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Abstract: Reflectance Confocal Microscopy (RCM) is an ancillary, non-invasive method for reviewing horizontal 
sections from areas of interest of the skin at a high resolution. In this paper, we propose a method based on 
the exploitation of Bag of Visual Words (BOVW) technique, coupled with a plain neural network to classify 
extracted information into discrete patterns of skin cancer types. The paper discusses the technical details of 
implementation, while providing promising initial results that reach 90% accuracy. Automated classification 
of RCM images can lead to the establishment of a reliable procedure for the assessment of skin cancer cases 
and the training of medical personnel through the quantization of image content. Moreover, early detected 
benign tumours can reduce significantly the number of time and resource consuming biopsies.  

1 INTRODUCTION 

There are two main types of skin cancers that invade 
human epidermis, Melanomas and non-Melanomas. 
Melanomas refer to the formation of malignant 
tumours of melanocytes which are the cells 
responsible for the production of melanin, whereas 
non-Melanomas includes two main categories, basal 
cell carcinomas (BCC) and squamous cell carcinomas 
(SCC) and refer accordingly to basal and squamous 
cells. The statistics about skin cancer make an 
undisputed statement concerning the universality and 
severity of the issue. In the United States 3,4 million 
people were treated for non-Melanomas in 2012 with 
equal cases of BCC and SCC (Rogers et al, 2012). In 
Australia Melanomas and non-Melanomas represent 
the 75% of all cancers (Doran et al, 2016). According 
to estimations in (Bray et al, 2018), there will be 18.1 
million new cases [17.0 million excluding non-
Melanomas Skin Cancer (NMSC) cases] and 9.6 
million cancer deaths (9.5 million excluding NMSC) 
worldwide in 2018.  Nevertheless, early detection and 
treatment of each of those cases can pose a 
devastating effect on the number of mortalities 
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reducing it by many figures. Apart from the 
traditional method of dermoscopy through which 
many skin cancers cases are detected and the invasive 
method of conducting biopsy to verify the 
malignancy of those cases, RCM lies in the middle. It 
offers early detection and verification, while relieving 
the patient and the doctor from the invasive part of the 
methodology. The review of horizontal skin intervals 
is made possible through the detection of 
backscattered light from illuminated in vivo samples, 
in multiple levels (depth), in longitudinal and 
transverse axis and in real time. The contribution of 
the method to the diagnosis of skin cancer 
malignancies is based on its ability to depict the skin 
lesions at the cellular level, thus, offering, in 
conjunction with dermoscopy, a more accurate 
diagnosis. However, classification of skin cancer 
RCM images relies on human objectivity, requires 
training and is a rather time-consuming procedure. 
RCM images are hard to interpret and classify by the 
human eye providing, thus, space for computer vision 
to “join the scene”.  Furthermore, required specialized 
equipment is hard and expensive to obtain, therefore, 
consisting the method not accessible to majority of 
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the academic community. Machine learning 
techniques along with neural networks have long ago 
provided an assistive hand to the quantization of 
visual patterns. In this context, we propose a 
methodology for fast classification of RCM images 
based on the formation of a visual vocabulary and a 
plain neural network. Accuracy of classification 
reaches 92,6% which is rather promising, but future 
work is required concerning the extraction of 
semantic information from the images’ interest 
points. 

The remainder of this paper is structured as 
follows: Section 2 presents the related work, while 
Section 3 describes the proposed methodology for 
classification. Section 4 describes the experimental 
results and Section 5 concludes the paper. 

2 RELATED WORK 

Although RCM was discovered in the second half of 
the 20th century, related literature describes limited 
applications in the medical field of dermatology. The 
same limitations apply equally to the field of 
computer vision. However, the last decade many 
researchers have focused their strength in the specific 
area, even though annotated RCM images are few and 
the respective databases even fewer. The sparsity of 
samples opposes to the universal trend of deep 
learning techniques to solve classification problems. 
Nevertheless, (Wodzinski et al, 2019) presents a 
Resnet type convolutional neural network 
configuration which is pretrained on the ImageNet 
database and fine-tuned with confocal images. The 
achieved accuracy is 87%. A deep learning technique 
is proposed in (Combalia et al, 2019) for the digital 
staining of confocal images. This technique, mainly 
based on the utilization of a generative adversarial 
network, can be proved useful for the enhancement of 
cellular details and the visualization of mitosis. Many 
attempts have been made towards the segmentation 
and classification of segmented tiles of the whole 
image. The segmentation is based in two scenarios, 
either on the depicted visual patterns of each tile that 
are of significance to dermatologists or according to 
the thickness of the skin and, afterwards, classified in 
respective categories. The first scenario takes place in 
(Zheng et al, 2019), where the images are divided in 
tiles depicting meshwork, clod, ring, aspecific and 
background patterns. Speeded Up Robust Features 
are extracted to form a dictionary and, consequently, 
classification of each tile is performed by a Support 
Vector Machine scheme. Classification shows 55-
81% sensitivity and 81-89% specificity in 

distinguishing these patterns. The second scenario is 
described in (Kaur et al, 2016), where a hybrid deep 
learning approach is utilized that mixes unsupervised 
texton-based learning with a supervised deep neural 
network. In this case, the accuracy reaches 82%, 
improved by 31% in respect with the simple deep 
learning approach. 

Taking into consideration the lack of image 
samples, the success of previous works that utilized 
dictionary schemes for the classification of whole 
images or smaller tiles, the robustness of Speeded Up 
Robust Features (SURF) in different image 
variations, the lack of color information and the need 
to balance the inefficiency of the visual vocabulary 
schemes concerning localized information, we 
describe a classification system that tackles with 
efficiency all the above-mentioned obstacles. The 
inputs (RCM images) are augmented in number, 
analysed for feature extraction and finally classified 
to a promising accuracy, therefore, providing 
evidence that predicting malignancies from these 
images can lead to the reduction of biopsies and the 
improvement of training of medical personnel. A 
general overview of the system is depicted in Figure 
1. 
 

 
Figure 1: Overall system architecture. 

3 METHODOLOGY 

The methodology presented in this paper to address 
classification problems, consists of four (4) stages 
(namely):  
 Augmentation; 
 Feature Extraction; 
 Modelling; 
 Classification. 
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3.1 Augmentation 

The stage of augmentation consists of applying two 
types of transformations. Although it is often 
observed that data augmentation takes place by 
simple alterations of the original images (rotation, flip 
etc.), the methodology follows a different path by 
selecting a contrast enhancement and denoising 
algorithm to reach its goal. The choice is based on 
experiments that demonstrated the improved 
performance of the classification algorithm in images 
that were initially imposed to contrast enhancement 
and denoising afterwards. In order to get the first set 
of images, Contrast Limited Adaptive Histogram 
Equalization (CLAHE) is performed. CLAHE 
(Zuiderveld, 1994) is basically an Adaptive 
Histogram Equalization algorithm; therefore, it 
generates localized image histograms corresponding 
to each area that displays different brightness levels 
from another, and through them increases the 
intensity value at the points where edges are located. 
For the generation of the second set of images a Non-
Local Means Denoising algorithm is applied on the 
contrast enhanced image. The NL Means (Buades et 
al, 2011) Denoising algorithm is utilized to reduce 
noise through non-local means. This algorithm works 
as a convolutional filter calculating the mean from the 
values of all the pixels in the image (instead of only 
the adjacent pixels) with added weight on each pixel. 
The data augmentation procedure results to the 
triplication of the dataset size, which is essential for 
training the neural network in the predictive model. 
In Figure 2, the initial RCM image showing an Acral 
Nevus and two synthetic copies produced by the 
augmentation procedure. 
 

 
Figure 2: Data Augmentation. The initial image on the left, 
the contrast enhanced image in the centre and the denoised 
image on the right. 

3.2 Feature Extraction 

Each image is processed for the extraction of visual 
features utilizing the SURF and Haralick algorithm. 
The application of the SURF algorithm (Bay et al, 
2008) to each image is performed locally on the 
interest points that are detected by a fast Hessian 

Detector. This operation results to the extraction of a 
large number of 64-dimensional vectors, which are 
representative of the information depicted in each 
interest point. On the other hand, Haralick features 
(Haralick, 1979) are extracted globally on each image 
producing a 14-dimensional vector. Concluding this 
procedure, a set of 64 dimensional vectors and a 14-
dimensional vector is assigned to each image. The 
combination of these two techniques has been proven 
to be rather efficient in the classification of colorectal 
histopathology images in (Kallipolitis and 
Maglogiannis, 2019), exhibiting similar patterns. 

3.3 Modelling 

In order to model the information extracted from the 
RCM images, a visual vocabulary is created by K-
Means clustering of the whole set of 64 dimensional 
vectors from the augmented dataset. The appropriate 
number of clusters is defined by performing elbow 
analysis while clustering. At a certain number of 
cluster (for the system k=345) the slope of the 
graphical representation becomes shallow. The k 
values that belong to the shallow curve are excluded 
to avoid the known curse of high dimensionality. The 
K-Means clustering leads to the formation of a 345-
word visual vocabulary, where each word represents 
each centroid of K clusters. In order to feed the next 
step (classification), each image needs to be 
represented as a single vector. The utilization of a 
local feature extractor (SURF) creates the necessity 
of a structure (Visual vocabulary) that can map 
multiple vectors into one. This mapping operation is 
performed by associating the interest points of each 
image to the visual words of the vocabulary. The 
association takes place by measuring the Euclidean 
distance between visual words and interest points. 
The completion of this procedure leads to the 
representation of each image with a 345-dimensional 
vector (vocabulary vector). To reach the form of the 
final vector the vocabulary vector is concatenated 
with the 14-dimensional Haralick vector. However, 
values deriving from the Haralick algorithm are by far 
greater than the values deriving from the mapping. 
Therefore, the Haralick values are normalized 
according to the minimum and maximum values of 
the vocabulary vector. 

3.4 Classification 

The 359-dimensional feature vector is the input to a 
simple neural network which consists of three fully 
connected layers. A simple fully connected neural 
network approach is selected instead of a deep 

Fully Connected Visual Words for the Classification of Skin Cancer Confocal Images

855



learning technique, based on the sparsity of samples 
and the fact that a compact representation of visual 
features is already provided by steps B and C. The 
parameters of the neural network are set to the values 
that are presented in Table 1. 

Table 1: Basic neural network parameters. 

Parameter Value 
Hidden Layers 3 

Activation function Tanh 
Weight Initialization Xavier 

Learning Rate 0,25 for Stochastic 
Gradient Descent

1st Hidden Layer  27 neurons
2nd Hidden Layer  9 neurons
3rd Hidden Layer 3 neurons

Output Layer Activation 
Function Softmax 

Output Layer Loss 
Function  Negative Log Likelihood 

Epochs 5500 
Parameter Value 

4 EXPERIMENTAL RESULTS 

In order to evaluate the proposed system, a dataset is 
provided by the Syggros Hospital. The dataset 
includes 136 RCM grayscale images with 
corresponding labeling from specialist dermatologists 
in the hospital. The labels classify the images in seven 
specific types of pathological and physiological 
conditions as follows: 
 Spitz; 
 Basal Cell Carcinoma (BCC); 
 Actinic Keratosis (AK); 
 Lentigo Maligna-Lentigo Maligna Melanoma 

(LM-MM); 
 Seborrheic Keratosis; 
 Solar Lentigo; 
 Nevus. 
All images are captured by a Mavig Vivascope 3000 
that operates at 830nm, therefore, providing images 
until the depth of 200μm. However, the resulting 
analysis beyond the depth of 150μm provides in-
adequate discriminative capability for the human eye. 
Computer vision can assist for these remaining 50μm, 
where the human eye lacks. 

The images’ dimension is 1000x1000. The dataset 
consists of 10 Actinic Keratosis (AK) images, 4 Spitz 
images, 42 Nevus (including 1 Acral Nevus type), 15 
Lentigo Maligna-Lentigo Maligna Melanoma (LM-
MM), 17 Basal Cell Carcinoma (BCC), 3 Solar 
Lentigo, 1 Ink Spot Lentigo and 44 Seborrheic 

Keratosis (SK) images which are categorized in two 
main classes: Benign (Nevus, Ink Spot Lentigo, Solar 
Lentigo, SK), Malignant(AK, BCC, Spitz, LM-MM) 
for classification. 
 

 
Figure 3: Visual Vocabulary formation. 

Initially, experiments are carried out with the 
formation of a SURF based vocabulary. For the 
second attempt, the vector is formed by the 
concatenation of the local SURF and global Haralick 
vector and the last attempt is accomplished with the 
formation of a local SURF-Haralick vector which is 
created by the areas of interest (30x30 pixel area is 
chosen) detected by the fast Hessian Detector. 
Reliability of experiments results is established by a 
10-fold cross validation scheme. Accuracy, recall, 
precision and specificity are utilized as evaluation 
metrics for binary and multiclass classification. In 
multiclass classification, a one versus all classifier is 
assumed in order to report macro-averaging binary 
precision, recall and specificity metrics, meaning that 
the average value of the metrics of each individual 
class is calculated. Thanks to the utilization of the 
visual vocabulary in conjunction with a plain ‘vanilla’ 
neural network, the required hardware is limited to a 
PC equipped with an Intel i5 processor that runs at 
1.8GHz and an 8GB RAM. The classification is 
performed in two different scenarios, the first for two 
classes (benign /malignant) and the second for five 
classes (AK/ SK/ NEVUS/ BCC/ LM_MM).  
Classification results for the two scenarios are 
presented in Table 2. The five classes scenario for the 
Global Haralick implementation is not presented due 
to its low performance. In Table 3 error results for 
predicting the skin condition in the two classes 
scenario are presented. Each column refers to the 
feature extraction method. 
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Table 2: (A)ccuracy, (S)ensitivity, (P)recision, (Sp)ecificity 
of classification results of the dataset in two and five 
classes. 

Classification Task 
Various 

Implementations Two Classes Five Classes 

SURF BOVW 

A:0,90 
S:0,82 
P:0,92 

Sp:0,95 

A:0,82 
S:0,80 
P:081 
Sp:0,95

Global Haralick 

A:0,74 
S:0,76 
P:0,43 

Sp:0,91 

A:0,61 
S:0,30 
P:059 

Sp:0,88 

SURF BOVW+ 
Global Haralick 

A:0,92 
S:0,86 
P:0.95 

Sp:0,97 

A:0,84 
S:0,79 
P:0,81 
Sp:0,96

SURF+ Local 
Haralick BOVW 

A:0,91 
S:0,84 
P:0.92 

Sp:0,95 

A:0,80 
S:0,77 
P:0,80 
Sp:0,96

SURF BOVW+ 
Global Haralick 
(Without data 
augmentation) 

A: 086 
S:0,81 
P:0,82 

Sp:0,94 

A:0,80 
S:0,75 
P:0,90 
Sp:0,91

Table 3: Error for skin condition prediction according to 
different feature extraction method for the two classes 
scenario. 

Error  

Skin Condition SURF SURF 
+Haralick

BCC 0,18 0,13
Nevus 0,10 0,18 

SK 0,07 0,32
AK 0,2 0,07

Spitz 0,08 0,03
S. Lentigo 0.02 0,02

Acral Nevus 0,94 0,01

5 CONCLUSIONS AND FUTURE 
WORK 

Results after data augmentation (SURF BOVW) are 
satisfying and improve the accuracy up to 4% in 
reference with the implementation which utilizes the 
initial dataset. Nevertheless, image classification 
accuracy with the combination of local SURF and 
global Haralick features is further improved to reach 
92.6% (2.5% improvement). The enhancement of the 
original SURF vector with Haralick features reduces 
the classification error concerning AK samples to half 
but demonstrates the opposite effect for BCC 

samples. The contribution of the proposed 
methodology beyond the high precision of 
classification into two classes concerns the fact that 
the training of the predictive model is achieved with 
a small number of samples and without the use of 
increased computer resources (e.g. GPU graphics 
card). The classification results of the three 
implementations (namely SURF BOVW, SURF 
BOVW+ Global Haralick, SURF + Local Haralick 
BOVW) demonstrate that the proposed approach can 
exceed more complex implementations based on deep 
neural networks. Despite of the positive feedback 
provided by the initial results, further and thorough 
investigation should be directed towards the relations 
between visual words and the transformation of 
simple information to knowledge concerning the role 
of each visual pattern in determining the prediction. 
Moreover, the combination of vectors deriving from 
different processes (SURF/Haralick) is an area where 
future work can shed light by the utilization of 
modern data fusion techniques. 
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