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Abstract: Regarding large-scale scientific computing, many alternative solutions to Cloud Computing Services exits, 
which combine existing, cheap, commodity hardware into computational clusters. The majority of these, due 
to their ease of deployment, are based on Client-Server architecture. Decentralized approaches employ some 
form of Peer-to-Peer (P2P) design, however, due to their increased design complexity, and without major 
benefits over the Client-Server ones, none of these systems gained wide popularity. The P2P system presented 
in this paper features decentralized task coordination, the possibility of suspending, migrating and resuming 
workload on different nodes, employs remote checkpoints to allow partial result recovery, and workload 
tracking, which offers the possibility to initiate communication between them. Design considerations and 
choices for this system are presented and discussed.  The chosen topology is super-peer managed clusters 
arranged in an extended start topology and evaluated by simulation. Such a system comes with enormous 
design complexity; however, a middleware can hide these complexities, while providing the applications a 
simple interface to access network resources. Harnessing idle computing resources, the system can be 
deployed on a combination of in-house computer networks, personal and volunteer devices, as well as Cloud-
based VMs. 

1 INTRODUCTION 

In recent years Cloud Computing, in the form of 
Cloud Services, has become the defacto choice for 
large-scale scientific computing due to its availability 
and low cost. Despite this, there are many instances 
where this is out of reach for individuals or small 
research groups. 

Many alternative solutions exist that combine 
existing, cheap, commodity hardware into 
computational clusters, such as grid computing or 
volunteer computing (Lavoie and Hendren, 2019). 
The latter is achieved by utilizing a specialized 
middleware to harness the idle computational 
resources of volunteers. Such a middleware can also 
be deployed in a combination of personal devices, in-
house computer networks, and even Cloud VMs. 
Existing solutions are mostly centralized in nature, 
based on Client-Server architecture, where the 
centralized server(s) are responsible for task 
coordination (creation, deployment and result 
collection), while volunteer resources are utilized to 
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run these tasks. Due to their ease of deployment, this 
kind of system, such as BOINC (Anderson, 2004), 
has become the most widespread. Decentralized 
approaches employ some form of Peer-to-Peer (P2P) 
architecture, where each node takes part in both the 
execution and the coordination of tasks. However, 
P2P solutions have an increased design complexity 
compared to the simplicity of Client-Server based 
systems, and without providing additional benefits 
(Lavoie and Hendren, 2019), these never gained 
popularity, despite having the advantage of 
decentralized task coordination, which, in case of 
large projects, eliminates the need for costly, high-
performance centralized servers. 

In this paper, a new P2P system is presented; 
based on a previously presented model (Filep, 2019), 
which is characterized by decentralized task 
coordination (creation, deployment, and result 
dissemination) as well as task tracking and remote 
backups, which allows recovering partially 
completed computation. Task tracking, in other 
words, the ability to query task location, brings the 
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possibility of parallel-branch communication. Such a 
system comes with enormous complexity, however, 
employing a specialized middleware, these 
complexities can be hidden from the application. As 
the middleware harness idle resources, the system can 
also be deployed on a combination of in-house 
computer networks, personal and volunteer devices, 
as well as Cloud-based VMs. Design considerations 
and choices regarding the system's topology and 
middleware are also present and discussed. 
Application design for such a computational system 
is discussed in a different paper. 

2 RELATED WORK 

P2P systems are commonly used nowadays in data 
networks, such as data sharing or streaming. As the 
basis of computational networks, the P2P architecture 
has not gained a wide interest in the literature, 
arguably due to their design complexity. In Grids and 
Volunteer Computing (VC), where the parallel tasks 
can be computed independent of each other, the 
client-server architecture is the popular choice for 
such systems, as in the before-mentioned BOINC 
(Anderson, 2004). 

2.1 P2P Computing Systems 

P2P architecture also influenced several computing 
system designs. CompuP2P by Gupta et al. (2006) is 
a lightweight architecture for internet computing, 
using node clustering, called markets of computing 
resources. Tiburcio and Spohn (2010) presented a 
P2P based open-source computing grid. Gomathi and 
Manimegalai (2013) presented the Hierarchically 
distributed Peer-to-Peer (HP2PC) as a solution to 
heterogeneity problems. Pérez-Miguel et. al. (2013) 
presented a prototype P2P-HTC (P2P High 
Throughput Computing) system based on Cassandra 
(a distributed DHT based database) for distributed 
queue based scheduling utilizing an FCFS (First 
Come First Served) scheduling policy. DisCoP 
(Castella et. al., 2015) is also a P2P system that 
harnesses idle CPU cycles and a clustered topology 
for resource location. These implementations, 
however, didn’t gain huge popularity when compared 
to BOINC. 

2.2 Virtual Topology 

P2P networks create a virtual topology over the 
physical one, which directly results from the set of 
rules the nodes use to connect between themselves. 

Such an overlay can be structured or unstructured. 
Structured P2P networks maintain a virtual topology 
on top of the physical network layout (Ratnasamy et 
al., 2001) aimed at increasing reliability, availability, 
and search speed. Chord (Stoica et. al., 2001) 
employs a ring topology and uses finger tables to 
improve search efficiency. Tapestry (Zhao et al., 
2004) introduced the concept of backup- neighbor to 
maintain the virtual overlay if a node becomes 
unavailable. 

The concept of super-peer with redundancy to 
maintain cluster stability was proposed and evaluated 
by Yang and Garcia-Molina (2003). However, the 
super-peers concept by itself introduces a single point 
of failure in the network. In the before-mentioned 
paper, the authors also used redundancy and 
concluded that this does not significantly affect the 
overall bandwidth usage. They also proposed cluster 
splitting for the network topology to adapt to an 
increasing number of connecting nodes and cluster 
merging in case of decreasing node number when 
some clusters become too small; however, no exact 
solution was proposed on how to perform these two 
operations. 

We often think of P2P systems as where all nodes 
are equal; however, each node differs regarding their 
computational performance, storage capabilities, and 
available bandwidth (Jesi et. al., 2006). In the SG-2 
protocol (Jesi et. al., 2006), a proximity-based super-
peer election is proposed, where each node has an 
associated latency distance. The authors also state 
that due to the constant change in the peers, the 
maintained overlay is highly dynamic. 

Clustering of peers as a search improvement was 
proposed by Ye Feng et al. (2009) for the Gnutella 
protocol, but also as recent as by Vimal and Srivatsa 
(2019) for file sharing system search. 

Several studies have analyzed the reliability of 
super-peer based P2P networks. A study by Mitra et 
al. (2008) finds that a super-peer ratio of less than 5% 
sharply decreases reliability. Super-peer based 
networks are also vulnerable to churn (De et. al., 
2016), where a large number of simultaneously 
connecting or disconnecting nodes can divide the 
network into isolated parts. In such cases, data 
replication was proposed by Qi et al. (2019) as a 
solution to data survivability. 

3 SYSTEM ARCHITECTURE 

WOBCompute is a P2P based computing system 
based on a previously published model (Filep, 2019). 
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We can briefly summarize this model by its 
characteristics: 

- Workload (or task) creation is offloaded from 
centralized servers to the peers; each workload starts 
as a whole, and it is split based on other peer’s 
requests for computation while also accounting for 
their performance. In this case, the application itself 
is responsible for splitting the workload, which 
allows for multiple types of workloads, offering 
better load balancing. 

- The completed child workload result is 
transferred to the parent task. The dissemination 
process is also controlled by the application itself. 

- Gateway(s) are used for the overall workload 
injection and result collection. 

- Computation of a workload can be suspended, 
transferred to a different node and resumed. 

- Workload locations can be queried by the 
application for initiating communication between 
them. The connection is opened directly to the target 
node or via a super-peer if the target is behind NAT. 

- The use of periodic remote checkpoints allows 
the recovery of a partially computed workload, which 
then can be resumed and even further split. The 
application can choose whether to wait or recover a 
workload. 

To achieve the above objectives, the previously 
presented model extends the notion of workload unit 
with additional data fields: unique identifier (ID), 
application identifier, parent and children identifier 
(for result merging), checkpoint data (allows the 
transfer and continuation of computation), boundary 
information (identify data-set boundaries; if 
required), estimated total and remaining 
computational effort, state of computation, result data 
(contains the partial result of the workload) and 
metadata (for any application-specific use).  

For ease of processing, transfer with minimal 
bandwidth usage, and storage, the above fields are 
incorporated into a single data-object represented as 
a JSON structure, named Workload Object or WOB 
in short. Furthermore, WOB size is to be kept at 
minimal, therefore large analyzable data-sets are to be 
acquired separately.  

The concept of WOB based computing allows the 
system to incorporate in-house computer networks 
with volunteer provided resourced and Cloud-based 
VMs. Furthermore, the possibility to track WOBs 
opens possibility to initiate communication between 
the parallel branches of an application. Due to 
arbitrary latency between nodes, such application 
design must be latency tolerant. 

 

3.1 Network Topology Design 

As mentioned before, P2P networks create a virtual 
topology over the physical one. Starting from the base 
model of the system, we need a search protocol to 
query each WOB and a distributed storage for the 
WOB backups. There are a variety of 
implementations for both distributed search and 
storage, however, in the author’s opinion, having two 
more virtual overlays on top of the one created by the 
middleware, would significantly increase the 
system’s complexity. 

DHT based systems have proven to be the fastest 
when it comes to search, especially when dealing with 
rare resources. In the presented system, each WOB 
can be considered rare; however, due to constant 
migration, creation, and dissemination of them, 
especially with a large number of objects, the number 
of update messages may significantly surpass those of 
query messages. This can lead to significant 
bandwidth and resource consumption to keep the 
DHT up-to-date. It must be noted, that the above 
statement is an assumption and was not tested 
experimentally, however, to the author’s best 
knowledge, how DHTs behave with extremely 
frequent keys and value changes was not examined in 
the literature. 

WOB creation is driven by workload request 
messages and therefore must reach all nodes. The 
number of these messages can be problematic as a 
WOB nears completion, in which case as more and 
more nodes become starved, a huge number of 
messages can overload and cripple the network. 
Clustering of the nodes offers a pretty straightforward 
solution: a cluster that contains starved nodes has no 
reason to accept any workload request messages. 
Furthermore, if a super-peer is aware that no more 
workload is available, they can stop all outbound 
request messages to other clusters. However, if more 
workload becomes available (e.g. a new WOB is 
injected via the gateway), workload notification 
messages can unlock clusters and trigger the idle 
nodes to request workload. 

Several topologies, other than the previously 
mentioned ones, have been proposed and 
demonstrated to be resilient and efficient in resource 
location, such as the AFT (Poenaru, 2016). To best of 
the author’s knowledge, besides clustering with 
super-peers, none can offer a cutoff solution to the 
above-mentioned message flooding problem. 
Furthermore, super-peers can act as a tracker of the 
WOBs located within their cluster, thus search 
queries can be limited only to them. A similar 
proposal was made by Chmaj and Walkowiak (2013), 
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where, as opposed to the current design, the tracker is 
also responsible for task scheduling. 

For the above-discussed reasons, the chosen 
topology is the super-peer driven clusters of peers, 
arranged into an extended start superstructure, where 
each cluster is connected to their parent. 

Super-peers, given their role, will be referred to 
as supervisors. The cluster supervisors keep a list of 
all WOBs located within their cluster and their latest 
backup. This way, the search only involves the 
supervisors. Backup supervisors also keep a copy of 
the WOB list and backups. Furthermore, they also 
keep track of the available number of workload 
present and idle nodes required for limiting workload 
request messages. 

The chosen topology does not exclude the 
possibility of a later DHT implementation on top of 
the current topology, where only the super-peers 
would participate. Their redundancy would reduce 
the number of joins into and disconnects from the 
DHT topology, as one would leave, a backup super-
peer with already up-to-date indexes would take its 
place. 

As a project can be run on a combination of in-
house computer network, outside volunteers and 
cloud resources, each project has its gateway, thus 
each project has a separate logical topology. This is 
required to separate the workload to maintain the 
usage of allocated resources within the target project. 
However, this does not exclude the possibility of one 
peer participating in multiple projects. 

Due to network latency between the nodes, we 
can notice that while a task can initiate 
communication between parallel branches of an 
application, there are limitations to the types of 
applications that can benefit from such a design. In 
other words, the efficiency of an application 
decreases as the number of messages in given time-
interval increases; with an increased number of 
messages, an application will spend an ever increased 
time on communication instead of computation. 

3.1.1 Cluster Topology Considerations 

The search efficiency is considerably impacted by the 
number of clusters, meaning, the greater their 
number, the more hops a query message has to take 
to reach all of them. Reducing the cluster count and 
still connect the same number of nodes can be 
accomplished by increasing the number of nodes a 
cluster accept. Since each node has a limited 
connection capacity, the cluster members are 
distributed among the supervisors. We can define a 
cluster as balanced when the load ratio on all 

supervisors is about equal. Balancing operations can 
be triggered if a supervisor is overloaded. 

In the current topology, each regular node is 
connected to only one supervisor but is aware of all 
other supervisors, as illustrated in Figure 1. In 
contract, all supervisors are connected between them. 
As a synchronized list of WOBs and their backups are 
maintained, the persistent connection makes 
messaging easier. 

Node failure detection is accomplished through 
regular heartbeat messages. If the connected 
supervisor fails or leaves the network, the affected 
nodes will connect to another supervisor from the 
cluster. If this also fails, we consider the node 
isolated, which then re-joins the network through the 
gateway. 

 

Figure 1: Cluster topology. 

Changes in the available supervisors, such as 
disconnects or elections, are advertised throughout 
the cluster, so each node has an updated list of these. 

3.1.2 Topology Stability 

In the present system, WOB query misses are not 
allowed as they can lead to computation losses. For 
instance, if a WOB is partially computed, but the 
query misses it due to isolated clusters, the querying 
node may assume it to be lost and choose to re-create 
it from a backup. Therefore, topology stability is 
paramount. 

Clusters are interconnected with the help of two 
supervisors, one from each cluster. For additional 
reliability, a backup connection is also maintained; 
however, messages are not balanced between the two 
connections. As a backup scenario, if a cluster gets 
isolated from its parent, it will query the gateway for 
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a list of current clusters and attempt to connect to one. 
This offers some stability in case of churn. 

As the system harnesses idle cycles, when a node 
is not participating in any computation, meaning its 
compute resources are not free, they can still 
participate, by user choice, in basic interconnection 
functions. This in term further increases topology 
stability. 

3.1.3 Cluster Stability 

Cluster internal stability is also an important factor. If 
a supervisor fails, the connected nodes try to connect 
to one of the known supervisors within the same 
cluster. If those get overloaded and refuse the 
connection, then we get isolated nodes; as the election 
process of a new backup supervisor, followed by 
balancing the existing supervisors can be more time-
consuming than the re-joining process of the node. 

If a cluster becomes unviable (shrinks to very low 
node number) we can consider it defunct. In this case, 
the stored WOBs and WOB backups must be 
transferred to either a better-suited neighbor cluster or 
the gateway. We can notice that the system requires a 
minimal constant number of participating nodes to 
remain stable. Having a large number of nodes that 
all disconnect a certain time of day, for example at 
night, the gateway must act as storage for all WOBs, 
otherwise, if nodes holding WOBs will not join the 
network again, then significant parts of the overall 
computation can be compromised, as child WOB 
results cannot be disseminated without their parents. 

Keeping a reserved connection capacity for each 
supervisor reduces the chances of isolated nodes 
occurring if a supervisor leaves the network. 
Furthermore, supervisors can still accept connecting 
nodes into the cluster by using their reserved capacity. 
We can define the total connection capacity allocation 
of a supervisor as: 

𝐶 𝐶 𝐶 𝐶  (1)

where 𝐶  denotes the total capacity (minus the inter-
cluster connection if present), 𝐶  the number of 
connections to all other supervisors within the cluster, 
𝐶  is the reserved capacity, and 𝐶  the capacity 
available for cluster member connections. Since we 
balance the cluster members among the supervisors 
(primary and backup), we can observe that the cluster 
capacity can dramatically increase using this 
technique, but we also notice that there is an upper 
limit on the cluster size. 

With a uniform capacity of 100 (fairly regular 
setting on BitTorrent clients) on all nodes and a 𝐶  
value of 0.1 of 𝐶 , as illustrated in Figure 2, 45% of a  

  
Figure 2: Number of supervisors influence on cluster 
capacity. 

supervisor capacity allocated to super-peer 
connections produces the optimal cluster size, 
namely, 2070 of possible connected nodes. 

Simplified, we can state that an optimal number 
of supervisors per cluster are 45% of the lowest 
supervisor capacity (𝐶 . A newly elected supervisor 
connects to all other supervisors, and by doing so, in 
the handshake process it advertises its capacity, so the 
maximum number of supervisors can be adjusted 
accordingly after each election. However, electing a 
supervisor with low capacity should be avoided as it 
triggers the demotion process, which removes the 
lowest capacity supervisor first. 

The connections in Equation 1 represent the 
persistent ones. Temporary connections, such as 
workload related, are not accounted for as they don't 
have a significant impact here. 

Supervisor Promotion. Supervisor election is 
triggered when all supervisors exhaust their capacity. 
The process is trivial: we select the best node based 
on its capacity and bandwidth. Having a reserved 
capacity on each supervisor allows the cluster to still 
accept connections while the election process is 
running, despite the cluster being temporary 
overloaded. 

Supervisor Demotion. Having too many supervisors 
is not necessarily a problem; however, maintaining 
the WOB indexes and backups utilizes an update 
message for each occurring change, which must reach 
each supervisor. To minimize the number of these 
messages in the process, if the average used 
supervisor capacity drops below a threshold value, 
the lowest capacity supervisor is demoted. The 
threshold value is a subjective choice with little 
impact other than the number of update messages. 
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Cluster Splitting. When a cluster gets overloaded, 
and the maximum number of supervisors has been 
reached, the splitting process is triggered, where 
randomly selected supervisors along with the 
connected nodes are split into a new cluster, while the 
current cluster becomes its parent. The WOB indexes 
and backups are also adjusted accordingly. As the 
new cluster becomes functional, the gateway is 
notified of this. 

WOB List Consistency and Backups. A node 
getting temporary isolated isn’t a critical issue as the 
WOBs under processing still resides on it, and 
computation can continue even if the node is 
temporarily disconnected from the network. 
Furthermore, the node address doesn’t change, so 
workload related operations can still be carried out. 
For this reason, once the node is detected missing, the 
WOB entry at the former cluster isn't immediately 
discarded, but marked as “outdated” and only later 
removed. This marking prevents conflicting results of 
the location query; for instance when the node joins 
another cluster where it advertises it’s WOB. In such 
a case the query of the WOB will return one 
“outdated” result and one “fresh” which overrules the 
first one. In the worst-case scenario, if the node didn’t 
have time to join another cluster, then the “outdated” 
result will still correctly indicate the WOB location. 

As network time may be unreliable, WOB 
backups are also stamped with an incremental 
number. 

When a WOB is completed, and its result merged 
with the parent, the list entry and backup of the WOB 
is removed. This minimizes the supervisor index list 
and the amount of storage required to track the 
WOBs. The removal process is triggered by the 
parent node’s ACK message of the child WOB. 

3.2 Communication and Messages 

Node interconnection utilizes TCP protocol and 
messages are represented in JSON structure. To 
reduce bandwidth utilization, data communication is 
compressed using ZLIB (Gailly and Adler, 2002) 
streams. The use of compression is determined in the 
handshake process between any two nodes.  

A generic message contains the fields presented 
in Table 1 but, depending on their type, some can be 
empty or omitted. 

 
 
 
 
 

Table 1: Message wrapper structure. 

ApplicationID Distributed app unique ID 
Message UUID Unique message identifier 
MessageType Type of message 
SenderID Sender node unique identifier
SenderAddress Sender node IP:Port 
DestID Destination node unique identifier
DestAddress Destination node IP:Port 
Relayed Set to 1 if message was relayed by 

a super-peer 
Payload Contents of message 

 
Separate node ID and address is used for relaying 
messages through supervisors, but to also identify 
nodes between IP address changes. 

For fast message routing within the middleware, 
the design-choice was to prefix the message types 
according to their types. These are: 
  - WOB messages, prefixed “WOB_”. These include 
the request, response offering, query, backup query, 
transfer, location update, etc. and their appropriate 
acknowledgment (ACK) messages. 
  - Peer messages, prefixed “NODE_”, which include 
interconnection, handshake, and capacity advertising 
messages. 
  - Cluster specific messages, prefixed “CL_”, include 
supervisor election, cluster balancing and splitting, 
but also WOB list and backup update, and cluster 
interconnection messages. 
  - Application-specific types, are prefixed “APP_”, 
and are passed to the application itself. These can be 
used for messaging between different tasks. 

3.3 Gateways and Bootstrapping 

As dynamic task coordination eliminates the need for 
centralized servers, a dedicated server is still required 
to ask a gateway for bootstrapping the network, the 
injection of a primary task, and computation result 
extraction. Another role of the gateway is that of 
failsafe storage for WOBs in case of cluster 
dismemberment. Since the gateway has a simplified 
function and no persistent connection is required to 
be maintained to it by any supervisor, this can easily 
be implemented as a web application. 

Bootstrapping is the process of creating the initial 
network overlay to which the rest of the nodes join. 
The first joining node creates the first cluster to which 
the rest of the nodes join. The join process consists of 
the following steps: 

 
Node contacts the Gateway to obtain the 

list of optimal clusters (cluster id 
with multiple supervisors) 
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If the Gateway is unreachable, attempt 
to reconnect to the previous cluster 
(if any) 

From the obtained list, chose the best 
one (based on latency) 

Attempt to connect to cluster (try each 
supervisor until one accepts the node) 

If connection to all supervisors fail, 
try next cluster; if all clusters 
fail, repeat the process 

 
As query time depends on the number of hoops the 
message takes, the choice is to grow the existing 
clusters to their maximum size before creating new 
ones. This strategy can also be applied to maintain the 
central cluster in the topology: if the member count 
drops, the gateway will prioritize connecting nodes to 
this. To perform such strategies, clusters supervisors 
regularly update the gateway about their status. 

While messages can be delivered to nodes behind 
NAT, they are not allowed to become super-peers. 
Theoretically, they could form a “local” cluster, but 
no external connection could be initiated to them for 
maintaining the overall network topology. On the 
other hand, this imposes a limitation on network 
bootstrapping, namely, it only can be started with 
nodes that have an external IP address. 

3.4 Middleware 

The middleware plays an essential role in maintaining 
the network structure, providing the required 
functionalities (such as WOB indexing and backup 
storage), but also by hiding the complexity of the 
system, and provides a simplified way for application 
developers to harness resources from across multiple 
network nodes. Nonetheless, the utilization of 
middleware results in additional communication and 
computing overhead.  

The communication overhead is the result of all 
in- and outbound messages being routed through the 
middleware. Given the JSON representation of the 
WOB, the fields involved in the routing of a message 
can be examined without unpacking and processing 
the entire message, resulting in low processing time. 

As the apps are run directly on the OS but still 
controlled by the middleware via callbacks, this in 
term causes slight, but additional overhead. By 
design, as discussed below, these only occur on 
starting or stopping the computation, and message 
passing. Also, a small amount of processing is 
utilized for application resource monitoring and 
logging. 
 

The internal structure of the middleware is illustrated 
in Figure 3. For easy development and maintenance, 
based on the "separation of responsibilities" design 
principle, a component-like structure was chosen. 
Next, the function of each component is summarized. 

 
Figure 3: Middleware internal structure.  

3.4.1 Network Manager 

This component maintains all active peer connections 
and handles the receiving of incoming messages 
which then are forwarded to the Message Router. Due 
to overhead considerations, outbound messages are 
passed by the sender component directly to the 
Network Manager with direct function calls, thus 
bypassing the Message Router entirely.  

3.4.2 Message Router 

The Message router receives the incoming messages 
from the Network manager and routes them to the 
corresponding component. While the messages are 
prefixed according to their types, the handling of 
these overlaps different components. 

The message router is also responsible for 
relaying messages to nodes behind NAT; this routing 
only involves application-specific messages. In short, 
if such a message’s DestinationAddress is the current 
node, but the DestID differs, then the DestID is 
searched in the cluster members, and if found, the 
message is relayed directly or via another supervisor 
(to whom the destination node is connected). If not 
found, then a delivery failure notification is returned. 
While this is a solution to messaging nodes behind 
NAT, an increased number of messages can quickly 
overload the supervisor. 
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3.4.3 Cluster Manager 

When a node fulfils the supervisor role, then this 
component is responsible for maintaining all cluster 
functions, such as: maintaining a local WOB index, 
answering WOB location queries and storing WOB 
backups. Synchronization between supervisors is also 
handled by this component with the use of differential 
update messages (in other words, only changes are 
advertised between these nodes). 

If a node is a supervisor, then any messages 
intended to supervisor from the local application is 
also routed here. 

3.4.4 WOB Storage 

This component handles the effective storage of 
WOBs, their backups, and answers the associated 
request messages. WOB backups are stored at the 
supervisor level; however, if a node gets disconnected 
from its cluster, then the WOB backup (created at 
checkpoint or node shutdown) will be stored on the 
local peer until the connection is re-established. In 
such a case, when the node re-enters the network, then 
a query is made for the current status of the stored 
WOB, as meanwhile this might have been recovered 
and under processing or even completed. If this 
occurs, then the stored WOB in question is discarded 
from local storage and a new WOB request trigged. 

3.4.5 Application Manager 

The App. manager is responsible for application 
scheduling (starting, suspending or stopping this), 
and imposing resource usage limits based on 
available idle resources and settings. A given 
application is started before requesting any WOB to 
ensure that these can start-up and be ready to handle 
the WOB offerings. As a security measure, all 
applications are run under a limited OS user. 

Application setup is defined in the participating 
project configuration, which contains the install, run, 
and uninstall commands. 

As the WOB object only contains workload 
related data, but no executable code and the 
application itself is downloaded from the project 
URL, malicious code injection is not possible by a 
remote node. 

3.4.6 Admin Component 

Combined with the Project manager and the internal 
web server, these are responsible for joining projects, 
downloading and installing applications, and 
providing local and possibly remote administration 

for peer configuration. The design choice was to 
provide the local admin area via an internal webpage 
and remote administration via a WebAPI call using 
an authorization key. This can also be configured to 
only accept connections from given IP addresses. The 
local admin portal can also be disabled if remote 
administration is enabled, which is useful when 
setting up a local computer network. 

3.4.7 Application API 

For easing application development for this system, 
an API is provided that resides before the middleware 
and "translates" the incoming messages into 
callbacks, to which the app can register, as illustrated 
in Figure 4.  

Figure 4: Application API. 

The most important callbacks and functions can be 
summarized as: 
- The API provided Start() is to be called when the 

application is ready to receive workload. The 
request message is dispatched by the API. 

- OnWOBInit: called when the workload is 
received and computing data is to be extracted. 

- OnCompute: registered function does the 
effective computation. Interruption is done via 
the CanCompute() function, which, if returns 
false, then the computation is to be suspended. 
Specialized hardware resources (such as GPU) 
are to be acquired at the beginning of the 
registered function. Since there is no guaranty 
that the computation will be resumed on the 
current node, the acquired resourced must be 
released at the end of this function.  

- OnCheckpoint: a checkpoint is requested by the 
middleware. Checkpoint interval is a project 
setting. 

- OnAppExit: WOB data is to be packed as 
preparation for application exit. The WOB will 
be transferred off the node (if possible). Even if 
computing is suspended, this function is called 

Callbacks + functions 

Application manager 

App. API 

Messages 

Application code 
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when a node is shutting down to allow the 
application to pack the WOB. 

- OnWOBRequest: called when another node 
requests workload from us. Request contains 
node specifications. The answer is a workload 
offering. The offered workload is to be locked to 
prevent multiple offering. 

- OnWOBOfferAck: triggered when the requester 
node accepted our workload offering. The child 
WOB can be created, prepared and dispatched. 
On confirmation of receive, the 
OnWOBChildAck callback is triggered. If the 
Ack doesn’t arrive, then the application can 
release the workload. 

- NotifyWorkloadAvailable() is to be used when 
additional workload becomes available. This will 
broadcast a notification message which triggers 
idle nodes to request workload. 

- WOBQuery and WOBLocQuery functions can 
be used to query the entire WOB with location or 
only the location of a specific WOB. 

- WOBMsg can be used to send application 
specific messages. 

- WOBReqBackup: can be used to retrieve an 
existing backup of a WOB. 

- WOBFinished is to be called when the current 
WOB is finished. This will be automatically 
transferred to the parent WOB location, where 
the OnWOBChildFinished is triggered for its 
result to be disseminated. The parent 
acknowledges the WOB with the WOBFinished 
function, to which this will be removed from the 
supervisor’s indexes and backups. 

As mentioned with the presentation of the base 
model, when a WOB is created, a backup of this is 
also created to preserve parent-child list consistency.  

We can already see that while the middleware 
offers simplified functions to harness the P2P 
system’s resources, there is additional complexity to 
application design. 

4 TOPOLOGY SIMULATION 

Simulation of topology was conducted using a 
custom, purpose built simulator. The goal was to 
simulate a variety of user compute resource 
contribution; hence the number of joining and leaving 
nodes was generated using an estimated online 
number of computers per week, obtained from a local 
internet provider. These numbers differ very little 
between the weekdays, so one pattern was used for 
weekday availability and one for the weekend, 
illustrated in Figure 5. 

 
 
 
 
 
 
 
 
 
 

 

Figure 5: Peer online patterns. 

Bandwidth was assumed adequate for the connection 
capacity. In practice, if such a scenario occurs, the 
node decreases it's connection capacity accordingly. 
The simulation was run for two weeks (internal clock) 
and the data sampled hourly. The parameters are 
presented in Table 2. 

Table 2: Simulation parameters. 

Number of nodes 50,000 
Node capacity (𝐶 ) Random from: 

50,75,100,125,150
Reserved cap. (𝐶 ) 0.1 
Min. supervisors 3 
Max. supervisors 0.45 of Min(𝐶 ) Sup.

Cluster split threshold 0.9 
Cluster interconnection 2 

At the end of the simulation, as illustrated in Figure 
6, the following results were obtained: peak number 
of online nodes: 35995, isolated nodes: 264, total 
clusters formed 85 and defunct clusters: 79. The first 
clusters to become defunct were the leaf ones. The 
other clusters had enough “weight” to survive a large 
number of disconnecting nodes. 

In the best-case scenario, the super-peers 
managed to organize almost 36000 nodes into 8 
clusters with the average size of 4499 (smallest: 4489, 
largest: 4501) with the longest path of 3 hops. In the 
worst-case observed, 35995 nodes were organized 
into 15 clusters with an average size of 2399 
(smallest: 2360, largest: 2406) and the longest path of 
5 hops between them. 

Using a redundant cluster interconnection, no 
occurrence of isolated clusters was observed during 
the simulation. Nonetheless, a catastrophic physical 
network failure can still result in parts of the network 
becoming isolated. 
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Figure 6: Topology simulation result. 

5 CONCLUSIONS 

In this paper, a P2P computing system’s architecture 
and design considerations ware presented. Overall, 
the numerous functions required to operate the system 
leads to the inevitable increase in both design and 
implementation complexity. 

As in any P2P system design, the topology design 
is influenced by the operation of the system, 
specifically, decentralized task coordination, ability 
to suspend, migrate, recover, and track workloads. 
Task creation is driven by workload requests, 
recovery is accomplished using a remote checkpoint 
system, while workload tracking requires a search 
mechanism. As mentioned by several literature 
proposals, super-peers increase the search speed by 
maintaining a list of connected peer resources, thus 
reducing the number of peers needed to be queried. In 
the presented system, super-peers also store the 
workload checkpoints. Another benefit of clustering 
is the super-peers ability to limit the workload query 
messages in certain cases, which otherwise could 
overload the network. Backup super-peers are used to 
maintain cluster stability; as one super-peer exit or 
fails, a backup can take its place, thus keeping the 
cluster functional. Furthermore, it is desirable to have 
a reduced number of clusters query messages have to 
reach. Since each super-peer has a limited number of 
connections it can accept, further increasing the size 
of a cluster can be achieved by balancing the cluster 
members between the super-peers. Concerning the 
network overlay, the clusters are organized into an 
extended star topology to reduce the number of hops 
for a message to take to reach all clusters. Topology 

simulations to verify the viability of the presented 
network overlay ware also presented in the paper. 

As discussed, such a system design, compared to 
systems using client-server architecture, comes with 
an enormous complexity needed to maintain network 
overlay and provide the specified functionalities. 
However, this complexity is hidden by the 
middleware, which provides simple and 
straightforward functions to utilize and build 
computing applications. Nonetheless, such 
applications come with additional complexity. 
However, the benefit is, as in most P2P systems, the 
decentralized task coordination, and the unique 
characteristic of the presented system, the possibility 
of suspending, transferring and recovering 
workloads, and also locating workloads allows the 
possibility of messaging between parallel tasks. 
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