
UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a
Distributed Microservice-based Application

Juliana Carvalho1, Dario Vieira2 and Fernando Trinta3

1Federal University of Piauı́ (UFPI), Picos, Brazil
2EFREI-Paris, Paris, France

3Federal University of Ceará (UFC), Fortaleza, Brazil

Keywords: Multi-cloud Selection, Microservices, Multi-criteria Decision-making Method.

Abstract: Choosing the best configuration to deploy a distributed application in a multi-cloud environment is a complex
task since many cloud providers offer several services with different capabilities. In this paper, we present a
multi-cloud selection process to deploy a distributed microservice-based application, which has low commu-
nication cost among microservices. The proposed selection process is part of PacificClouds, an approach that
intends to manage the deployment and execution of distributed applications across multiple providers from the
software architect perspective. The proposed approach selects various providers, where each provider must
host an entire microservice with multiple tasks consuming several cloud services. The UM2Q approach se-
lects the provider that better meets the software architect requirements, for each microservice of a multi-cloud
application. Hence, the proposed process of selecting multiple providers uses multi-criteria decision-making
methods to rank the cloud services and selects cloud providers and services by individually observing each
microservice requirement, such as cloud availability, response time, and cost. Further, we propose a formal
description of UM2Q and a brief one of the strategy implementation. We also introduce a set of experiments to
evaluate UM2Q performance, and the outcomes showed its feasibility for a variable number of requirements,
microservices and providers, even for extreme values.

1 INTRODUCTION

Nowadays, Cloud Computing has become a very pop-
ular model to provide IT resources. Many cloud com-
panies are widely available to offer several resources
such as virtual servers, storage, and entire applica-
tions to their users. Cloud Computing market is very
competitive, and users have a variety of offerings to
select the service that best fits their requirements. In
contrast, cloud providers try to provide several kinds
of services and resources, leading to a situation where
they became specific features. This scenario brings a
severe challenge for cloud applications known as ven-
dor lock-in.

A new and more challenging scenario for cloud
application developers is called multi-cloud, where a
single application is composed of resources or ser-
vices hosted by different cloud providers. Multi-cloud
enables developers to build their systems with com-
ponents that better fit their needs, but, it also brings
new challenges. For instance, an application may re-
quire resources available on different cloud providers,

where each resource has different costs, performance,
or availability offers. Hence, multi-cloud brings more
flexibility to software architects where they can select
services for providers that better serve their system
design. However, since these applications are more
complex, using multiple clouds brings challenges for
choosing the best set of resources among the avail-
able ones as there may be several providers offering
many services with the same functionalities, but dif-
ferent capabilities. This scenario makes the process
of selecting the best providers a hard task.

As aforementioned, to facilitate the software ar-
chitects decision-making, Carvalho et al., 2018b pro-
posed PacificClouds, which is a new approach to
manage the deployment and execution process of an
application based on microservices in multi-cloud en-
vironment from the software architect perspective.
The multi-cloud environment aims to mitigate vendor
lock-in and also allows the software architect to dis-
tribute an application to take the advantages offered
by cloud computing. Also, PacificClouds uses mi-
croservices as the architectural style because they pro-

56
Carvalho, J., Vieira, D. and Trinta, F.
UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a Distributed Microservice-based Application.
DOI: 10.5220/0009338200560068
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 56-68
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



vide support to build applications in which each part
is independently scalable and deployed. To achieve
its goals, PacificClouds must select the providers and
services to host all application microservices.

A cloud selection process must require several mi-
croservices to build an application, and each of them
needs various cloud services to compose your activ-
ities. Besides, a cloud selection process for Pacific-
Clouds must select among available cloud providers,
which one better meets the needs of the software ar-
chitect and the microservice, observing the function-
alities and requirements of each service required to
compose each microservice. Further, PacificClouds
must deploy each microservice in a distinct single
cloud provider.

The unlinked microservice mapped to quota
(UM2Q) approach described in this work uses a
multi-criteria decision-making (MCDM) method to
rank all cloud services that meet all requirements in
each provider. Also, UM2Q selects providers observ-
ing each microservice needs regardless of the other
microservices that compose an application. In this pa-
per, we only address applications based on microser-
vices, which have low communication cost among
microservices. We described the entire the proposed
selection process in Section 3. In addition, the ap-
proach proposed in this paper is part of the Pacific-
Cloud project (Carvalho et al., 2018b), which encom-
passes two other approaches to solve the problem of
selecting multiple cloud providers (Carvalho et al.,
2018a), (Carvalho et al., 2019). We compare them
in Section 5.

While our work addresses the multi-cloud selec-
tion process to deploy microservices from the soft-
ware architect’s perspective, there are other works in
the literature that also deal with the cloud selection
problem, but they focus on other issues: some select
services in a single cloud provider, e.g., Chen et al.,
2016 and Hongzhen et al., 2016, while others deal
with the problem using cloud federation, e.g., Thomas
and Chandrasekaran, 2017 and Panda et al., 2018;
some rank cloud services, e.g., Ding et al., 2017 and
Jatoth et al., 2018, and others address the cloud se-
lection to compose services, e.g., Bharath Bhushan
and Pradeep Reddy, 2016 and Mezni and Sellami,
2017; some focus on a trust evaluate, e.g.,Tang et al.,
2017 and Somu et al., 2018, and other works focus
on cloud manufacturing, e.q., Zheng et al., 2016 and
Zhou et al., 2018. In Section 5, we describe and com-
pare some of these research works.

In pursuance of addressing the issues described
above, we propose UM2Q, a multi-cloud selection
process which will be used by PacificClouds to de-
ploy the application microservices. The main contri-

butions of this work are as follows:

1. UM2Q selects one provider for each application
microservice from the software architect perspec-
tive, in which each provider selects all necessary
cloud services to meet every microservice.

2. We propose a formal description of the selection
process in Subsection 3.1, which describes how to
select each cloud service for each microservice.

3. UM2Q uses a multi-criteria decision-making
(MCDM) method to rank the cloud services in
each available provider and considers the software
architect requirements and its priorities. We de-
scribed the method in Subsection 3.2.

4. In Subsection 3.2, UM2Q selects providers by
individually observing each microservice, which
avoids the need for a global combination of can-
didate services and consequently consumes less
time during providers selection.

5. In Section 4, we performed an evaluation of the
selection process performance and the outcome
shows the feasibility of UM2Q regardless of the
application requirements, number of microser-
vices, and number of providers.

6. We performed a comparison of UM2Q with other
works that address the cloud selection problem
from the software architect perspective. For this,
we proposed Providers and Services Granularity
(PSG), which is a taxonomy to deal with issues
regarding the number of providers in the selection
process, the number of services in each provider,
and the selection process result (Section 5).

2 MOTIVATION

As aforementioned, the primary goal of this work is to
lead the multiple clouds selection process for Pacific-
Clouds. In this section, we show how PacificClouds
should select multiple clouds for each microservice.
Besides, as PacificClouds intends to manage the de-
ployment and execution process of an application
based on microservices in multi-cloud, we present
the definitions of multiple clouds and microservices
adopted in our work.

Figure 1 shows the deployment plan generation
service (DPGS) to PacificClouds, which is responsi-
ble for selecting the cloud providers and services to
host the microservices. We observe that the cloud
providers selection has three steps: first, it receives all
requirements from the SLA service; then, it receives
the cloud providers capabilities from the Adapter; and
finally, it selects a provider for each microservice

UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a Distributed Microservice-based Application

57



among the candidate providers that better meets its
requirements through multi-cloud selection service.
For this, it observes a set candidate cloud services
in each provider to optimize the software architect’s
requirements. Each application microservice is de-
ployed in the candidate provider that better meets the
requirements. Finally, it sends the selected providers
to deployment plan generation. Therefore, the use of
the multi-cloud is very important to allow each mi-
croservice to find the best offer according to its re-
quirements, and to mitigate vendor lock-in. The se-
lection approach has three levels. The first one selects
the required cloud services for each microservice in
each provider. The second one selects the candidate
combinations to compose each microservice in each
provider. The third one selects a provider among can-
didate providers for each microservice.

Figure 1: The multi-cloud Selection by PacificClouds.

We adopt the definition of the multi-cloud used by
Petcu, 2014, who classifies different multiple cloud
application scenarios as delivery models. One of them
is multi-cloud, in which the services can be used
in parallel or sequentially, and it does not include a
prior agreement among the cloud providers and a third
party acts as a mediator. We also adopt the defini-
tion of microservices used by Carvalho et al., 2018b,
where a microservice is a set of autonomous, indepen-
dent, self-contained services, in which each service
has a single goal, is loosely coupled, and interacts to
build a distributed application. Microservices repre-
sent an application business function.

3 THE SELECTION MODEL

According to Section 2, we can notice that there may
be many available cloud providers, and each of them
offers several services. Also, an application can have
several microservices, and each one of them may re-
quire several cloud services to meet the microservices
tasks needs. Therefore, the task of selecting cloud
providers to host a distributed application in multiple
clouds is complex.

In this section, we propose a multi-cloud selection
model for PacificClouds to host an application based
on microservices called UM2Q. The proposed selec-
tion model refers to the cloud providers selection from
the software architect’s perspective before an applica-
tion deployment. The proposed selection process is
based on the software architect requirements. Thus,
the software architects must define their requirements
for an application. Also, the software architects must
set a budget’ quota for each application microservice.
We consider that the provider’s capabilities are avail-
able. Even though our approach can handle as many
requirements as needed, in this paper, we consider
three user requirements: (i) response time, (ii) avail-
ability, and (iii) application execution cost.

3.1 Formulation

As mentioned above, the required cloud services to
compose a microservice have different requirements
and the providers offer many services with the same
functionalities but different capabilities. In this work,
we choose to assess application response time (exe-
cution time + delay), cloud availability and applica-
tion execution cost, but other requirements can be in-
cluded in our model. We use three user requirements
that are sufficient to understand the proposed selec-
tion process. However, the software architect can de-
fine several other user requirements without signifi-
cant changes in the code.

According to the providers selection process pre-
viously described, we propose:

• Definition 1: Cloud Service Model - as
S(S.rt,S.a,S.c), in which S.rt, S.a, and S.c stand
for response time, availability, and cost, respec-
tively, as in (Liu et al., 2011).

• Definition 2: Cloud Services Class - as SCl =
{Sl1,Sl2, . . . , Slo}, in which Sl1, Sl2, . . . , Slo are
services of the same provider with same function-
alities but different capabilities.

• Definition 3: Services Provider Model - as SPk =
{SCk1,SCk2, . . . , SCkp}, in which SCk1, SCk2, . . . ,
SCkp are services classes.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

58



• Definition 4: Cloud Provider Set - as CP = {SP1,
SP2, . . . , SPq}, in which SP1, SP2, . . . , SPq are
services providers.

• Definition 5: Microservice Model - as MSi =
{Sk1

i1 ,S
k2
i2 , . . . , Skr

ir }, in which Sk1
i1 , Sk2

i2 , . . . , Skr
ir

are cloud services indispensable to execute a mi-
croservice, and they should be of different cloud
service classes. Each service required to com-
pose the microservice i can belong to different
classes of services from a cloud provider. Thus,
1 6 kr 6 o, in which o is the maximum number of
classes for a cloud provider.

• Definition 6: Application Model - as AP =
{MS1,MS2, . . . , MSt}, in which MS1,MS2, . . . ,
MSt are microservices.

The main goal of the multi-cloud selection process
is to select the providers that satisfy software archi-
tects requirements and optimize their specified objec-
tives, as follows:

3.1.1 Availability Requirement

The cloud availability for an application must meet
at least the user-defined threshold, so that each ap-
plication microservice meets the same threshold. We
define MinAvbty as the user-defined minimum avail-
ability threshold. In Eq. 1, we define AP.a as the
application availability, which is assigned the low-
est availability value among its microservices, and it
must be greater than or equal to MinAvbty. In ad-
dition, in Eq. 2, MSi.a represents the microservice
availability i, which is assigned the lowest availabil-
ity value among their services and it must be greater
than or equal to MinAvbty. The cloud availability for
a service is represented by Smkx

i jx .a in Eq. 2, which is
the service j of the microservice i.

AP.a = min
16i6t

(MSi.a)> MinAvbty,∀MSi |MSi ∈ AP

(1)

MSi.a = min
16 j6r

(S
k j
i j .a)> MinAvbty,

∀Sk j
i j | S

k j
i j ∈MSi,MSi ∈ AP,1 6 i 6 t

(2)

3.1.2 Response Time Requirement

The response time for an application must meet the
user-defined threshold, so that each application mi-
croservice meets the same threshold. We define
MaxRT as the user-defined maximum response time
threshold, and MaxRT is the maximum execution time
threshold (MaxExecTime) plus the maximum delay
threshold (MaxDelay) defined by the user, as in Eq.

3. In Eq. 4, we define AP.rt as the response time
of the application, which is assigned the highest re-
sponse time value among their microservices, and that
must be less than or equal to MaxRT. In addition, in Eq.
5, MSi.rt represents the response time of microservice
i, which is assigned the highest response time value
among their services and that must not be less than
MaxRT. The response time for a service is represented
by S

k j
i j .rt in Eq. 5, which is the service j of the mi-

croservice i.

MaxRT = MaxExecTime+MaxDelay (3)

AP.rt = max
16i6t

(MSi.rt)6 MaxRT,∀MSi |MSi ∈ AP

(4)
MSi.rt = max

16 j6r
(S

k j
i j .rt)6 MaxRT,

∀Sk j
i j | S

k j
i j ∈MSi,MSi ∈ AP,1 6 i 6 t

(5)

3.1.3 Cost Requirement

The application execution cost should not be higher
than the cost threshold defined by the user (Budget).
In Eq. 6, we define AP.c as the application execution
cost, which is assigned as the sum of all its microser-
vices’s costs, and that must be less than or equal to the
provided Budget.

AP.c =
t

∑
i=1

MSi.c 6 Budget,∀MSi |MSi ∈ AP (6)

In this work, an application has t as the microser-
vices maximum, and a microservice has r as the ser-
vices maximum. We do not address the services capa-
bilities model from the provider perspective because
this work focuses on the software architect perspec-
tive. We only verify if the service capabilities offered
by a cloud provider meet the user requirement.

3.2 UM2Q Selection Process

In UM2Q, we select multi-cloud providers to host
each microservice of an application and each mi-
croservice is hosted by a single provider, consider-
ing only the microservice and software architect re-
quirements. Each microservice is hosted in a single
provider for it to have a low cost of communication
between services from different providers. This ap-
proach presents three selection levels, which will be
described next.

UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a Distributed Microservice-based Application

59



3.2.1 First Level

We select the services of each provider that meet
all software architect requirements which results in
a candidate services set for each provider. Next, we
rank all candidate services in each provider. We use
Simple Additive Weighting (SAW) technique as in
(Seghir and Khababa, 2016), which has two phases:
scaling and weighting.

Scaling Phase. First, a matrix R = (Ri j;1 6 i 6
n;1 6 j 6 3) is built by merging the requirement vec-
tors of all candidate services. For this, the user re-
quirements are numbered from 1 to 3, with 1 = avail-
ability, 2 = response time, 3 = cost. These candidate
services refer to the same service of the microservice.
We must perform the entire process for each service
of the microservice. Each row Ri corresponds to a
cloud service Si j and each column R j corresponds to a
requirement. Next, the requirements should be ranked
using one of the two criteria described in Eqs. 7 and 8.
Also, RMax

j = Max(Ri j),RMin
j = Min(Ri j),1 6 i 6 n.

Negative: the higher the value, the lower the quality.

Vi j =


RMax

j −Ri j

RMax
j −RMin

j
if RMax

j −RMin
j 6= 0

1 if RMax
j −RMin

j = 0
(7)

Positive: the higher the value, the higher the quality.

Vi j =


Ri j−RMin

j

RMax
j −RMin

j
if RMax

j −RMin
j 6= 0

1 if RMax
j −RMin

j = 0
(8)

Weighting Phase. The overall requirements score
is computed for each candidate cloud service (Eq. 9).

Score(Si) =
3

∑
j=1

(Vi j ∗Wj) |Wj ∈ [0,1],
3

∑
j=1

Wj = 1 (9)

At the end of the first level, we have a set of all
candidate services for each microservice in all avail-
able providers.

3.2.2 Second Level

We must select all required services to compose each
microservice in each provider from the candidate ser-
vices selected in the first level. For this, we consider
that the software architects define a budget quota for
each microservice of an application. Thus, in Eq. 10,
we define MSi.c as the microservice execution cost,
which must be less than or equal to (Budget ∗Quotai).
We define Quotai as the application execution budget
quota defined for microservice i, and Budget as the
application execution cost threshold. Next, in Eq. 11,

we define that each Quotai must be between 0 and 1
and that the value sum of all (Budget ∗Quotai) must
be equal to the Budget. In addition, in Eq. 12, we de-
fine that the cost sum of all services of microservice
i must be less than or equal to the execution cost of
microservice i.

MSi.c 6 Budget ∗Quotai,∀MSi |MSi ∈ AP (10)

Quotai ∈]0,1],
t

∑
i=1

Budget ∗Quotai = Budget (11)

r

∑
j=1

S
k j
i j .c6Budget ∗Quotai,∀S

k j
i j | S

k j
i j ∈MSi,16 i6 t

(12)
In order to compose a microservice, we need to

combine all candidate services and check the execu-
tion cost for these services combinations. First, we
must combine the candidate services that come from
the same microservice and are offered by the same
provider, which is represented by (Sk

i j1 , ...,S
k
i jr) in Eq.

13. Each element of the candidate combination S
k j
i j

represents the candidate service j of provider k to the
microservice i, in which 1 6 j 6 r and r indicates the
number of services to microservice i. Next, we cal-
culate the combination execution cost and verify if it
is less than or equal to (Budget ∗Quotai) as shown in
Eq. 13, which is in accordance to Eqs. 10, 11, and 12.
Each microservice has a maximum r services.

(Sk1
i1 , ...,S

kr
ir ) | (S

k1
i1 .c+ ...+Skr

ir .c)6 Budget ∗Quotai
(13)

Next, we must choose a combination among can-
didate services combinations in each provider for
each microservice. For this, it calculates the average
score for each services combination, which is rep-
resented by aSCSPk in Eq. 14. SPk is the provider
k that belongs to a set of providers (CP), and CP
has a maximum q providers. Besides, Score(Sk1

i1 )+

Score(Sk2
i2 )+ ...+Score(Skr

ir ) represents the sum of all
service scores of a combination, Skr

ir is a candidate ser-
vice of a combination, and r is a maximum of mi-
croservice services. We must choose the combination
with the highest score average.

aSCSPk =
Score(Sk1

i1 )+Score(Sk2
i2 )+ ...+Score(Skr

ir )

r
(14)

If multiple combinations have the highest score
average, one of them must be selected based on one
of the three requirements according to the priorities
defined by a software architect.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

60



At the end of the second level, there must be a
candidate provider set (CSPi) for each MSi of an ap-
plication as shown in eq. 15. SPki represents the can-
didate provider k of microservice i, and it has a candi-
date service combination chosen for a microservice i.
An application has a maximum t microservices, and a
microservice has a maximum qi candidate providers.

CSPi = {SP1i,SP2i, . . . ,SPqii} | 1 6 i 6 t,
t = sizeo f (AP),qi = sizeo f (CSPi)

(15)

3.2.3 Third Level

We select one provider for each microservice. First,
we check the microservice execution cost for each
candidate provider, which was calculated in the sec-
ond level, as shown in Eq. 16. In this equation,
SPki.c indicates the execution cost of the microservice
i for candidate provider k. We define that SPki.c is
the service costs sum of the candidate combination of
provider k. In Eq. 16, S

k j
i j .c is the service j cost of

microservice i in candidate provider k.

SPki.c =
r

∑
j=1

(S
k j
i j .c) | S

k j
i j ∈ SPki,SPki ∈CSPi,

1 6 k 6 qi,1 6 i 6 t

(16)

Next, we check the CSP from the Second Level
for each microservice to obtain the SP that presents
the average microservice execution cost, and we use
Eqs. 17, 18 and 19. In Eq. 17, Max(MSi.c) returns the
highest microservice execution cost among the candi-
date providers for microservice i. Next, in Eq. 18,
Min(MSi.c) returns the lowest microservice execution
cost among the candidate providers for microservice
i. In addition, in Eq. 19, Average(MSi.c) returns the
average microservice execution cost among the can-
didate providers for microservice i.

Max(MSi.c) = max
16k6si

(SPki.c) | ∀SPki ∈CSPi,

1 6 i 6 t,qi = sizeo f (CSPi)
(17)

Min(MSi.c) = min
16k6si

(SPki.c) | ∀SPki ∈CSPi

1 6 i 6 t,qi = sizeo f (CSPi)
(18)

Average(MSi.c) =
Max(MSi.c)+Min(MSi.c)

2
(19)

In case there is more than one provider with the
same average execution cost, we select the provider
that presents the highest availability or performance,

observing the priority defined by a user. For this, we
use Eqs. 20 and 21 to calculate the availability and re-
sponse time for each candidate provider, respectively.
Equation 20 defines SPki.a as the cloud availability of
provider k for microservice i, which is assigned the
lowest candidate service availability for microservice
i. Equation 21 defines SPki.rt as the response time of
provider k for microservice i, which is assigned the
highest candidate service response time of microser-
vice i. Next, we use Eqs. 22 and 23 to calculate
the highest value for availability and the lowest value
for response time in each candidate provider based on
Eqs. 20 and 21, respectively.

SPki.a = min
16 j6r

(S
k j
i j .a) | S

k j
i j ∈ SPki,SPki ∈CSPi,

1 6 k 6 qi,1 6 i 6 t
(20)

SPki.rt = max
16 jx6r

(Sk
i jx .rt) | Sk

i jx ∈ SPki,SPki ∈CSPi,

1 6 k 6 qi,1 6 i 6 t
(21)

Max(MSi.a) = max
16k6si

(SPk.a) | ∀SPk ∈CSPi (22)

Max(MSi.rt) = min
16k6si

(SPk.rt) | ∀SPk ∈CSPi (23)

3.3 Diagram and Algorithm

In this subsection, we present a diagram and describe
an algorithm for UM2Q, which are illustrated in Fig-
ure 2 and Algorithm 1, respectively. Figure 2 shows
an overview of each level described in Subsection
3.2 to the multi-cloud selection process. Algorithm
1 presents the pseudocode with more detail of every
level of our approach.

The diagram in Figure 2 starts with a set of avail-
able cloud providers and a set of application microser-
vices, and it has three parts representing each level of
our approach. It shows two tasks in this first part:
the first one discovers every candidate service for a
microservice in a cloud provider, and the second one
ranks all candidate services.

The second part of the diagram shows four tasks,
which aim to build all the candidate combinations
for a microservice in all available cloud providers.
First, it makes all candidate combinations in a single
provider. A candidate combination is composed of all
necessary services for a microservice, and the combi-
nation cost is lower than or equal to Budget’s quota.
Next, it calculates the combination score and selects
the combination with the highest score. If there is

UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a Distributed Microservice-based Application

61



more than one combination with the highest score,
then it chooses the combination that has the highest
priority. The entire process is repeated for all avail-
able providers.

The third diagram part in Figure 2 presents four
tasks, which aim to select a cloud provider combi-
nation for each microservice. In the first and second
tasks, it calculates the combination cost and selects
the combination with the average cost. If there is
more than one combination with the average cost, it
selects the combination with the highest priority. The
whole process is repeated for all microservices of an
application. Finally, it returns a set of combinations,
in which each combination represents a microservice.

Figure 2: Diagram for UM2Q.

Next, we describe Algorithm 1, which is based on
Figure 2. It has two inputs: the set of application re-
quirements and the set of cloud providers capabilities;

and one output: the set of the providers to host all ap-
plication microservices.

To achieve the goals of our approach, Algorithm
1, in line 6, discovers the candidate services in a sin-
gle provider, in which a candidate service is a cloud
service that meets all requirements for a microservice.
Next, in lines 8 and 9, it ranks the candidate services,
according to Eqs. 7, 8, and 9. After, in line 10, it
combines all candidate services necessary to compose
a microservice in a manner that the combination cost
is lower than or equal to the microservice quota in ac-
cordance to Eqs. 10, 11, 12, and 16. Then, in line
11, it adds all candidate combinations of a provider to
the candidate combinations list for a microservice. It
calculates the combination score in accordance to Eq.
14 between lines 13 and 17. It returns the combina-
tion with the highest score in line 19, next, it checks
if there is more than one combination with the high-
est score between lines 20 and 24. In case this hap-
pens, it checks which of these combinations has the
highest priority, according to user preferences. The
entire process is repeated in every available provider
for the same microservice. Hence, at the end of this
level, it has a set of combinations for a microservice,
being one of each candidate cloud provider. A can-
didate cloud provider is a cloud provider that has at
least one candidate services combination to compose
a microservice.

Note that in line 29, to achieve the third level, Al-
gorithm 1 calculates the average combination cost ac-
cording to Eqs. 17, 18, and 19. Next, in line 30, it
verifies the combinations that have the average cost.
In lines 31 and 32, if there is more than one combi-
nation with the average cost, it checks which combi-
nation has the greatest score in line 32. If there is
more than one combination with the highest score in
line 34, it gets the combination with the highest pri-
ority according to user preferences. Thus, at the end
of this level, it has a combination of a provider to host
a microservice. The entire process is repeated for all
microservices of an application. It returns a set of
combination, which is composed of a combination for
each microservice.

4 EVALUATION

In this work, we evaluate the UM2Q process perfor-
mance. First, we set up the scenarios that allow us to
check UM2Q behavior so that it is the same for the
other scenarios. Next, we developed a tool to eval-
uate UM2Q feasibility. In this section, we describe
the scenarios configuration, the tool, the experiments,
and the outcomes.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

62



Algorithm 1: The Algorithm for UM2Q.
input : Set of the application requirements ap

Set of the capabilities of the providers
cp

output : Set of Providers prvdsMs to host each
application microservice

1 foreach ms of the ap do
2 combLtPr← initialize with empty set;
3 combsMS← initialize with empty set;
4 combListMS← initialize with empty set;
5 foreach sp of the cp do
6 candServ← discoveryCandServ (ms, sp);
7 if (not empty(candServ)) then
8 matReq← sawScalPh (candSr);
9 candSrSC← sawSCPh (candSr, matReq,

ap.wgt);
10 combsMS← combsMS + combMsSp

(candSrSC, quotaMS);
11 combLtPr← combLtPr + (sp.number,

combsMS);
12 end
13 combLtPrSC← initialize with empty set;
14 foreach comb of the combLtPr do
15 combSC← calculateCombSC (comb);
16 combLtPrSC← combLtPrSC + (comb,

combSC);
17 end
18 combLtPrHg← initialize with empty set;
19 combLtPrHg← combLtPrHg + combHgtSC

(combLtPrSC);
20 if (not empty(combLtPrHg)) then
21 if (sizeof(combLtPrHg)> 1) then
22 combPrMS← combHgtPrty

(combLtPrHg, prty);
23 end
24 end
25 combLtMS← combLtMS + combPrMS;
26 end
27 if (not empty(combLtMS)) then
28 if (sizeof(combLtMS)> 1) then
29 avgCost← averageCost (combLtMS);
30 combLtMSAgCost← combAvgCost

(combLtMS, avgCost);
31 if (sizeof(combLtMSAgCost)> 1) then
32 finalCbMS← finalCbMS +

combHgtSC (combLtMS);
33 if (sizeof(finalCbMS)> 1) then
34 finalCbMS← combHgtPrty

(combLtMS, prty);
35 end
36 end
37 end
38 end
39 combFinalLt← combFinalLt + (ms.number,

finalCbMS);
40 end
41 return combLtFinal

4.1 Tool Description

We developed a tool to evaluate the UM2Q selection
process. The tool was implemented using Python 3.7,
and we used the JSON format as input and output.
The tool has two JSON files as input: one contains
the service providers capabilities; the other has the
application requirements. Each provider capability is
organized by service classes and each class has its ser-
vices. We consider three classes: computing, storage,
and database. Each service must contain its functional
and non-functional capabilities. As described in Sec-
tion 3, UM2Q considers availability, response time,
and cost as nonfunctional capabilities.

Application information involves name, minimum
availability, maximum response time, maximum bud-
get, weight and priority of each user requirement,
which are the same for each microservice. Besides, an
application also contains microservice information,
and there must be a description of the name and the
total budget quota as in Eq. 10. The tool returns a
JSON file, which contains the providers that will host
the microservices as well as the services that will be
used and each providers’ cost.

4.2 Setting Scenarios

According to Hayyolalam and Pourhaji Kazem, 2018,
there are few available datasets in the research do-
main. In this manner, in fifty percent of the works
referenced by Hayyolalam et al, the authros use a
dataset configured randomly. We also randomly con-
figured ten sets of providers, which differ from one
another by the number of providers and service ca-
pabilities. Each provider has three services classes:
compute, storage, and database; each class has seven
services. The amount of providers in each set is a
multiple value of 100, in which the first set has 100
providers and the last 1000.

Also, we configured the requirements for
microservices-based applications. We configured five
applications: the first one (APP1) has 6 microser-
vices, the second (APP2) 9, the third (APP3) 12,
the fourth (APP4) 15, and the last one (APP5) has
18 microservices. Each microservice contains one
service of each class: compute, storage, and database.
Availability, response time, and cost requirements
vary depending on the type of assessment that should
be performed.

4.3 Experiments and Outcomes

We evaluated the performance of UM2Q using our
tool described in 4.1. For this, we performed five ex-

UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a Distributed Microservice-based Application

63



periments, and used the scenarios, according to Sub-
section 4.2, which described 10 sets of providers and
the requisites of 5 applications. Each experiment was
performed 30 times to reach the normal distribution
(Hogendijk and Whiteside, 2011).

In all five experiments, the y-axis represents the
average selection time in milliseconds (ms), the rows
represent the applications, and the x-axis shows each
experiment. The first experiment uses the ten provider
sets described in Section 4.2, illustrated by Figure
3. Availability, response time, and cost requirements
were not modified during the experiment, maintain-
ing the same value across all sets. Figure 3 shows
that increasing the number of providers influences the
average selection time as it increases the number of
services that meet application requirements. Also, we
can observe that the number of microservices also af-
fects the average selection time of providers.

Figure 3: The Set of Providers Experiment.

Figure 4 presents the other four experiments,
which were performed using a set of 1000 providers,
and each application was set to 5 different values
(Figure 4a). The lowest one, 90%, indicates that all
provider services must have this minimum value to
meet application requirements, and the highest one,
98%, indicates that only cloud services with values
between 98 and 100 meet this application require-
ment, which is in agreement with Eqs. 1 and 2. We
set response time and cost requirements to values that
can be met by most providers. The results show that
the average time decreases with increasing availabil-
ity requirement value in each application.

Figure 4b shows the experiment in which we con-
figured each application with five response time val-
ues. Thus, the lower the response time value, the
fewer the cloud services meet the requirement. We
set availability and cost requirements to values that
can be achieved by most providers. The graph in Fig-
ure 4b shows the selection time increases with the in-
crease of the response time requirement in every ap-
plication. We created budget classes for the experi-

ment in Figure 4c, in which each class has different
budget values for each application, but all applica-
tions have the same value per service in each class.
The results show that the average selection time in-
creases as the budget class increases. After a certain
amount, the average selection time is stabilized, be-
cause the ceiling has been reached and even if the bud-
get increases, the number of services to be selected
will not increase.

Figure 4d shows the experiment in which we vary
the three requirements, in a manner that when the
availability requirement increases, the cost and re-
sponse time requirements decrease. We can observe
that the average selection time in the Figure 4d de-
creases with the requirements restriction increase.
This outcome shows that the requirements restriction
increase reduces the number of providers that meet all
requirements and that the average selection time tends
to stabilize because the budget value is higher than the
cloud cost value.

5 RELATED WORK

Several works address the cloud selection problem,
but each of them worries about different issues be-
cause there are several open ones. In this work, we
describe some research works that lead with the se-
lection problem from the user perspective. For this,
we describe a summary of these works characteris-
tics in Table 1, which contains seven columns. The
first column presents the work reference. The sec-
ond, third, and fourth columns refer to a taxonomy
to identify the work focus that deals with the cloud
providers selection regarding the number of providers
and services used by them in each phase, which we
named providers and services granularity (PSG). The
second column shows the number of providers in the
selection process, the third one shows the number of
selected providers, and the fourth one indicates the
granularity per selected provider. Furthermore, the
fifth column presents the methods used to solve the
selection problem, the sixth one shows whether or not
the user defines the requirements threshold, and in the
last one presents the goals of the work. In Table 1,
n indicates the number of providers in the selection
process, which must be greater than 1; while, m indi-
cates the number of selected providers and it must be
greater than 1 and lower than or equal to n.

Note in Table 1 that the first four works use a sin-
gle cloud provider and address the service composi-
tion problem. Chen et al., 2016, in the first table
line, studied dependency-aware service composition
considering multiple QoS attribute to maximize the

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

64



(a) Availability. (b) Response Time.

(c) Budget Class. (d) Requirements Class.

Figure 4: Experiments for UM2Q.

profit but they did not discover the services. While
Hongzhen et al., 2016, in the second table line, pro-
posed a strategy of cloud service composition evo-
lution based on QoS, and the QoS values are calcu-
lated based on a four-structure model. Liu et al., 2016
proposed an approach for QoS-aware cloud service
compostion that allows the user to define the QoS
constraints and its preferences. Since microservices
are composed of various services, we can consider
them as a service composition. Therefore, UM2Q
differs from the Liu et al., 2016 because we ad-
dress several service composition in parallel, one for
each microservice, and we select a service composi-
tion among every service composition of all available
providers to host a microservice. In the fourth table
line, Seghir and Khababa, 2016 also address QoS-
aware cloud service, and this work differs both from
the Liu et al., 2016 and UM2Q because of the method
used to solve the problem.

We can observe in the fifth and sixth table lines,
that the works of Ding et al., 2017 and Jatoth et al.,
2018 address the service ranking. They differ from
one another by the method used to rank the services.
Besides, they differ from UM2Q because they do not
select various services in multiple providers. In the
seventh and eighth table lines, Thomas and Chan-
drasekaran, 2017 and Panda et al., 2018 use cloud

federation to execute a user requisition that cannot be
executed for selected providers, which makes them
only use multiple clouds when necessary.

Lastly, in the ninth, tenth, and eleventh table lines,
Sousa et al., 2016, Bharath Bhushan and Pradeep
Reddy, 2016, and Mezni and Sellami, 2017 use mul-
tiple clouds in both the selection and run-time pro-
cesses as UM2Q, but they select services over var-
ious clouds while UM2Q selects microservices. In
addition, these works do not allow the user to define
the requirements thresholds. Further, UM2Q is more
complex and more flexible, and it has a low commu-
nication cost because microservices are independent.

Besides, this paper is part of the PacificCloud
project (Carvalho et al., 2018b), which addresses
the selection of cloud providers in multi-cloud envi-
ronments, where native cloud applications are com-
posed of components/modules hosted on different
cloud providers/services. In multi-cloud scenarios,
choosing an optimal configuration for each applica-
tion component is challenging once we should con-
sidered several requirements, such as performance,
availability, or even financial costs. We can point
out that these requirements act as selection criteria,
and the native cloud applications have their multi-
ple functionalities provided by independent microser-
vices. We investigated different approaches to select

UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a Distributed Microservice-based Application

65



Table 1: Summary of the related work characteristics.

Characteristics

Related Work PSG Method user-defined
Threshold Goals

(1) (2) (3)

(Chen et al., 2016) 1 1 Service
Composition

Pareto set model,
vector Ordinal
Optimization

no

QoS dependency-aware
service composition
considering multiple
QoS atribute

(Hongzhen et al., 2016) 1 1 Service
Composition

Hybrid particle
swarm no cloud service composi-

tion evolution

(Liu et al., 2016) 1 1 Service
Composition SLO yes Sequential cloud ser-

vice composition
(Seghir and Khababa,
2016) 1 1 Service

Composition Hybrid GA yes QoS-aware cloud ser-
vice composition

(Ding et al., 2017) n 1 Service CSRP no Ranking of top-k simi-
lar Service

(Jatoth et al., 2018) n 1 Service Grey Technique,
TOPSIS, AHP no Ranking of Service

(Thomas and Chan-
drasekaran, 2017) n m Resources TOPSIS, AHP no

Selection of cloud fed-
eration provider to exe-
cute a user requisition

(Panda et al., 2018) n m Tasks Defined by Au-
thors no

Independent task
scheduling in cloud
federation

(Sousa et al., 2016) n m Service Defined by Au-
thors no

Selection and config-
uration of multi-cloud
for microservices-
based applications

(Bharath Bhushan and
Pradeep Reddy, 2016) n m Service PROMETHEE no

Selection QoS aware
services for a service
Composition

(Mezni and Sellami,
2017) n m Service FCA no

Service composition in
multi-cloud that focus
on the communication
cost

UM2Q n m Microservices SAW, Defined by
Authors yes

Multi-cloud selection
to host the application
microservices

PSG-Providers and Services Granularity, (1) Provider Granularity in the Selection Process, (2) Provider Granularity in the
Selection Result, (3) Service Granularity per Provider.

the best set of cloud providers to host each one of the
applications’ microservices according to software ar-
chitects’ requirements.

The first approach uses dynamic programming in
(Carvalho et al., 2018a) and the second ones uses a
greedy algorithm in (Carvalho et al., 2019). Finally,
in this paper we propose a new approach that uses a
multi-criteria strategy where each of the cloud archi-
tect provides budget quotas for a set of application
microservices. In addition, these quotas must be hon-
ored when selecting the available cloud providers.

These three papers follow the same methodology.
We established a set of scenarios where we change
a set of parameters including (i) the number of mi-
croservices that represents each application, (ii) the
requirements of each microservice, (iii) the number

of available cloud providers or (iv) the number of
services offered by each cloud provider. We then
checked the overall performance of each solution ac-
cording to several parameters configuration. In addi-
tion, all three papers have one similarity: a software
architect must define boundary values for three ap-
plication properties: availability, response time, and
expected budget. The software architect also defines
weights among these attributes according to the ap-
plication priorities (for instance, response time may
be more important than availability). The solutions in
these articles should select the combinations of ser-
vices among the available cloud providers that best
meet the application’s microservices. For each com-
bination, we compute a score according to the soft-
ware architect’s requirements. However, the proposed

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

66



approach differs from the previous ones as following:

• Instead of setting a global budget quota for the
entire application, in the proposed approach, we
adopt another strategy where each microservice
has its own budget. Once the budget quota is not a
global requirement for the whole application any-
more, the selection of the best cloud provider for a
single microservice depends only on the selection
of candidates to host the microservices of each
application. This new strategy allows us to filter
cloud providers that do not fit the microservices
budget independently of any global procedure. It
also decreases the search space among the cloud
providers, which results in faster responses in the
selection process.

• The solutions proposed in Carvalho et al., 2018a
and Carvalho et al., 2019 are mapped into the
multi-choice knapsack problem and then imple-
mented using a dynamic algorithm and a greedy
algorithm, respectively. Both strategies impose an
interdependence among the application microser-
vices. the proposed approach does not follow
these strategies since a provider is selected for
each microservice independently from the other
microservices (Sections 3.2 and 3.3). In this
way, algorithms in the three approaches are dif-
ferent and share different scenario sizes. The ap-
proach that uses a dynamic algorithm imposes
limits in the size of the entry (number of microser-
vices in the application and number of available
providers), but always selects the best solution
(Section 3 in Carvalho et al., 2018a). The greedy
algorithm version accepts a larger input and se-
lects a viable solution, but not necessarily the best
one (Section III in Carvalho et al., 2019). Never-
theless, the proposed approach accepts large en-
tries and provides the best solution for each mi-
croservice based on the definition of the budget
quota for each microservice defined by the soft-
ware architect (Section 4).

6 CONCLUSION

Multi-cloud has stirred the interest of both the
academy and the industry to mitigate vendor lock-in
as well as to profit from the advantages offered by
cloud computing. One of the challenges is that many
cloud providers offer many services with the same
functionality but with different capabilities, turning
the provider selection into a complex task.

PacificClouds aims to manage the deployment and
execution of the microservice-based applications in

multi-cloud environments. For this, PacificClouds
needs to select providers to host the application mi-
croservices. Therefore, in this work we propose
UM2Q to select cloud providers to host microser-
vices. The outcomes obtained in the experiments
show that the application requirements, the num-
ber of application microservices and the number of
providers influence the provider’s selection time. The
results also indicate UM2Q viability, since the selec-
tion time was satisfactory in any scenario, even for
extreme values.

One limitation of the UM2Q is the difficulty of
the software architect to determine a budget quota for
each microservice of an application. Another limi-
tation of UM2Q is that it is specific to applications
based on microservices that have low communication
costs. In regards to these limitation, as future work,
we intend to investigate two possible solutions. One
to develop a selection process in which the user does
not have to determine a budget quota for each mi-
croservice and compare the two approaches, and an-
other in the monitoring phase, in which the microser-
vices are already deployed, verifying the expenses for
each microservice, resizing the quotas when needed
and making a new providers selection to migrate the
microservices involved in this process.

In addition, as future work, we intend to imple-
ment a recommendation system to suggest better set-
tings than those requested by the user, which would
be available with a little more investment.

REFERENCES

Bharath Bhushan, S. and Pradeep Reddy, C. H. (2016).
A Qos aware cloud service composition algorithm
for geo-distributed multi cloud domain. Interna-
tional Journal of Intelligent Engineering and Systems,
9(4):147–156.

Carvalho, J., Vieira, D., and Trinta, F. (2018a). Dynamic
Selecting Approach for Multi-cloud Providers. In
Luo, M. and Zhang, L.-J., editors, Cloud Computing –
CLOUD 2018, pages 37–51, Cham. Springer Interna-
tional Publishing.

Carvalho, J., Vieira, D., and Trinta, F. (2019). Greedy
Multi-cloud Selection Approach to Deploy an Appli-
cation Based on Microservices. In PDP 2019.

Carvalho, J. O. D., Trinta, F., and Vieira, D. (2018b). Paci-
ficClouds : A Flexible MicroServices based Archi-
tecture for Interoperability in Multi-Cloud Environ-
ments. In CLOSER 2018.

Chen, Y., Huang, J., Lin, C., and Shen, X. (2016). Multi-
Objective Service Composition with QoS Depen-
dencies. IEEE Transactions on Cloud Computing,
7161(c):1–1.

UM2Q: Multi-cloud Selection Model based on Multi-criteria to Deploy a Distributed Microservice-based Application

67



Ding, S., Wang, Z., Wu, D., and Olson, D. L. (2017). Uti-
lizing customer satisfaction in ranking prediction for
personalized cloud service selection. Decision Sup-
port Systems, 93:1–10.

Hayyolalam, V. and Pourhaji Kazem, A. A. (2018).
A systematic literature review on QoS-aware ser-
vice composition and selection in cloud environ-
ment. Journal of Network and Computer Applications,
110(February):52–74.

Hogendijk, J. and Whiteside, a. E. S. D. (2011). Sources and
Studies in the History of Mathematics and Physical
Sciences. Springer US.

Hongzhen, X., Limin, L., Dehua, X., and Yanqin, L. (2016).
Evolution of Service Composition Based on Qos un-
der the Cloud Computing Environment. Proceedings
of ICOACS 2016, 2016:66–69.

Jatoth, C., Gangadharan, G., Fiore, U., and Computing,
R. B. (2018). SELCLOUD: a hybrid multi-criteria
decision-making model for selection of cloud ser-
vices. Soft Computing, pages 1–15.

Liu, H., Xu, D., and Miao, H. K. (2011). Ant colony op-
timization based service flow scheduling with various
QoS requirements in cloud computing. Proceedings
- 1st ACIS International Symposium on Software and
Network Engineering, pages 53–58.

Liu, Z. Z., Chu, D. H., Song, C., Xue, X., and Lu, B. Y.
(2016). Social learning optimization (SLO) algorithm
paradigm and its application in QoS-aware cloud ser-
vice composition. Information Sciences, 326:315–
333.

Mezni, H. and Sellami, M. (2017). Multi-cloud service
composition using Formal Concept Analysis. Journal
of Systems and Software, 134:138–152.

Panda, S. K., Pande, S. K., and Das, S. (2018). Task Par-
titioning Scheduling Algorithms for Heterogeneous
Multi-Cloud Environment. Arabian Journal for Sci-
ence and Engineering, 43(2):913–933.

Petcu, D. (2014). Portability in Clouds : Approaches and
Research Opportunities, Scalable Computing : Prac-
tice and Experience. 15(3):251–270.

Seghir, F. and Khababa, A. (2016). A hybrid approach us-
ing genetic and fruit fly optimization algorithms for
QoS-aware cloud service composition. Journal of In-
telligent Manufacturing, pages 1–20.

Somu, N., Gauthama, G. R., Kirthivasan, K., and Shankar,
S. S. (2018). A trust centric optimal service ranking
approach for cloud service selection. Future Genera-
tion Computer Systems, 86:234–252.

Sousa, G., Rudametkin, W., and Duchien, L. (2016).
Automated Setup of Multi-Cloud Environments for
Microservices-Based Applications. 9th IEEE Inter-
national Conference on Cloud Computing.

Tang, M., Dai, X., Liu, J., and Chen, J. (2017). Towards
a trust evaluation middleware for cloud service selec-
tion. Future Generation Computer Systems, 74:302–
312.

Thomas, M. V. and Chandrasekaran, K. (2017). Dynamic
partner selection in Cloud Federation for ensuring the
quality of service for cloud consumers. International

Journal of Modeling, Simulation, and Scientific Com-
puting, 08(03):1750036.

Zheng, H., Feng, Y., and Tan, J. (2016). A fuzzy QoS-
aware resource service selection considering design
preference in cloud manufacturing system. Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 84(1-4):371–379.

Zhou, J., Yao, X., Lin, Y., Chan, F. T., and Li, Y. (2018).
An adaptive multi-population differential artificial bee
colony algorithm for many-objective service compo-
sition in cloud manufacturing. Information Sciences,
456:50–82.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

68


