latency between nodes, such application
design must be latency tolerant.

3.1 Network Topology Design

As mentioned before, P2P networks create a virtual
topology over the physical one. Starting from the base
model of the system, we need a search protocol to
query each WOB and a distributed storage for the
WOB backups. There are a variety of
implementations for both distributed search and
storage, however, in the author’s opinion, having two
more virtual overlays on top of the one created by the
middleware, would significantly increase the
system’s complexity.

DHT based systems have proven to be the fastest
when it comes to search, especially when dealing with
rare resources. In the presented system, each WOB
can be considered rare; however, due to constant
migration, creation, and dissemination of them,
especially with a large number of objects, the number
of update messages may significantly surpass those of
query messages. This can lead to significant
bandwidth and resource consumption to keep the
DHT up-to-date. It must be noted, that the above
statement is an assumption and was not tested
experimentally, however, to the author’s best
knowledge, how DHTs behave with extremely
frequent keys and value changes was not examined in
the literature.

WOB creation is driven by workload request
messages and therefore must reach all nodes. The
number of these messages can be problematic as a
WOB nears completion, in which case as more and
more nodes become starved, a huge number of
messages can overload and cripple the network.
Clustering of the nodes offers a pretty straightforward
solution: a cluster that contains starved nodes has no
reason to accept any workload request messages.
Furthermore, if a super-peer is aware that no more
workload is available, they can stop all outbound
request messages to other clusters. However, if more
workload becomes available (e.g. a new WOB is
injected via the gateway), workload notification
messages can unlock clusters and trigger the idle
nodes to request workload.

Several topologies, other than the previously
mentioned ones, have been proposed and
demonstrated to be resilient and efficient in resource
location, such as the AFT (Poenaru, 2016). To best of
the author’s knowledge, besides clustering with
super-peers, none can offer a cutoff solution to the
above-mentioned message flooding problem.
Furthermore, super-peers can act as a tracker of the
WOBs located within their cluster, thus search
queries can be limited only to them. A similar
proposal was made by Chmaj and Walkowiak (2013),

WOBCompute: Architecture and Design Considerations of a P2P Computing System

41

where, as opposed to the current design, the tracker is
also responsible for task scheduling.

For the above-discussed reasons, the chosen
topology is the super-peer driven clusters of peers,
arranged into an extended start superstructure, where
each cluster is connected to their parent.

Super-peers, given their role, will be referred to
as supervisors. The cluster supervisors keep a list of
all WOBs located within their cluster and their latest
backup. This way, the search only involves the
supervisors. Backup supervisors also keep a copy of
the WOB list and backups. Furthermore, they also
keep track of the available number of workload
present and idle nodes required for limiting workload
request messages.

The chosen topology does not exclude the
possibility of a later DHT implementation on top of
the current topology, where only the super-peers
would participate. Their redundancy would reduce
the number of joins into and disconnects from the
DHT topology, as one would leave, a backup super-
peer with already up-to-date indexes would take its
place.

As a project can be run on a combination of in-
house computer network, outside volunteers and
cloud resources, each project has its gateway, thus
each project has a separate logical topology. This is
required to separate the workload to maintain the
usage of allocated resources within the target project.
However, this does not exclude the possibility of one
peer participating in multiple projects.

Due to network latency between the nodes, we
can notice that while a task can initiate
communication between parallel branches of an
application, there are limitations to the types of
applications that can benefit from such a design. In
other words, the efficiency of an application
decreases as the number of messages in given time-
interval increases; with an increased number of
messages, an application will spend an ever increased
time on communication instead of computation.

3.1.1 Cluster Topology Considerations

The search efficiency is considerably impacted by the
number of clusters, meaning, the greater their
number, the more hops a query message has to take
to reach all of them. Reducing the cluster count and
still connect the same number of nodes can be
accomplished by increasing the number of nodes a
cluster accept. Since each node has a limited
connection capacity, the cluster members are
distributed among the supervisors. We can define a
cluster as balanced when the load ratio on all

supervisors is about equal. Balancing operations can
be triggered if a supervisor is overloaded.

In the current topology, each regular node is
connected to only one supervisor but is aware of all
other supervisors, as illustrated in Figure 1. In
contract, all supervisors are connected between them.
As a synchronized list of WOBs and their backups are
maintained, the persistent connection makes
messaging easier.

Node failure detection is accomplished through
regular heartbeat messages. If the connected
supervisor fails or leaves the network, the affected
nodes will connect to another supervisor from the
cluster. If this also fails, we consider the node
isolated, which then re-joins the network through the
gateway.

Figure 1: Cluster topology.

Changes in the available supervisors, such as
disconnects or elections, are advertised throughout
the cluster, so each node has an updated list of these.

3.1.2 Topology Stability

In the present system, WOB query misses are not
allowed as they can lead to computation losses. For
instance, if a WOB is partially computed, but the
query misses it due to isolated clusters, the querying
node may assume it to be lost and choose to re-create
it from a backup. Therefore, topology stability is
paramount.

Clusters are interconnected with the help of two
supervisors, one from each cluster. For additional
reliability, a backup connection is also maintained;
however, messages are not balanced between the two
connections. As a backup scenario, if a cluster gets
isolated from its parent, it will query the gateway for

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

42

a list of current clusters and attempt to connect to one.
This offers some stability in case of churn.

As the system harnesses idle cycles, when a node
is not participating in any computation, meaning its
compute resources are not free, they can still
participate, by user choice, in basic interconnection
functions. This in term further increases topology
stability.

3.1.3 Cluster Stability

Cluster internal stability is also an important factor. If
a supervisor fails, the connected nodes try to connect
to one of the known supervisors within the same
cluster. If those get overloaded and refuse the
connection, then we get isolated nodes; as the election
process of a new backup supervisor, followed by
balancing the existing supervisors can be more time-
consuming than the re-joining process of the node.

If a cluster becomes unviable (shrinks to very low
node number) we can consider it defunct. In this case,
the stored WOBs and WOB backups must be
transferred to either a better-suited neighbor cluster or
the gateway. We can notice that the system requires a
minimal constant number of participating nodes to
remain stable. Having a large number of nodes that
all disconnect a certain time of day, for example at
night, the gateway must act as storage for all WOBs,
otherwise, if nodes holding WOBs will not join the
network again, then significant parts of the overall
computation can be compromised, as child WOB
results cannot be disseminated without their parents.

Keeping a reserved connection capacity for each
supervisor reduces the chances of isolated nodes
occurring if a supervisor leaves the network.
Furthermore, supervisors can still accept connecting
nodes into the cluster by using their reserved capacity.
We can define the total connection capacity allocation
of a supervisor as:

𝐶 𝐶 𝐶 𝐶 (1)

where 𝐶 denotes the total capacity (minus the inter-
cluster connection if present), 𝐶 the number of
connections to all other supervisors within the cluster,
𝐶 is the reserved capacity, and 𝐶 the capacity
available for cluster member connections. Since we
balance the cluster members among the supervisors
(primary and backup), we can observe that the cluster
capacity can dramatically increase using this
technique, but we also notice that there is an upper
limit on the cluster size.

With a uniform capacity of 100 (fairly regular
setting on BitTorrent clients) on all nodes and a 𝐶
value of 0.1 of 𝐶 , as illustrated in Figure 2, 45% of a

Figure 2: Number of supervisors influence on cluster
capacity.

supervisor capacity allocated to super-peer
connections produces the optimal cluster size,
namely, 2070 of possible connected nodes.

Simplified, we can state that an optimal number
of supervisors per cluster are 45% of the lowest
supervisor capacity (𝐶 . A newly elected supervisor
connects to all other supervisors, and by doing so, in
the handshake process it advertises its capacity, so the
maximum number of supervisors can be adjusted
accordingly after each election. However, electing a
supervisor with low capacity should be avoided as it
triggers the demotion process, which removes the
lowest capacity supervisor first.

The connections in Equation 1 represent the
persistent ones. Temporary connections, such as
workload related, are not accounted for as they don't
have a significant impact here.

Supervisor Promotion. Supervisor election is
triggered when all supervisors exhaust their capacity.
The process is trivial: we select the best node based
on its capacity and bandwidth. Having a reserved
capacity on each supervisor allows the cluster to still
accept connections while the election process is
running, despite the cluster being temporary
overloaded.

Supervisor Demotion. Having too many supervisors
is not necessarily a problem; however, maintaining
the WOB indexes and backups utilizes an update
message for each occurring change, which must reach
each supervisor. To minimize the number of these
messages in the process, if the average used
supervisor capacity drops below a threshold value,
the lowest capacity supervisor is demoted. The
threshold value is a subjective choice with little
impact other than the number of update messages.

0

500

1000

1500

2000

2500

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

C
lu

st
er

 c
ap

ac
it

y

Number of supervisors

Number of Supervisors vs. Cluster size

Cluster capacity

WOBCompute: Architecture and Design Considerations of a P2P Computing System

43

Cluster Splitting. When a cluster gets overloaded,
and the maximum number of supervisors has been
reached, the splitting process is triggered, where
randomly selected supervisors along with the
connected nodes are split into a new cluster, while the
current cluster becomes its parent. The WOB indexes
and backups are also adjusted accordingly. As the
new cluster becomes functional, the gateway is
notified of this.

WOB List Consistency and Backups. A node
getting temporary isolated isn’t a critical issue as the
WOBs under processing still resides on it, and
computation can continue even if the node is
temporarily disconnected from the network.
Furthermore, the node address doesn’t change, so
workload related operations can still be carried out.
For this reason, once the node is detected missing, the
WOB entry at the former cluster isn't immediately
discarded, but marked as “outdated” and only later
removed. This marking prevents conflicting results of
the location query; for instance when the node joins
another cluster where it advertises it’s WOB. In such
a case the query of the WOB will return one
“outdated” result and one “fresh” which overrules the
first one. In the worst-case scenario, if the node didn’t
have time to join another cluster, then the “outdated”
result will still correctly indicate the WOB location.

As network time may be unreliable, WOB
backups are also stamped with an incremental
number.

When a WOB is completed, and its result merged
with the parent, the list entry and backup of the WOB
is removed. This minimizes the supervisor index list
and the amount of storage required to track the
WOBs. The removal process is triggered by the
parent node’s ACK message of the child WOB.

3.2 Communication and Messages

Node interconnection utilizes TCP protocol and
messages are represented in JSON structure. To
reduce bandwidth utilization, data communication is
compressed using ZLIB (Gailly and Adler, 2002)
streams. The use of compression is determined in the
handshake process between any two nodes.

A generic message contains the fields presented
in Table 1 but, depending on their type, some can be
empty or omitted.

Table 1: Message wrapper structure.

ApplicationID Distributed app unique ID
Message UUID Unique message identifier
MessageType Type of message
SenderID Sender node unique identifier
SenderAddress Sender node IP:Port
DestID Destination node unique identifier
DestAddress Destination node IP:Port
Relayed Set to 1 if message was relayed by

a super-peer
Payload Contents of message

Separate node ID and address is used for relaying
messages through supervisors, but to also identify
nodes between IP address changes.

For fast message routing within the middleware,
the design-choice was to prefix the message types
according to their types. These are:
 - WOB messages, prefixed “WOB_”. These include
the request, response offering, query, backup query,
transfer, location update, etc. and their appropriate
acknowledgment (ACK) messages.
 - Peer messages, prefixed “NODE_”, which include
interconnection, handshake, and capacity advertising
messages.
 - Cluster specific messages, prefixed “CL_”, include
supervisor election, cluster balancing and splitting,
but also WOB list and backup update, and cluster
interconnection messages.
 - Application-specific types, are prefixed “APP_”,
and are passed to the application itself. These can be
used for messaging between different tasks.

3.3 Gateways and Bootstrapping

As dynamic task coordination eliminates the need for
centralized servers, a dedicated server is still required
to ask a gateway for bootstrapping the network, the
injection of a primary task, and computation result
extraction. Another role of the gateway is that of
failsafe storage for WOBs in case of cluster
dismemberment. Since the gateway has a simplified
function and no persistent connection is required to
be maintained to it by any supervisor, this can easily
be implemented as a web application.

Bootstrapping is the process of creating the initial
network overlay to which the rest of the nodes join.
The first joining node creates the first cluster to which
the rest of the nodes join. The join process consists of
the following steps:

Node contacts the Gateway to obtain the

list of optimal clusters (cluster id
with multiple supervisors)

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

44

If the Gateway is unreachable, attempt
to reconnect to the previous cluster
(if any)

From the obtained list, chose the best
one (based on latency)

Attempt to connect to cluster (try each
supervisor until one accepts the node)

If connection to all supervisors fail,
try next cluster; if all clusters
fail, repeat the process

As query time depends on the number of hoops the
message takes, the choice is to grow the existing
clusters to their maximum size before creating new
ones. This strategy can also be applied to maintain the
central cluster in the topology: if the member count
drops, the gateway will prioritize connecting nodes to
this. To perform such strategies, clusters supervisors
regularly update the gateway about their status.

While messages can be delivered to nodes behind
NAT, they are not allowed to become super-peers.
Theoretically, they could form a “local” cluster, but
no external connection could be initiated to them for
maintaining the overall network topology. On the
other hand, this imposes a limitation on network
bootstrapping, namely, it only can be started with
nodes that have an external IP address.

3.4 Middleware

The middleware plays an essential role in maintaining
the network structure, providing the required
functionalities (such as WOB indexing and backup
storage), but also by hiding the complexity of the
system, and provides a simplified way for application
developers to harness resources from across multiple
network nodes. Nonetheless, the utilization of
middleware results in additional communication and
computing overhead.

The communication overhead is the result of all
in- and outbound messages being routed through the
middleware. Given the JSON representation of the
WOB, the fields involved in the routing of a message
can be examined without unpacking and processing
the entire message, resulting in low processing time.

As the apps are run directly on the OS but still
controlled by the middleware via callbacks, this in
term causes slight, but additional overhead. By
design, as discussed below, these only occur on
starting or stopping the computation, and message
passing. Also, a small amount of processing is
utilized for application resource monitoring and
logging.

The internal structure of the middleware is illustrated
in Figure 3. For easy development and maintenance,
based on the "separation of responsibilities" design
principle, a component-like structure was chosen.
Next, the function of each component is summarized.

Figure 3: Middleware internal structure.

3.4.1 Network Manager

This component maintains all active peer connections
and handles the receiving of incoming messages
which then are forwarded to the Message Router. Due
to overhead considerations, outbound messages are
passed by the sender component directly to the
Network Manager with direct function calls, thus
bypassing the Message Router entirely.

3.4.2 Message Router

The Message router receives the incoming messages
from the Network manager and routes them to the
corresponding component. While the messages are
prefixed according to their types, the handling of
these overlaps different components.

The message router is also responsible for
relaying messages to nodes behind NAT; this routing
only involves application-specific messages. In short,
if such a message’s DestinationAddress is the current
node, but the DestID differs, then the DestID is
searched in the cluster members, and if found, the
message is relayed directly or via another supervisor
(to whom the destination node is connected). If not
found, then a delivery failure notification is returned.
While this is a solution to messaging nodes behind
NAT, an increased number of messages can quickly
overload the supervisor.

Admin comp. (WebAPI, WebSrv)

App.
Manager

WOB
Storage

Message
Router

Network manager

Cluster
Manager

WOBCompute: Architecture and Design Considerations of a P2P Computing System

45

3.4.3 Cluster Manager

When a node fulfils the supervisor role, then this
component is responsible for maintaining all cluster
functions, such as: maintaining a local WOB index,
answering WOB location queries and storing WOB
backups. Synchronization between supervisors is also
handled by this component with the use of differential
update messages (in other words, only changes are
advertised between these nodes).

If a node is a supervisor, then any messages
intended to supervisor from the local application is
also routed here.

3.4.4 WOB Storage

This component handles the effective storage of
WOBs, their backups, and answers the associated
request messages. WOB backups are stored at the
supervisor level; however, if a node gets disconnected
from its cluster, then the WOB backup (created at
checkpoint or node shutdown) will be stored on the
local peer until the connection is re-established. In
such a case, when the node re-enters the network, then
a query is made for the current status of the stored
WOB, as meanwhile this might have been recovered
and under processing or even completed. If this
occurs, then the stored WOB in question is discarded
from local storage and a new WOB request trigged.

3.4.5 Application Manager

The App. manager is responsible for application
scheduling (starting, suspending or stopping this),
and imposing resource usage limits based on
available idle resources and settings. A given
application is started before requesting any WOB to
ensure that these can start-up and be ready to handle
the WOB offerings. As a security measure, all
applications are run under a limited OS user.

Application setup is defined in the participating
project configuration, which contains the install, run,
and uninstall commands.

As the WOB object only contains workload
related data, but no executable code and the
application itself is downloaded from the project
URL, malicious code injection is not possible by a
remote node.

3.4.6 Admin Component

Combined with the Project manager and the internal
web server, these are responsible for joining projects,
downloading and installing applications, and
providing local and possibly remote administration

for peer configuration. The design choice was to
provide the local admin area via an internal webpage
and remote administration via a WebAPI call using
an authorization key. This can also be configured to
only accept connections from given IP addresses. The
local admin portal can also be disabled if remote
administration is enabled, which is useful when
setting up a local computer network.

3.4.7 Application API

For easing application development for this system,
an API is provided that resides before the middleware
and "translates" the incoming messages into
callbacks, to which the app can register, as illustrated
in Figure 4.

Figure 4: Application API.

The most important callbacks and functions can be
summarized as:
- The API provided Start() is to be called when the

application is ready to receive workload. The
request message is dispatched by the API.

- OnWOBInit: called when the workload is
received and computing data is to be extracted.

- OnCompute: registered function does the
effective computation. Interruption is done via
the CanCompute() function, which, if returns
false, then the computation is to be suspended.
Specialized hardware resources (such as GPU)
are to be acquired at the beginning of the
registered function. Since there is no guaranty
that the computation will be resumed on the
current node, the acquired resourced must be
released at the end of this function.

- OnCheckpoint: a checkpoint is requested by the
middleware. Checkpoint interval is a project
setting.

- OnAppExit: WOB data is to be packed as
preparation for application exit. The WOB will
be transferred off the node (if possible). Even if
computing is suspended, this function is called

Callbacks + functions

Application manager

App. API

Messages

Application code

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

46

0 2 4 6 8 10 12 14 16 18 20 22

Weekday pattern
Weekend pattern

when a node is shutting down to allow the
application to pack the WOB.

- OnWOBRequest: called when another node
requests workload from us. Request contains
node specifications. The answer is a workload
offering. The offered workload is to be locked to
prevent multiple offering.

- OnWOBOfferAck: triggered when the requester
node accepted our workload offering. The child
WOB can be created, prepared and dispatched.
On confirmation of receive, the
OnWOBChildAck callback is triggered. If the
Ack doesn’t arrive, then the application can
release the workload.

- NotifyWorkloadAvailable() is to be used when
additional workload becomes available. This will
broadcast a notification message which triggers
idle nodes to request workload.

- WOBQuery and WOBLocQuery functions can
be used to query the entire WOB with location or
only the location of a specific WOB.

- WOBMsg can be used to send application
specific messages.

- WOBReqBackup: can be used to retrieve an
existing backup of a WOB.

- WOBFinished is to be called when the current
WOB is finished. This will be automatically
transferred to the parent WOB location, where
the OnWOBChildFinished is triggered for its
result to be disseminated. The parent
acknowledges the WOB with the WOBFinished
function, to which this will be removed from the
supervisor’s indexes and backups.

As mentioned with the presentation of the base
model, when a WOB is created, a backup of this is
also created to preserve parent-child list consistency.

We can already see that while the middleware
offers simplified functions to harness the P2P
system’s resources, there is additional complexity to
application design.

4 TOPOLOGY SIMULATION

Simulation of topology was conducted using a
custom, purpose built simulator. The goal was to
simulate a variety of user compute resource
contribution; hence the number of joining and leaving
nodes was generated using an estimated online
number of computers per week, obtained from a local
internet provider. These numbers differ very little
between the weekdays, so one pattern was used for
weekday availability and one for the weekend,
illustrated in Figure 5.

Figure 5: Peer online patterns.

Bandwidth was assumed adequate for the connection
capacity. In practice, if such a scenario occurs, the
node decreases it's connection capacity accordingly.
The simulation was run for two weeks (internal clock)
and the data sampled hourly. The parameters are
presented in Table 2.

Table 2: Simulation parameters.

Number of nodes 50,000
Node capacity (𝐶) Random from:

50,75,100,125,150
Reserved cap. (𝐶) 0.1
Min. supervisors 3
Max. supervisors 0.45 of Min(𝐶) Sup.

Cluster split threshold 0.9
Cluster interconnection 2

At the end of the simulation, as illustrated in Figure
6, the following results were obtained: peak number
of online nodes: 35995, isolated nodes: 264, total
clusters formed 85 and defunct clusters: 79. The first
clusters to become defunct were the leaf ones. The
other clusters had enough “weight” to survive a large
number of disconnecting nodes.

In the best-case scenario, the super-peers
managed to organize almost 36000 nodes into 8
clusters with the average size of 4499 (smallest: 4489,
largest: 4501) with the longest path of 3 hops. In the
worst-case observed, 35995 nodes were organized
into 15 clusters with an average size of 2399
(smallest: 2360, largest: 2406) and the longest path of
5 hops between them.

Using a redundant cluster interconnection, no
occurrence of isolated clusters was observed during
the simulation. Nonetheless, a catastrophic physical
network failure can still result in parts of the network
becoming isolated.

WOBCompute: Architecture and Design Considerations of a P2P Computing System

47

Figure 6: Topology simulation result.

5 CONCLUSIONS

In this paper, a P2P computing system’s architecture
and design considerations ware presented. Overall,
the numerous functions required to operate the system
leads to the inevitable increase in both design and
implementation complexity.

As in any P2P system design, the topology design
is influenced by the operation of the system,
specifically, decentralized task coordination, ability
to suspend, migrate, recover, and track workloads.
Task creation is driven by workload requests,
recovery is accomplished using a remote checkpoint
system, while workload tracking requires a search
mechanism. As mentioned by several literature
proposals, super-peers increase the search speed by
maintaining a list of connected peer resources, thus
reducing the number of peers needed to be queried. In
the presented system, super-peers also store the
workload checkpoints. Another benefit of clustering
is the super-peers ability to limit the workload query
messages in certain cases, which otherwise could
overload the network. Backup super-peers are used to
maintain cluster stability; as one super-peer exit or
fails, a backup can take its place, thus keeping the
cluster functional. Furthermore, it is desirable to have
a reduced number of clusters query messages have to
reach. Since each super-peer has a limited number of
connections it can accept, further increasing the size
of a cluster can be achieved by balancing the cluster
members between the super-peers. Concerning the
network overlay, the clusters are organized into an
extended star topology to reduce the number of hops
for a message to take to reach all clusters. Topology

simulations to verify the viability of the presented
network overlay ware also presented in the paper.

As discussed, such a system design, compared to
systems using client-server architecture, comes with
an enormous complexity needed to maintain network
overlay and provide the specified functionalities.
However, this complexity is hidden by the
middleware, which provides simple and
straightforward functions to utilize and build
computing applications. Nonetheless, such
applications come with additional complexity.
However, the benefit is, as in most P2P systems, the
decentralized task coordination, and the unique
characteristic of the presented system, the possibility
of suspending, transferring and recovering
workloads, and also locating workloads allows the
possibility of messaging between parallel tasks.

REFERENCES

Anderson, DP. (2004). Boinc: A system for public-resource
computing and storage. Proceedings of the 5th
IEEE/ACM International Workshop, 4-10. https://
doi.org/10.1109/GRID.2004.14

Castella, D., Solsona, F., Gine F. (2015). DisCoP: A P2P
Framework for Managing and Searching Computing
Markets. Journal of Grid Computing 13, 115-137.
https://doi.org/10.1007/s10723-014-9318-3

Chmaj, G. and Walkowiak, K. (2013). A P2P Computing
System for Overlay Networks. Future Generation
Computer Systems, 29(1), 242-249. https://doi.org/
10.1016/j.future.2010.11.009

De, S., Barik, M. S., Banerjee, I. (2016). Goal Based Threat
Modeling for Peer-to-Peer Cloud. Procedia Computer

0

2

4

6

8

10

12

14

16

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000
w

0_
0_

0
w

0_
0_

8
w

0_
0_

16
w

0_
1_

0
w

0_
1_

8
w

0_
1_

16
w

0_
2_

0
w

0_
2_

8
w

0_
2_

16
w

0_
3_

0
w

0_
3_

8
w

0_
3_

16
w

0_
4_

0
w

0_
4_

8
w

0_
4_

16
w

0_
5_

0
w

0_
5_

8
w

0_
5_

16
w

0_
6_

0
w

0_
6_

8
w

0_
6_

16
w

1_
0_

0
w

1_
0_

8
w

1_
0_

16
w

1_
1_

0
w

1_
1_

8
w

1_
1_

16
w

1_
2_

0
w

1_
2_

8
w

1_
2_

16
w

1_
3_

0
w

1_
3_

8
w

1_
3_

16
w

1_
4_

0
w

1_
4_

8
w

1_
4_

16
w

1_
5_

0
w

1_
5_

8
w

1_
5_

16
w

1_
6_

0
w

1_
6_

8
w

1_
6_

16

Online nodes Clusters

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

48

Science (89), 64-72. https://doi.org/10.1016/j.procs.
2016.06.010

Filep, L. (2019). Model for Improved Load Balancing in
Volunteer Computing Platforms. 15th European,
Mediterranean, and Middle Eastern Conference,
LNBIP 341, 131–143. https://doi.org/10.1007/978-3-
030-11395-7_13

Gailly, J. and Adler, M. (2002), zlib Library. http://
zlib.net/index.html

Gomathi, S. and Manimegalai, D. (2013). Hierarchically
distributed Peer-to-Peer architecture for computational
grid. 2013 International Conference on Green High
Performance Computing (ICGHPC). https://doi.org/
10.1109/ICGHPC.2013.6533906

Gupta, R., Sekhri, V., Somani, A. (2016). CompuP2P: An
architecture for internet computing using Peer-to-Peer
networks. IEEE Trans. Parallel Distrib. Syst. 17(11),
1306-1320. https://doi.org/10.1109/TPDS.2006.149

Jesi, G. P., Montresor, A., Babaoglu, O. (2006). Proximity-
Aware Superpeer Overlay Topologies. Lecture Notes in
Computer Science, 43-57. https://doi.org/10.1007/
11767886_4

Lavoie, E., Hendren, L. (2019). Personal volunteer
computing. Proceedings of the 16th ACM International
Conference on Computing Frontiers (CF '19), 240-246.
https://doi.org/10.1145/3310273.3322819

Mitra, B., Ghose, S., Ganguly, N., Peruani, F. (2008).
Stability analysis of peer-to-peer networks against
churn. Pramana - J Phys, 71-263. https://doi.org/
10.1007/s12043-008-0159-0

Pérez-Miguel, C., Miguel-Alonso, J., & Mendiburu, A.
(2013). High throughput computing over peer-to-peer
networks. Future Generation Computer Systems, 29(1),
352–360. doi: https://doi.org/10.1016/
j.future.2011.08.011

Poenaru, A., Istrate, R., Pop, F. (2016). AFT: Adaptive and
fault tolerant peer-to-peer overlay - A user-centric
solution for data sharing, Future Generation Computer
Systems (80), 583-595. http://dx.doi.org/10.1016/
j.future.2016.05.022

Qi, X., Qiang, M., Liu, L. (2019). A balanced strategy to
improve data invulnerability in structured P2P system.
Peer-to-Peer Networking and Applications. https://
doi.org/10.1007/s12083-019-00773-9

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker,
S. (2001). A Scalable Content Addressable Network.
Proceedings of SIGCOMM 2001, 161-172. https://
doi.org/10.1145/383059.383072

Stoica, I., Morris, R., Karger, D., Kaashoek, M.F.,
Balakrishnan, H. (2001). Chord - A Scalable Peer-to-
peer Lookup Service for Internet Applications.
Proceedings of SIGCOMM, 149-160. https://doi.org/
10.1145/383059.383071

Tiburcio, P.G.S., Spohn, M.A. (2010). Ad hoc Grid: An
Adaptive and Self-Organizing Peer-to-Peer Computing
Grid. 10th International Conference on Computer and
Information Technology (CIT), 225-232. https://
doi.org/10.1109/CIT.2010.504

Vimal, S., Srivatsa, S.K. (2019). A file sharing system in
peer-to-peer network by a nearness-sensible method.

International Journal of Reasoning-based Intelligent
Systems (IJRIS), 11 (4). https://dx.doi.org/10.1504/
IJRIS.2019.103510

Yang, B., Garcia-Molina, H. (2003). Designing a super-
peer network. 19th International Conference on Data
Engineering. https://doi.org/doi:10.1109/icde.2003.
1260781

Ye, F., Zuo, F., Zhang, S. (2009). Routing Algorithm Based
on Gnutella Model. Computational Intelligence and
Intelligent Systems. https://doi.org/10.1007/978-3-642-
04962-0_2

Zhao, H., Huang, L., Stribling, R., Rhea, S.C., Joseph, A.D.,
Kubiatowicz, J.D. (2004). Tapestry - A Resilient
Global-Scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications 22, 41-
53. https://doi.org/10.1109/JSAC.2003.818784

WOBCompute: Architecture and Design Considerations of a P2P Computing System

49

