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Abstract: In the past decade, additive manufacturing technology has gained an immense attention in numerous research 
areas and has already been adopted in a wide range of industries relevant to transportation, healthcare, 
electronics and energy. However, the presence of defects and dimensional deviations that occur during the 
process hinder the broad exploitation of 3D printing. In order to enhance the capabilities of this emerging 
technology, online quality control methodologies and verifications of the manufacturing process are necessary 
to be developed. In the present article, a low cost in-situ vision-based monitoring technique applied in Fused 
Deposition Modeling (FDM) 3D printing technology is introduced. An optical scanning system was integrated 
in a commercial 3D Printer in order to scan and validate the performance of the procedure. The proposed 
methodology monitors the FDM process and correlates the theoretical 3D model with the manufactured one. 
This technique can be utilized in various additive manufacturing technologies providing integrity and 
reliability of the process, high quality standards and reduced production costs.

1 INTRODUCTION 

Additive Manufacturing (AM), which is known to the 
public as three-dimensional (3D) printing, is a 
manufacturing process where the product is built 
incrementally and vertically to the build platform of 
the 3D printer, i.e. layer-by-layer (Gibson, 2014). 
Industries around the world utilize AM in order to 
decrease the cost of parts manufacturing and reduce 
the time-to-market. Products created using AM 
procedures have the potential to possess complex 
geometric characteristics and lightweight structure, 
challenges which are difficult be to addressed via 
traditional subtractive manufacturing procedures like 
turning and milling. 3D printing has undergone a 
rapid growth and there are various AM processes 
based on different physical principles (e.g. material 
extrusion, photopolymerization, sintering, material 
jetting, etc.) which are now available and allow the 
manufacturing industry to reduce lead times on the 
production. Depending on the applied AM 
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technology, there is a wide range of materials which 
can be used such as plastics, ceramics and metals. 
From an application perspective, polymer-based AM 
methods are employed in various scientific fields like 
automotive engineering, medical and bioengineering. 
The most popular and rapidly-growing AM process 
using polymers as feedstock material is the extrusion 
based deposition process known as Fused Deposition 
Modeling (FDM). FDM is an AM technology 
representing the largest installed base of 3D printers 
in the world and is primary used for modelling, 
production and rapid prototyping. The 
abovementioned process a continuous filament of a 
thermoplastic material through a moving, heated 
extrusion print head. Once the nozzle of the print head 
has reached the desired temperature, the feedstock 
material is fed to the print head where it melts locally. 
The print head is connected with a computer 
numerical control system that allows it to move in two 
dimensions (on the horizontal plane), one layer at a 
time, depositing the feedstock material in  
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Figure 1: Principal of FDM process. 

predetermined locations as illustrated schematically 
in Figure 1. The deposited melted material on the 
build platform cools and solidifies immediately after 
its extrusion from the print head’s nozzle. When the 
layer is fully created, the build platform moves 
vertically down and a new layer is deposited. This 
procedure is repeated until the 3D geometry of the 
product has been printed.  

In general, the quality of a product manufactured 
via the FDM procedure can be characterized by 
various aspects, such as dimensional accuracy, 
surface quality, mechanical properties and 
conformance to specifications. More specifically, the 
geometrical accuracy of the physical printed model 
consists one of the biggest concerns in AM and the 
utilization of non-destructive quality control methods 
constitutes a must in order to exploit the full 
capabilities of this state of the art technology 
(Dimitrov, 2006). In the scope of optimizing the FDM 
process via the reduction of dimensional deviations 
between the theoretical and the printed product, 
online monitoring of the procedure is considered to 
be mandatory. Real time monitoring of the AM 
procedure composes an essential phase but is 
frequently neglected; hence dimensional deviations 
from the printed model are unknown until the end of 
the process. Additionally, in situ visual monitoring of 
the 3D printing process could reduce material 
resources and production time, as the manufacturing 
process can be aborted if an error is detected. 
Therefore, semi-built parts which do not comply with 
the technical standards of the product can be 
interrupted prior to the prescribed process 

termination. Optical methods are appropriate for low 
cost, non-destructive and high resolution monitoring 
of AM procedures (Nuchitprasitchai, 2017). 
Moreover, monitoring of the manufacturing process 
could aid in predicting the performance of the 
operation and detecting possible failures beforehand.  

The objective of the present work is to investigate 
and develop real-time optical monitoring techniques 
during the FDM process in order to perform in situ 
non-destructive quality control. Hereupon, an 
integration of an optical scanning system on a 
commercial FDM 3D printer has been established in 
order to exhibit real time monitoring of the AM 
process. The rest of the paper is organized as follows: 
Section 2 outlines the existing monitoring and error 
detection methods utilized in AM technology and 
more specifically in FDM procedures. Next in 
Section 3, the applied experimental setup and the pre-
processing data of the employed methodology are 
discussed, while Section 4 explicitly presents the 
experimental assessment of the introduced optical 
monitoring technique. Finally, conclusions and future 
work are drawn in Section 5. 

2 LITERATURE REVIEW 

Taking into account the fact that 3D printing is a 
relatively new manufacturing technology, the 
research on available real time monitoring systems of 
extrusion based AM processes is currently limited. 
Up to now, commercial FDM 3D printers have 
developed and integrated some types of sensor 
solutions detecting lack of the feedstock material or 
malefactions on the nozzle. However, these methods 
investigate only a single form of a failure mechanism. 
In order to develop a fully functional monitoring 
system, which can be applied for real time error 
detection, more sophisticated methodologies have to 
be developed. Recent studies with applications in 
online monitoring of the FDM 3D printing process 
are documented in the next paragraphs.   

An in situ monitoring method for evaluating the 
surface quality of parts manufactured via a FDM 3D 
printer was developed in (Fang, 2003). Grayscale 
images of the deposited layers were captured and 
analyzed during the process. Alterations in the 
grayscale values on the deposited surfaces allowed 
the detection of overfills and underfills of the printed 
parts. The authors in (Dinwiddie, 2013) utilized an 
extended range IR camera in order to measure the 
developed temperatures during the process 
correlating their effect on the mechanical properties 
and the quality of parts manufactured through a FDM 
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3D printer. The authors in (Faes, 2014) a modular 2D 
laser triangulation scanner has been utilized in order 
to analyze feedback signals during the process and to 
identify the source of the printing errors. Moreover, 
in the work presented in (Holzmond, 2017) the 
utilization of a three-dimensional digital image 
correlation (3D-DIC) system as an online 
measurement method has been introduced, in order to 
monitor and quantify the quality of the printed part 
surface. In particular, stereoscopic images were 
captured and spatially correlated using 3D Digital 
Image Correlation in order to extract the surface 
characteristics and produce the 3D geometry of the 
part during the process. 

The authors in (Straub, 2015) developed a 
technique to detect failure defects during the 3D 
printing manufacturing procedure. In this study, the 
evaluation of the product quality was accomplished 
via a multi-camera system consisted of five monitor 
features (each feature consisted of a Raspberry Pi 
camera) and image processing analysis using Dot Net 
framework and C#. Images were captured during the 
process from eight predefined locations by each of the 
five cameras located at five different angles in order 
to compare the results with the final 3D printed part. 
The correlation was performed on a pixel-wise 
manner. The types of the failures which can be 
detected using this experimental procedure are either 
an early termination of the process resulting to an 
incomplete product or a failure on the injection of the 
filament into the printer’s nozzle. The proposed 
technique cannot evaluate geometrical characteristics 
or structural defects, which are the most common 
errors in FDM process. However, in (Malik, 2019) a 
3D reconstruction method was introduced requiring 
only one camera integrated on the top of the build 
platform avoiding the need for moving the camera 
around the printed part or employing multiple static 
cameras. Moreover, the isolation of the printed part 
was feasible by cropping the background and the 
unwanted information from the acquired images. The 
3D model is reconstructed layer by layer; hence an 
online monitoring and error detection technique was 
developed. Finally, Augmented Reality (AR) 
methods were used to evaluate the procedure utilizing 
the reconstructed 3D model of the printed product. 
Recently, image-sensing systems combined with 
Artificial Intelligence (AI) algorithms have been 
reported for the characterization and the 
quantification of the geometric accuracy of 3D 
printed parts. The authors in (Delli, 2018) presented 
an in process quality control methodology for an 
FDM 3D printer utilizing the supervised machine 
learning algorithm support vector machine (SVM) 

and a single camera. In this work, the state of the 
printing process was classified as ‘defective’ or 
‘good’ employing the machine learning model and 
the image captured during the building procedure. 

3 EXPERIMENTAL METHOD 

3.1 3D Printer Setup 

The experimental setup utilized in this work 
comprises the commercial 3D Printer ‘Ultimaker 3 
Extended’, an ADXL345 accelerometer and the 
RGB-Depth camera ‘Asus Xtion Pro Live’. The 
Ultimaker 3 Extended applies the FDM 3D printing 
technology process providing a maximum build 
volume of (215x215x300) mm, a layer resolution 
from 20 to 200 microns and a XYZ print accuracy of 
(12.5, 12.5, 2.5) micrometers respectively. Polylactic 
acid (PLA) was used as an eco-friendly feedstock 
material in the experimental procedures. The process 
parameters were selected as documented in Table 1 
and remained constant throughout the courses of the 
experiments. The accelerometer has been exploited in 
order to send a signal to the optical monitoring system 
during the FDM process for capturing images when 
the print head reaches a checkpoint, as it will be 
discussed in Section 3.2. 

Table 1: 3D printing process parameters during the 
experimental tests. 

Process Parameters Value Units 
Nozzle diameter 0.4 mm 

Layer height 200 μm 
Printing speed 70 mm/sec 

Printing temperature 205 °C 
Wall thickness 1 mm 
Top thickness 1 mm 

Bottom thickness 1 mm 
Infill density 25 % 
Infill pattern triangles  

Build plate temperature 70 °C 
Overhang angle 45 degree 

The Asus Xtion Pro Live sensor provides color 
images and Per-Pixel-Depth information. Depth data 
of the scene are provided from the integrated IR depth 
sensor of the camera and the RGB sensor implements 
the colored image on the captured scene. After the 
registration of these sources of data, an RGB image 
of the scene along with a Per-Pixel-Depth information 
is obtained. In the present article, only the depth 
sensing capabilities of the camera will be exploited. 
The 3D printed objects are monitored by capturing 
images during the process with the aid of the above- 
 

In Situ Visual Quality Control in 3D Printing

319



 

Figure 2: Experimental setup. 

mentioned laboratory equipment, as shown in Fig. 2. 
It has to be noted, that the proposed experimental 
setup can easily be implemented in any type of 3D 
Printer and several AM technologies. The developed 
software was in C++, while also Point Cloud Library 
(PCL) (Rusu, 2011) has been used to for handling the 
3D points; developing thus a pipeline which 
automates the in situ monitoring process of the FDM 
3D printing procedure. Finally, taking into account 
the effect of variation in lighting conditions, 
numerous experiments in different light conditions 
have been performed in order to capture images using 
the RGB-D camera. Since the alterations in the 
lighting conditions influence the quality of the image, 
a constant lighting angle throughout the course of the 
experimental procedures was kept facilitating image 
analysis and comparison feasibility. 

3.2 Data Pre-processing 

One of the major advantages of AM is the ability to 
create a complex physical object utilizing only a 
digital 3D CAD (Computer Aided Design) model and 
a 3D printer. The executable commands of the 3D 
printer are derived from the digital 3D model and by 
employing a software called slicer; machine 
commands are generated representing the trajectories 
of the print head (Gcode). Gcode is a machine code 
which is utilized in various manufacturing 

procedures, like CNC milling, turning and 3D 
printing. These code structures contain the 
instructions for the printer in order to control and 
move its actuators, the build platform and the print 
head, which extrudes the semi-molten feedstock 
material. However, there is no control or guarantee 
that the commands of the Gcode will be accurately 
executed by the 3D printer resulting to inaccuracies 
of the manufactured product. Dimensional deviations 
of the physical printed part compared to the 3D CAD 
model is hard to be detected during the FDM process 
due to the fact that the printing object does not exhibit 
any obvious defects and the manufacturing process is 
successfully finished. This type of errors could occur 
in case of malefactions of the 3D printer during the 
process or in situations where the user applies 
unsuitable printing conditions. Therefore, in order to 
detect dimensional deviation errors, the physical 
printed part has to be monitored and compared to the 
theoretical  model while the process is still ongoing. 

In AM technologies and especially in FDM 
procedures, the conversion of a CAD model into a 
Standard Triangulation Language (STL) format is 
necessary in order for the slicer software to generate 
the Gcode for the manufacturing of the model 
(Gibson, 2014). STL format contains data that 
correspond to sets of surface normal vectors and 
triangle vertices, hence STL describe only the 
external surface geometry of the part without any 
representation of the internal structure (lattice 
structure) or the necessary support structures of the 
printed part. In some AM processes, like FDM, the 
physical objects are not printed as solids due to the 
high amount of the required feedstock material and 
the total duration of the procedure. The lattice 
structure (filling pattern) is the internal structure of a 
part created using the FDM technology. Additionally, 
as FDM 3D printing models are constructed layer by 
layer, a previous layer is necessary to build upon it. 
Hereupon, depending on the complexity of the 3D 
model and the overhang angle of the new layer 
compared to the previous one, support structures may 
be required (Volpato, 2014). These types of structures 
are exhibited in Fig. 3. For this reason, the 
comparison between the STL data and the printed part 
is not directly applicable, since the STL format does 
not contain information regarding the 
abovementioned structures.  

In order to overcome such issues, a more holistic 
approach had to be developed. The employed 
methodology for the reconstruction of the digital 
model taking into account the internal and the support 
structures is presented schematically in Fig. 4. The 
proposed method is based on the generated Gcode 
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Figure 3: Lattice and support structures in FDM process. 

from the slicer software and simulates the exact 
movements of the print head in order to create the 
theoretical point cloud of the digital 3D model. In the 
first step, the 3D CAD model is imported on the 
CuraEngine, which is a fast and robust engine for 
translating 3D models into 3D printing commands 
(Kocisko, 2017). The outcome of this step is the 
Gcode that contains certain instructions about the 
X,Y and Z coordinates to which the print head and the 
build platform have to move in order to build the 3D 
model. In the next stage, a simulation of the 3D 
printing process utilizing the Gcode takes place. The 
generated Gcode has been further processed using a 
modified version of gcode2vtk (Kubicek, 2011), 
emulating the functionality of the 3D printer by 
parsing the Gcode to extract the planar-layered 
trajectories of the print head. In the next phase, a 
structure containing every path of the 3D printer is 
created. It has to be noted that only the Gcode 
commands, which contain information about the 
extruded material and the movements of the print 
head (that ultimately builds the physical model) are 
taken into consideration. Finally, these trajectories 
are uniformly sampled generating a theoretical point 
cloud of the 3D model. An example of the developed 
technique is illustrated in Fig. 5, where a 3D model 
created in the slicer software and the corresponding 
theoretical point cloud are displayed.  

In the last step of the preprocessing data module, 
some further parameters are passed to the 3D Printer. 
The print head has to move to the zero position (X=0 
and Y=0) of the 3D printer in order for the monitoring 
system to capture a clear image of the printed part 
during the FDM process. That was accomplished 
through the modification of the Gcode sending the 
print head in the zero position of the 3D printer every 
‘n’ deposited layers and with an accelerometer placed 
upon the 3D printer. In more detail, during the AM 
 

 

Figure 4: Theoretical point cloud reconstruction. 

process the print head commanded to move towards 
the zero position and pauses for time tw. During tw, the 
accelerometer sends a signal to the monitoring system 
in order to capture an image of the printed part, which 
is clearly visible by the RGB-D sensor, without the 
printing head to occlude the visibility of the building 
plate. After this operation, the printing head moves 
back to its previous position and re-initializes the 
printing process again. In this way, the real-time point 
cloud from the printed part is captured during the 
FDM process; hence the monitoring of the process 
and the correlation with the theoretical point cloud is 
feasible. 

4 EXPERIMENTAL 
ASSESSMENT 

In this section, the experimental assessment of the 
present work is presented. The experimental 
procedure has been conducted on a 3D printed part 
which has been exploited as a test specimen of basic 
geometry, namely a spur gear, utilizing PLA filament 
of 2.85 mm diameter (see Fig.5). 

 

Figure 5: Sliced 3D model and the corresponding 
theoretical point cloud. 
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Figure 6 demonstrates a brief overview of the 
applied optical monitoring process. As it was 
described in the previous section, the print head  
moves to the zero position of the 3D printer every ‘N’ 
layers, so the employed camera can capture a clear 
point cloud of the printed part during the FDM 
procedure. Due to the low resolution and broad field 
of view of the acquired point cloud by the Asus Xtion 
sensor, a fiducial marker was used to filter out the 
background and determine the area of interest to crop. 
The AprilTag visual fiducial system has been applied, 
which is widely used for a variety of tasks including 
augmented reality, robotics and camera calibration 
(Olson, 2011). Targets can be printed in any size on a 
simple piece of paper, thus allowing a low cost and 
accessible integration of the marker with the 
employed experimental setup. By placing a small 
AprilTag on the build platform of the 3D printer, the 
calculation of an orthogonal region of interest and 
filtering out any outliers from the initial point cloud 
is accomplished. The orthogonal region consists of 
the build platform, the AprilTag and the 3D printed 
model as shown in Fig. 7. This technique allows a fast 
filtering of the noise; hence focus on a small region 
of interest where the model is printed was ultimately 
achieved. 

Once the original point cloud has been cropped 
down to the region of interest, consisting of the 
printed part, build platform and AprilTag, the next 
step comprises their separation acquiring only the 
printed layer in order to reconstruct the model and 
evaluate its quality. This issue boils down to a plane 
detection and segmentation problem. There is a 
variety of methods targeting towards plane 
segmentation of 3D point cloud data in literature. 
Ransac algorithm has been selected and applied in the 
present study, which is easily implemented in PCL 
providing accurate results. Ransac is relatively slow 
when provided with big data sets, however the crop 
of the original point cloud reduced the overall size 
heavily and thus applying it did not influence the 
performance of the introduced optical monitoring 
system. Using the algorithm on the cropped point 
cloud resulted in a fairly accurate segmentation of the 
build platform, although there were still some areas 
with a small concentration of outlier points (namely 
the area where the AprilTag was placed upon) as 
exhibited in the left part of Fig. 8. In order to tackle 
this issue, a technique has been developed in 
accordance to which a point cloud representation is 
obtained that retain only the inlier points belonging to 
the constructed model, excluding thus the outliers. 
Increasing the distance threshold, which Ransac 
applies to extract the points on the detected plane,  
 

 

Figure 6: Flowchart of the monitoring procedure. 

resulted in segmenting away points originally 
belonging on the printed model. The issue has been 
solved by applying a distance–based clustering 
algorithm to the remaining point cloud and 
segmenting the biggest cluster, which resulted in a 
point cloud consisting only from points belonging to 
 

 

Figure 7: Region of interest. 
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the printed layer of the part. To this end, a Euclidean 
distance clustering algorithm has been utilized which 
clusters the remaining points based on the 3D 
Euclidean distance from their neighbors. Due to the 
sparsity of the outlier points, clustering the point 
cloud using distance between points as a metric 
leaded in a successfully filtering of the printed model 
as exhibited in the right part of Fig. 8. 

Having successfully implemented a method for 
locating and segmenting each printed layer, the final 
step was to reconstruct the printed model and 
correlate it with the theoretical point cloud of the 
3Dmodel. In situations where the build platform of 
the 3D printer was stationary, the reconstruction of 
the model using the methodology presented in this 
work would be as simple as concatenated all the 
obtained point clouds from each individual deposited 
layer. However, on the employed 3D printer 
(Ultimaker 3 Extended), the print head is stationary in 
the vertical direction and the build platform moves 
during the process. Therefore, preprocessing of the 
acquired point clouds of each printed layer before 
their concatenating was imperative. In the first step, 
the transformation between two subsequent layers 
was computed by aligning their build platforms. The 
alignment was conducted utilizing the Iterative 
Closest Point (ICP) algorithm (Bellekens, 2014), 
which is usually deployed in order to minimize the 
difference between two point clouds. Thus, the ICP 
algorithm was applied between two subsequent point 
clouds before the segmentation of the build platform. 
Due to the high concentration of points on the build 
platform, it was feasible to match the individual build 
platforms of two subsequent point clouds, acquiring 
ultimately their transformation. Hence, the 
segmentation of the build platform as well as the 
transformation of the extracted layers have been 
accomplished, enabling the representation of the 
physical printed object. Finally, it is a matter of 
concatenating the printed layers into a single point 
cloud to reconstruct the 3D model as illustrated in the 
left part of Fig. 9. 

 

Figure 8: Segmentation of the build platform using Ransac 
and the filtered point cloud. 

Results of the employed optical monitoring 
system are displayed also in Fig. 9, where in the 
middle the theoretical point cloud of the test 
specimen, which was obtained through the introduced 
methodology described in Section 3.2, is presented. 
Additionally, in the right part of Fig. 9 the correlation 
between the theoretical and the actual reconstructed 
point cloud of the examined model is exhibited. As it 
can be observed qualitatively, the reconstructed 
model is in decent agreement with the theoretical one. 
For the qualitative comparison, a point cloud spatial 
change detection method based on octrees has been 
employed to compare the reconstructed point cloud to 
its theoretical counterpart. An octree is a tree data 
structure in which each internal node has exactly 
eight children and is often used to partition a 3D space 
by recursively subdividing it into octants (Tang, 
2016). By calculating both point clouds octrees, it 
was feasible to retrieve points that are stored at voxels 
of one octree structure but do not exist in the other. 
Using the abovementioned method on the generated 
point clouds with a voxel size of 0.5 mm, the 
differential point cloud representing the spatial 
change between the theoretical and reconstructed 
model was calculated and amounts to 9.6%. One 
reason for the deviation between the examined point 
clouds is a result of poor resolution of the employed 
low cost optical sensor. Nevertheless, the proposed 
optical monitoring system composes an efficient 
method for real time monitoring of the FDM process 
and in case of utilizing a more accurate optical sensor; 
the introduced methodology could be efficiently 
applied for any real time error detection in AM 
procedures. 

5 CONCLUSIONS AND FUTURE 
WORK 

In the present study, a low cost solution for online 
monitoring of the FDM process has been introduced 
through the integration of sensors on the 3D printer 
and the implementation of image analysis algorithms. 
In this sense, an optical scanning system was 
integrated to a commercial FDM type 3D printer 
using a low cost RGB-Depth camera and performed 
initial experiments. The suggested system provides an 
automatic optical monitoring system with no human 
oversight. Taking into account the generated Gcode 
for the manufacture of the product, a theoretical point 
cloud of the 3D model has been obtained. This digital 
representation of the part is in the most suitable form 
in order to evaluate the accuracy of the 3D printing 
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Figure 9: The reconstructed and theoretical point cloud of the test specimen and their correlation.

process, as it contains both the lattice and the support 
structures of the examined model. Albeit the fact that 
the resolution of the optical sensor is relatively low, 
the developed algorithms by means of computer 
vision and the obtained results exhibit that the 
suggested method is a promising tool in real time 
monitoring and detecting errors in 3D printing 
technology. 
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