
Performance Evaluation of Container Runtimes

Lennart Espe, Anshul Jindal a, Vladimir Podolskiy b and Michael Gerndt
Chair of Computer Architecture and Parallel Systems, TU Munich, Garching, Germany

Keywords: Container Runtime, OCI Runtime, Performance Evaluation, Benchmarking for Container Runtimes,
Containers, Resource Management, Cloud Computing.

Abstract: The co-location of containers on the same host leads to significant performance concerns in the multi-tenant
environment such as the cloud. These concerns are raised due to an attempt to maximize host resource utiliza-
tion by increasing the number of containers running on the same host. The selection of a container runtime
becomes critical in the case of strict performance requirements. In the scope of the study, two commonly used
runtimes were evaluated: containerd (industry standard) and CRI-O (reference implementation of the CRI)
on two different Open Container Initiative (OCI) runtimes: runc (default for most container runtimes) and
gVisor (highly secure alternative to runc). Evaluation aspects of container runtimes include the performance
of running containers, the performance of container runtime operations, and scalability. A tool called Touch-
Stone was developed to address these evaluation aspects. The tool uses the CRI standard and is pluggable
into any Kubernetes-compatible container runtime. Performance results demonstrate the better performance
of containerd in terms of CPU usage, memory latency and scalability aspects, whereas file system operations
(in particular, write operations) are performed more efficiently by CRI-O.

1 INTRODUCTION

Cloud computing as an infrastructure model has be-
come an industry standard. Container technology
plays a leading role in this change allowing to effi-
ciently share host resources among multiple tenants.
Hence, the demand for the performance evaluation
of container workloads has risen. The widely-used
container orchestrator Kubernetes supports every con-
tainer runtime that implements the standardized Con-
tainer Runtime Interface (CRI) (Hong, 2019). Al-
though the cluster administrator can choose any CRI
implementation, a guiding evaluation of runtime per-
formance is missing.

Resource management is the most important task
in multi-tenant environments such as the cloud. It
aims at resource efficiency in dense deployment mod-
els like FaaS (Functions-as-a-Service, a service that
abstracts away any underlying infrastructure of an
application deployment) and other serverless archi-
tectures. As new deployment models are being in-
troduced to the market, more requirements on spe-
cific facets of container runtime performance pop up.
For example, Function-as-a-Service infrastructure de-

a https://orcid.org/0000-0002-7773-5342
b https://orcid.org/0000-0002-2775-3630

mands for low start-up times of the underlying con-
tainer runtime. Past studies have shown that the
performance overhead of wide-spread container run-
times is low and they are more resource-efficient than
traditional virtual machines (Kozhirbayev and Sin-
nott, 2017). Combined with the ability to co-locate
containers, this resource-efficiency leads to container
runtimes being the main driver behind energy and
cost reduction in the container-based computing en-
vironments. Still, though virtual machines are more
resource-intensive, they offer a higher degree of secu-
rity and performance isolation (Bui, 2015).

In this study, two commonly used runtimes are
evaluated: containerd and CRI-O on two differ-
ent Open Container Initiative (OCI) runtimes: runc
(default for most container runtimes) and gVisor
(highly secure alternative to runc). The evaluation
tool TouchStone is developed to evaluate various per-
formance aspects of resource management in con-
tainer runtimes in a reliable manner. TouchStone
measures how well the runtime’s performance scales
with the increase in the number of containers, how
resource overuse is coped with as well as general run-
time performance.

Section 2 provides the basic background knowl-
edge for the paper. Section 3 delves into the imple-

Espe, L., Jindal, A., Podolskiy, V. and Gerndt, M.
Performance Evaluation of Container Runtimes.
DOI: 10.5220/0009340402730281
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 273-281
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

273



mentation details of the container runtimes studies.
Section 4 discusses related works. Section 5 exam-
ines the architecture and implementation of Touch-
Stone evaluation tool. Section 6 provides evaluation
results. Section 7 summarizes and discusses the re-
sults. Section 8 concludes the work.

2 BACKGROUND

2.1 Evaluated Container Runtimes

A container runtime is a software that runs the con-
tainers and manages the container images on a de-
ployment node. Specific container runtimes are dis-
cussed in the following subsection. This subsection
explores two container runtimes: containerd and CRI-
O.

2.1.1 Containerd

Containerd is the default runtime used by the Docker
engine (Crosby, 2017). It is often being referred to
as an industry standard because of its wide adoption.
Underneath, this runtime uses runc, the reference im-
plementation of the OCI runtime specification. con-
tainerd stores and manages images and snapshots; it
starts and stops containers by delegating execution
tasks to the OCI runtime (The containerd authors, ).
To start a new containerized process, containerd has
to undertake the following actions: 1) create a new
Container from a given OCI image; 2) create a new
Task in the Container context; 3) start the Task (at
this point runc takes over and starts executing the OCI
bundle supplied by containerd).

Containerd provides CRI-compatible gRPC end-
point enabled by default. When using this endpoint,
abstractions specific to containerd are hidden from the
client so that the user can operate on CRI-level ab-
stractions.

2.1.2 CRI-O

Container Runtime Interface (CRI) is a standard-
ized interface for Kubernetes plugins that execute
and watch over containers. It was created as an at-
tempt to stabilize the communication interface be-
tween kubelet and the host container runtime. It is
based on gRPC, a cross-language library for remote
procedure calls using Protocol Buffers.

CRI-O is a container runtime built to provide
a bridge between OCI runtimes and the high-level
Kubernetes CRI. It is based on an older version of
the Docker architecture that was built around graph

drivers (Walli, ). It is mainly developed by RedHat,
and it serves as a default runtime for OpenShift, a
popular Kubernetes distribution for enterprise (Mc-
Carty, ). The typical life cycle of the interaction with
CRI-O is similar to containerd over the CRI endpoint.
Major differences in internal container handling to
containerd do not exist since runc is the default OCI
runtime when running CRI-O.

2.2 Evaluated OCI Runtimes

The Open Container Initiative is a Linux Founda-
tion project to design open standards for operating-
system-level virtualization, most importantly Linux
containers. The Open Containers Initiative defines
two standards – the image-spec for OCI images and
the runtime-spec for OCI runtimes1,2. The typical
job sequence would be that a container runtime (e.g.
containerd) downloads an OCI image, unpacks it and
prepares an OCI bundle (a container specification in-
cluding the root filesystem) on the local disk. After
that, a OCI runtime like runc is able to create a run-
ning instance from this container specification. OCI
images can be created using a number of tools, for
example docker build command. After the successful
build, these images are usually pushed and published
to a public or private container registry. This subsec-
tion explores two container runtimes: runc and gVisor
(runsc).

2.2.1 Runc

Runc is the lowest runtime layer of containerd that
explicitly handles containers. It was used as the refer-
ence implementation when drafting the OCI runtime
specification (Open Container Initiative, 2019). Inter-
nally, runc uses libcontainer to interact with OS-level
components.

2.2.2 Gvisor (Runsc)

Typical OCI runtimes like runc limit system access
using different capability models integrated into the
Linux kernel like AppArmor, SELinux and SEC-
COMP. If an adversary has access to a limited set of
system calls and manages to exploit a vulnerability
in the Linux kernel, then he may be able to escape
the sandbox and gain privileged access. This is a ma-
jor risk when running untrusted code like a provider
of FaaS infrastructure does. When running a con-
tainer in a VMM-based runtime like Kata Containers,
a hypervisor will be started and it will virtualize the

1github.com/opencontainers/image-spec/
2github.com/opencontainers/runtime-spec/

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

274



underlying system hardware the container is running
on (kat, 2019); this approach has a significant perfor-
mance overhead.

gVisor’s approach to container isolation is in be-
tween that of a typical container runtime and of a
fully virtualized runtime. The idea of a guest ker-
nel of VMM-based runtimes served as an inspiration
for a user-space kernel Sentry (which uses ptrace
for syscall interception) and for container file-system
access manager Gofer. Both of them are instanti-
ated once for every OCI container in a pod sandbox.
This approach is a middle ground between the default
control groups / namespaces approach and the VMM
model. To reduce overhead, it does not virtualize
system hardware and leaves scheduling and memory
management to the host kernel. This split of respon-
sibilities negatively impacts performance for applica-
tions loaded with system calls and leads to potential
incompatibilities between some workloads and gVi-
sor due to specific Linux kernel behaviour or unim-
plemented Linux system calls (LLC, 2019).

gVisor is implemented as an OCI-compatible run-
time that can be easily plugged into well-known con-
tainer tools like containerd, Docker and CRI-O. Us-
ing a containerd plugin it is also possible to switch
between the default runtime and gVisor using annota-
tions (LLC, 2019).

3 RELATED WORK

The literature on container runtime evaluation is
scarce with the most of the related research only par-
tially being devoted to the evaluation of container run-
time overhead.

Avino et al. performed the research in the context
of resource-critical mobile edge computing, and have
discovered that the CPU usage of the Docker pro-
cess is constant regardless of the CPU cycle consump-
tion of the containerized process (Avino et al., 2017).
Casalicchio et al. have benchmarked Docker Engine
for CPU- and I/O-intensive workloads with the re-
sults reporting on the reduction in overhead of Docker
Engine from 10% down to 5% when the amount
of requested CPU cycles by the container is over
80% (Casalicchio and Perciballi, 2017). Kozhirbayev
et al. compared Docker to rivaling Flockport contain-
ers (based on LXC) showing that I/O and system calls
were responsible for most performance overheads for
both container implementations with Docker memory
performance being slightly better than that of Flock-
port (Kozhirbayev and Sinnott, 2017). Morabito et
al. also identify the disk performance as the major
bottleneck both for container-based and hypervisor-

based virtualization although no significant overheads
in other performance metrics were detected (Morabito
et al., 2015).

The study by Xavier et al. went further by dis-
covering that the near-native performance overhead
of containers (LXC, Linux-VServer, and Open VZ) is
acceptable for HPC applications (Xavier et al., 2013).
The same argument holds for Docker in data-intensive
HPC applications (Chung et al., 2016). Lee et al.
evaluated performance of containers under the hood
of production serverless computing environments by
AWS, Microsoft, Google and IBM concluding that
Amazon Lambda performs better in terms of CPU,
network bandwidth, and I/O throughput (Lee et al.,
2018). K. Kushwaha’s study on the performance of
VM-based and OS-level container runtimes such as
runc, kata-containers, also containerd and CRI-O con-
cluded that containerd performs better in compari-
son to CRI-O and Docker due to different file sys-
tem driver interface design though CRI-O has very
low container start-up latency in comparison to con-
tainerd (Kushwaha, 2017).

4 TouchStone

4.1 Overview of the Tool

This section describes the evaluation tool Touch-
Stone(the name refers to small stones that have been
used in the past to determine the quality of gold)
which was implemented to conduct tests for this
study. The tool is published under the MIT license
on GitHub. TouchStone is implemented in Go due
to available set of open-source tools that use CRI are
implemented in Go.

The main motivation for the development of the
tool is to improve container runtime evaluation by
collecting meaningful evaluation data during multi-
ple runs and exporting it. TouchStone allows to eval-
uate CPU, memory and block I/O performance as
well as container operations performance and scala-
bility of the performance under varying load. Touch-
Stone runs evaluations in a testing matrix that tests
each configuration pair consisting of container run-
time (CRI runtime) and OCI runtime once. The
tests are identified by a hierarchical naming scheme
context.component.facet, for instance, perfor-
mance.cpu.total in a CPU performance bench-
mark. All of the configuration listed above is done
using a YAML file. After all benchmarks have been
run, an index of the test results is generated and in-
jected together with the results into an an easily read-
able HTML report.

Performance Evaluation of Container Runtimes

275



Indexmap[string]IndexEntry

pkg/benchmark

pkg/benchmark/suites

pkg/cmd

+ Execute()

pkg/visual

+ Write(file, entries, index)

pkg/config

+ Parse(file): Config

Benchmark interface

+ Run(client, handler): Report
+ Name(): string
+ Labels(): []string

Report interface

+ Aggregate(report): Report
+ Scale(scale): Report

pkg/runtime

+ NewClient(address): Client

Client struct

Config struct

Matrix struct

...

RuntimeServiceClient
ImageServiceClient

+ Matrix(): Matrix

CRIs: []string
OCIs: []string
Items: []Benchmark
Runs: int

+ Index(): Index
+ Run(): []MatrixEntry

MatrixEntry struct

CRI, OCI: string
Results: []MatrixResult

MatrixResult struct

Name: []string
Aggregated: Report
Reports: []Report

IndexEntry struct

Labels: []string

+ All(): []Benchmark

Performance: []Benchmark
Operations: []Benchmark
Limits: []Benchmark
Scalability: []Benchmark

CRI

generates

Figure 1: Touchstone Package Overview.

4.2 Architecture

TouchStone consists of multiple packages as shown
in the Figure 1. Following subsections provide an
overview for each of them.

4.2.1 pkg/cmd

This package implements the command line interface
(CLI). TouchStone provides four commands to the
user – version, benchmark, list and index. The
implementation of the user interface is based on the
Cobra framework used by e.g. Docker and Kuber-
netes. version command returns the version of the
tool and all CRI implementations it is able to talk to.
benchmark command runs the specified benchmark.
list command lists all benchmarking suites while
the index command generates an index to preview
the results generated by the benchmark command.

4.2.2 pkg/config

pkg/config implements YAML-parsable configura-
tion structure. Each configuration defines an output
file to write the benchmark results to, a list of filters
specifying which benchmarks to run, basic bench-
mark parameters like runs per benchmark and bench-
mark scale as well as which container (CRI) and OCI
runtime to use. In case the user wants to include a new

runtime in benchmarks, the runtime has to expose this
endpoint either directly or via symbolic link.

4.2.3 pkg/benchmark

This package provides benchmarking framework and
defines types Matrix, Benchmark and Report as well
as Index and some helpers. Matrix specifies a list of
targets to benchmark and has a slice of Benchmarks
that are invoked for each combination of CRI runtime
and OCI runtime. For each CRI runtime a new run-
time.Client is instantiated.

After Benchmark finishes, a report is generated.
All the reports are collected together with the report
aggregate and the benchmark name in a MatrixRe-
sult. When all CRI/OCI combinations benchmarks
are finished, the array of results is written to the des-
tination file specified in the YAML configuration and
the Index of the Matrix is generated. Index stores
benchmark-report combinations and persists across
different configuration runs.

4.2.4 pkg/benchmark/suites

Benchmarks implemented in this package can be
grouped into four categories:

• Limits. Suite attempts to benchmark performance
of containers with capped resources. Behaviour
of gVisor on such benchmark is especially inter-
esting due to the hypervisor being included in the
control group accounting.

• Operations. Suite tests common container run-
time operation performance including latencies
during creation and destruction as well as con-
tainer launch time.

• Performance. Suite collects conventional perfor-
mance metrics of containers running using a spe-
cific runtime with measurements provided by sys-
bench3.

• Scalability. Suite quantifies how scalable is the
performance of a given runtime in relation to the
amount container instances.

4.2.5 pkg/runtime

This package contains a wrapper for the default CRI
gRPC client. It includes helpers to simplify creation
of containers and sandboxes as well as pulling im-
ages.

3github.com/akopytov/sysbench

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

276



4.2.6 pkg/visual

It uses HTML templating from text/template,
Bootstrap and Chart.js to provide a visualization of
the collected results.

5 EXPERIMENTAL RESULTS

5.1 Test Setting

To run all the benchmarks on the same machine, a
collection of container tools is used:

• containerd (v1.2.0-621-g04e7747e);

• CRI-O (1.15.1-dev);

• runc (1.0.0-rc8+dev);

• runsc (release-20190529.1-194-
gf10862696c85);

• CNI (v0.7.5);

• crictl (1.15.0-2-g4f465cf).

All of these tools were compiled from scratch on
the testing machine to mitigate the incompatibility
risk. They were run on a linux kernel 4.19.0-5-
amd64 under Debian Buster. All benchmarks have
been executed 5 to 20 times depending on the bench-
mark workload. Due to the type of benchmarks ran
and especially their vulnerability to strong outliers,
only the median of the generated dataset is shown in
resulting graphs and tables. All tests have been exe-
cuted in a virtual machine with 2 CPU cores (2,9 GHz
Intel Core i5-6267U CPU) and 8 GiB of RAM. These
conditions are similar to a typical cloud virtual ma-
chine though server CPUs tend to have more cache,
additional instructions and other features.

5.2 General Performance

5.2.1 CPU

The CPU benchmark measures the time needed to
compute all prime numbers up to a certain maximum,
thus it should not use a lot of system calls. Figure 3
shows that containerd has a lower computational over-
head compared to CRI-O, and the same applies to
runc in comparison to runsc.

5.2.2 Memory

When looking at the total time spent in the memory
benchmark, containerd is the clear winner. A subtle
difference between runc and runsc can also be seen

with runc introducing higher performance (see Fig-
ure 2a).

However, when looking at the minimum and aver-
age latency, it can be observed that runsc introduces
an additional overhead of a factor between 1.48x and
1.72x when accessing memory. Additionally, it seems
that containerd performs on average better when ac-
cessing memory as seen in Figure 2a.

The maximum latency benchmark is in stark con-
trast to the average latency as seen in Figure 2c,
because containerd/runc has a latency spike in
comparison to containerd|runsc, crio/runc and
crio/runsc. The benchmark was repeated with a re-
ordered test execution and the same effect has been
observed. Apparently, this effect is rather a contain-
erd/runsc runtime feature than an outlier.

5.2.3 Disk I/O

Sysbench’s fileio read benchmarks reveals large
difference in performance between runc and runsc
as shown in Figure 4a. gVisor introduces massive
delays in workloads loaded with file operations like
this synthetic test. The observed performance drop is
due to an inefficient implementation of the virtual file
system provided by Gofer, which has been improved
in a recent gVisor version4. The difference between
containerd and crio when using runc is negligible,
even though containerd is slightly faster in almost
all the cases.

When writing to disk, the differences between
runc and runsc stand out far less pronounced than
in the read benchmarks as shown in Figure 4b. There-
fore, the underlying hardware and operating system
are, up to a certain degree, the cause for smaller vari-
ation in write speed. In contrast to read benchmarks,
CRI-O performs slightly better than containerd in all
cases.

5.3 Container Operations

Figure 5 points at a slightly better performance of
containerd when creating a container (in compari-
son to CRI-O). This head start is diminished by the
higher run latency such that in total containerd per-
forms worse than CRI-O. It is also visible that runsc
operates almost always faster than runc.

5.4 Scalability of Runtime Performance

Scalability benchmarks test the performance of start-
ing, running and destroying an increasing amount of
long-running containers.

4github.com/google/gvisor/pull/447

Performance Evaluation of Container Runtimes

277



0 5 10 15

containerd/runc

containerd/runsc

crio/runc

crio/runsc

(a) Total Time and Measurements Are
in Seconds.

0 0,05 0,1 0,15 0,2

containerd/runc

containerd/runsc

crio/runc

crio/runsc

Avg Min

(b) Minimum Avg. Latency and Mea-
surements Are in Milliseconds.

0 1 2 3 4

containerd/runc

containerd/runsc

crio/runc

crio/runsc

(c) Maximum Latency and Measure-
ments Are in Milliseconds.

Figure 2: performance.memory Benchmark for Different Aggregations with 10 Runs.

Table 1: Overview of the Evaluation Results.

Metric cd/runc cd/runsc crio/runc crio/runsc
CPUTime(s) 23.86 26.29 25.35 26.82
HardLimit(s) 340.33 - 354.98 403.40
ScalingLimit(s) 28.38 - 28.22 -
MemTime 10.12 10.6 13.23 14.51
MemMinLatency(ms) 0.10 0.14 0.10 0.15
MemAvgLatency(ms) 0.11 0.19 0.13 0.20
MemMaxLatency(ms) 3.55 1.98 1.14 0.95
FileRndRead(s) 0.03 0.29 0.04 0.31
FileSeqRead(s) 0.36 3.32 0.39 3.26
FileRndWrite(s) 6.39 12.74 6.03 12.03
FileSeqRewrite(s) 2.64 6.74 2.43 6.57
FileSeqWrite(s) 2.71 6.80 2.54 6.54
OpCreate(s) 0.50 0.42 0.51 0.48
OpRun(s) 0.18 0.10 0.03 0.05
OpCreateAndRun(s) 0.68 0.53 0.54 0.54
OpDestroy(s) 0.48 0.55 0.53 0.40
Scalability5(s) 3.49 2.96 4.77 7.03
Scalability10(s) 8.35 5.99 9.71 16.81
Scalability50(s) 37.69 43.36 51.66 145.77

0 5 10 15 20 25 30

containerd/runc

containerd/runsc

crio/runc

crio/runsc

Figure 3: performance.cpu.time, 20 Runs, Measurement
in Seconds.

With 5 containers there is not much of a difference
to the section 5.3; containerd/runsc performs best
overall while crio/runsc falls behind.

The observation made in 5 containers test contin-
ues and becomes more pronounced. We can see that
the required time for starting and stopping 10 contain-
ers is in a linear relation to the container count.

The linear trend discontinues with 50 contain-
ers and containerd/runc comes out ahead in this

benchmark. crio/runsc demonstrates significant
slowdown on 50 containers, which might be due to
the larger runtime overhead.

5.5 Resource Limits and Quotas

This benchmark focused at testing containers with the
CPU Hard and Scaling limits using the same sysbench
CPU test from subsection 5.2.1, but with capped CPU
resource. Capping configuration was set to cfs -
quota us = 1000 and cfs period us = 10000.

Table 1 showing the CPU Hard Limit shows
that the overhead of runsc hits the performance
much harder in this benchmark compared to perfor-
mance.cpu.time. This behaviour can be explained
by the fact that gVisor adds both Sentry and Gofer
to the control group. Since these components require
CPU time too, and are run in user space instead of ker-
nel space, they count towards the control group CPU

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

278



0 1 2 3 4

containerd/runc

containerd/runsc

crio/runc

crio/runsc

SeqRead
RndRead

(a) Read Throughput.

0 5 10 15

containerd/runc

containerd/runsc

crio/runc

crio/runsc

SeqWrite
SeqRewrite
RndWrite

(b) Write Throughput.

Figure 4: performance.disk Benchmark for Read and Write with 10 Runs and All the Measurements Are in Seconds.

0 0,2 0,4 0,6 0,8

containerd/runc

containerd/runsc

crio/runc

crio/runsc

Run Destroy CreateAndRun Create

Figure 5: operations.container.lifecycle, 20 Runs,
Measurement in Seconds.

account. Due to a runsc bug, the containerd/runsc
setup ignored the control group limits and hence was
excluded from the benchmark.

The scaling benchmark shines light into how
workloads behave that are scaled from half of the allo-
catable CPU time up to full allowance over the course
of 10 seconds. Since gVisor does not support up-
dating resource limits during the execution of a con-
tainer, runsc had to be excluded from these tests. It
can be seen that the performance difference is very
small as shown in Table 1 Scaling Limit, most likely
due to the low logical overhead between CRI runtime
and OCI runtime

6 DISCUSSION

Table 1 shows the summary results of all the bench-
marks run in the scope of the study with the high-
lighted ones being the best for that particular bench-
mark. To summarize, containerd performs better
when running a container without limits due to lower
runtime overhead, although CRI-O is faster when run-
ning a container that has been created beforehand.
The lead of containerd continues in memory perfor-
mance. Disk performance gives a different picture:
although containerd takes an upper hand in read per-
formance, its superiority is broken by CRI-O in file
read performance.

When comparing runc and runsc alias gVisor, runc
comes ahead as the clear leader. This is not surpris-
ing due to Gofer virtual file system being the bottle-
neck. It should be noted that runsc may perform on
the same level as runc when running workloads that
do not perform a lot of system calls, e.g. the perfor-
mance.cpu.time benchmark. In every other bench-
mark runsc did worse than runc except the opera-
tions.container.lifecycle. It should be noted
that runsc performs worse than runc even in com-
pute bound workloads when running in a rigourously
limited environment like limits.cpu.time. The
containerd/runc setup performs best for I/O-heavy
workloads like databases and web servers, while
crio/runc is a solid starter pack in almost any case.
The usage of gVisor should be limited to systems
where security is vitally important and has to be
achieved with limited loss in raw computing power.
Running very small containers with strong resource
capping may be significantly slower in gVisor com-
pared to runc.

Performance Evaluation of Container Runtimes

279



0 2 4 6 8

containerd/runc

containerd/runsc

crio/runc

crio/runsc

(a) 5 Containers.

0 5 10 15 20

containerd/runc

containerd/runsc

crio/runc

crio/runsc

(b) 10 Containers.

0 50 100 150 200

containerd/runc

containerd/runsc

crio/runc

crio/runsc

(c) 50 Containers.

Figure 6: scalability.runtime Benchmark, 10 Runs for Different Number of Containers, All the Measurements in Sec-
onds.

7 CONCLUSION

The developed evaluation tool TouchStone has been
applied to wide-spread container and OCI runtimes
such as containerd, CRI-O and runc and gVisor to
determine performance implications of various evalu-
ated aspects such as scaling the number of containers
started in the runtime. The evaluation results high-
lighted crio/runc setup as the best starting option
almost for any use-case, whereas containerd/runc
turned out to excel at I/O-heavy workloads. Runtimes
setups including runsc might provide better security,
but their use must be carefully considered when per-
formance is important. Prospective directions of fu-
ture work include automatic deployment of a Kuber-
netes cluster with the container runtime picked specif-
ically for given types of workloads and the support
for cross-machine evaluations, i.e. running Touch-
stone on multiple machines and aggregating the re-
sults from such distributed testing environment.

ACKNOWLEDGEMENTS

This work was supported by the funding of German
Federal Ministry of Education and Research (BMBF)
in the scope of Software Campus program.

REFERENCES

(2019). Kata containers. https://katacontainers.io. Accessed
on 19.07.2019 14:05.

Avino, G., Malinverno, M., Malandrino, F., Casetti, C., and
Chiasserini, C.-F. (2017). Characterizing docker over-
head in mobile edge computing scenarios. In Proceed-
ings of the Workshop on Hot Topics in Container Net-
working and Networked Systems, pages 30–35. ACM.

Bui, T. (2015). Analysis of docker security. arXiv preprint
arXiv:1501.02967.

Casalicchio, E. and Perciballi, V. (2017). Measuring docker
performance: What a mess!!! In Proceedings of

the 8th ACM/SPEC on International Conference on
Performance Engineering Companion, pages 11–16.
ACM.

Chung, M. T., Quang-Hung, N., Nguyen, M., and Thoai, N.
(2016). Using docker in high performance computing
applications. In 2016 IEEE Sixth International Con-
ference on Communications and Electronics (ICCE),
pages 52–57.

Crosby, M. (2017). What is containerd? https://blog.docker.
com/2017/08/what-is-containerd-runtime/. Accessed
on 17.06.2019 18:57.

Hong, Y.-J. (2019). Introducing container runtime interface
in kubernetes. https://kubernetes.io/blog/2016/12/
container-runtime-interface-cri-in-kubernetes/. Ac-
cessed on 03.07.2019 17:59.

Kozhirbayev, Z. and Sinnott, R. O. (2017). A performance
comparison of container-based technologies for the
cloud. Future Generation Computer Systems, 68:175–
182.

Kushwaha, K. (2017). How container runtimes matter in
kubernetes? https://events.linuxfoundation.org/wp-
content/uploads/2017/11/How-Container-Runtime-
Matters-in-Kubernetes -OSS-Kunal-Kushwaha.pdf.
Accessed on 6.06.2019.

Lee, H., Satyam, K., and Fox, G. (2018). Evaluation of pro-
duction serverless computing environments. In 2018
IEEE 11th International Conference on Cloud Com-
puting (CLOUD), pages 442–450.

LLC, G. (2019). gvisor architecture guide. https:
//gvisor.dev/docs/architecture guide/. Accessed on
10.07.2019 20:07.

McCarty, S. Red hat openshift container platform 4
now defaults to cri-o as underlying container en-
gine. https://www.redhat.com/en/blog/red-hat-
openshift-container-platform-4-now-defaults-cri-
o-underlying-container-engine. Accessed on
22.07.2019 16:14.

Morabito, R., Kjällman, J., and Komu, M. (2015). Hyper-
visors vs. lightweight virtualization: A performance
comparison. In 2015 IEEE International Conference
on Cloud Engineering, pages 386–393.

Open Container Initiative (2019). Oci runtime specification.
https://github.com/opencontainers/runtime-spec/tree/
74b670efb921f9008dcdfc96145133e5b66cca5c/.
Accessed on 30.06.2019 12:54.

The containerd authors. containerd – getting started.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

280



https://containerd.io/docs/getting-started/. Accessed
on 22.07.2019 19:00.

Walli, S. Demystifying the open container initiative
(oci) specifications. https://blog.docker.com/2017/
07/demystifying-open-container-initiative-oci-
specifications/. Accessed on 30.06.2019 15:50.

Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C.,
Lange, T., and De Rose, C. A. F. (2013). Performance
evaluation of container-based virtualization for high
performance computing environments. In 2013 21st
Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, pages 233–
240.

Performance Evaluation of Container Runtimes

281


