
Comparative Evaluation of Kernel Bypass Mechanisms for
High-performance Inter-container Communications

Gabriele Ara1 a, Tommaso Cucinotta1 b, Luca Abeni1 c and Carlo Vitucci2
1Scuola Superiore Sant’Anna, Pisa, Italy

2Ericsson, Stockholm, Sweden

Keywords: Kernel Bypass, DPDK, NFV, Containers, Cloud Computing.

Abstract: This work presents a framework for evaluating the performance of various virtual switching solutions, each
widely adopted on Linux to provide virtual network connectivity to containers in high-performance scenarios,
like in Network Function Virtualization (NFV). We present results from the use of this framework for the
quantitative comparison of the performance of software-based and hardware-accelerated virtual switches on a
real platform with respect to a number of key metrics, namely network throughput, latency and scalability.

1 INTRODUCTION

As an emerging technology and business paradigm,
cloud computing has seen a stable growth in the past
few years, becoming one of the most interesting ap-
proaches to high-performance computing. Thanks to
the high flexibility of these platforms, more applica-
tions get redesigned every day to follow distributed
computing models.

Recently, network operators started replacing tra-
ditional physical network infrastructures with more
flexible cloud-based systems, which can be dynami-
cally instantiated on demand to provide the required
level of service performance when needed. In this
context, the paradigm represented by Network Func-
tion Virtualization (NFV) aims to replace most of
the highly specialized hardware appliances that tradi-
tionally would be used to build a network infrastruc-
ture with software-based Virtualized Network Func-
tions (VNFs). These are equivalent implementations
of the same services provided in software, often en-
riched with the typical elasticity of cloud applications,
i.e., the ability to scale out and back in the service
as needed. This brings new flexibility in physical
resources management and allows the realization of
more dynamic networking infrastructures.

Given the nature of the services usually deployed
in NFV infrastructures, these systems must be charac-

a https://orcid.org/0000-0001-5663-4713
b https://orcid.org/0000-0002-0362-0657
c https://orcid.org/0000-0002-7080-9601

terized by high performance both in terms of through-
put and latency among VNFs. Maintaining low
communication overheads among interacting soft-
ware components has become a critical issue for these
systems. Requirements of NFV applications are so
tight that the industry has already shifted its focus
from traditional Virtual Machines (VMs) to Operat-
ing System (OS) containers to deploy VNFs, given
the reduced overheads characterizing container solu-
tions like LXC or Docker, that exhibit basically the
same performance as bare-metal deployments (Felter
et al., 2015; Barik et al., 2016).

Given the superior performance provided by con-
tainers when used to encapsulate VNFs, primary re-
search focus is now into further reducing communi-
cation overheads by adopting user-space networking
techniques, in combination with OS containers, to by-
pass the kernel when exchanging data among contain-
ers on the same or multiple hosts. These techniques
are generally indicated as kernel bypass mechanisms.

1.1 Contributions

In this work, we propose a novel benchmarking
framework that can be used to compare the perfor-
mance of various networking solutions that leverage
kernel bypass to exchange packets among VNFs de-
ployed on a private cloud infrastructure using OS con-
tainers. Among the available solutions, this work fo-
cuses on the comparison of virtual switches based on
the Data Plane Development Kit (DPDK) framework.
This occupies a prominent position in industry and it

44
Ara, G., Cucinotta, T., Abeni, L. and Vitucci, C.
Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications.
DOI: 10.5220/0009321200440055
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 44-55
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



can be used to efficiently exchange packets locally on
a single machine or among multiple hosts accessing
Network Interface Controller (NIC) adapters directly
from the user-space bypassing the OS kernel. We
present results from a number of experiments compar-
ing the performance of these virtual switches (either
software-based or hardware-accelerated) when sub-
ject to synthetic workloads that resemble the behavior
of real interacting VNF components.

2 BACKGROUND

There are a number of different options when multi-
ple applications, each encapsulated in its own OS con-
tainer or other virtualized environment, need to com-
municate through network primitives. Usually, they
involve some form of network virtualization to pro-
vide each application a set of gateways to exchange
data over a virtual network infrastructure.

For the purposes of this work, we will fo-
cus on the following: (i) kernel-based networking,
(ii) software-based user-space networking, (iii) hard-
ware-accelerated user-space networking.

In the following, we briefly summarize the main
characteristics of each of these techniques when
adopted in NFV scenarios to interconnect OS con-
tainers within a private cloud infrastructure. Given
the demanding requirements of NFV applications in
terms of performance, both with respect to throughput
and latency, we will focus on the performance that can
be attained when adopting each solution on general-
purpose computing machines running a Linux OS.

2.1 Containers Networking through the
Linux Kernel

A first way to interconnect OS containers is to place
virtual Ethernet ports as gateways in each container
and to connect them all to a virtual switch embed-
ded within the Linux kernel, called “linux-bridge”.
Through this switch, VNFs can communicate on the
same host with other containerized VNFs or with
other hosts via forwarding through actual Ethernet
ports present on the machine, as shown in Figure 1a.

The virtual ports assigned to each container are
implemented in the Linux kernel as well and they em-
ulate the behavior of actual Ethernet ports. They can
be accessed via blocking or nonblocking system calls,
for example using the traditional POSIX Socket API,
exchanging packets via send() and recv() (or their
more general forms sendmsg() and recvmsg()); as
a result, at least two system calls are required to ex-
change each UDP datagram over the virtual network,

therefore networking overheads grow proportionally
with the number of packets exchanged.

These overheads can be partially amortized re-
sorting to batch APIs to exchange multiple pack-
ets using a single system call (either sendmmsg() or
recvmmsg()), grouping packets in bursts, amortiz-
ing the cost of each system call over the packets in
each burst. However, packets still need to traverse the
whole in-kernel networking stack, going through ad-
ditional data copies, to be sent or received.

This last problem can be tackled bypassing par-
tially the kernel networking stack using raw sock-
ets instead of regular UDP sockets and implementing
data encapsulation in user-space. This is often done
in combination with zero-copy APIs and memory-
mapped I/O to transfer data quickly between the ap-
plication and the virtual Ethernet port, greatly reduc-
ing the time needed to send a packet (Rizzo, 2012b).

Despite the various techniques available to reduce
the impact of the kernel on network performance,
their use is often not sufficient to match the demand-
ing requirements of typical NFV applications (Ara
et al., 2019). In typical scenarios, the only solution
to these problems is to resort to techniques that can
bypass completely the kernel when exchanging pack-
ets both locally and between multiple hosts.

2.2 Inter-container Communications
with Kernel Bypass

Significant performance improvements for inter-
container networking can be achieved by avoiding
system calls, context switches and unneeded data
copies as much as possible. Various I/O frame-
works undertake such an approach, recurring to ker-
nel bypassing techniques to exchange batches of raw
Ethernet frames among applications without a sin-
gle system call. For example, frameworks based on
the virtio standard (Russell et al., 2015) use para-
virtualized network interfaces that rely on shared
memory to achieve high-performance communication
among containers located on the same host, a situa-
tion which is fairly common in NFV scenarios. While
virtio network devices are typically implemented for
hypervisors (e.g. QEMU, KVM), recently a complete
user-space implementation of the virtio specification
called vhost-user can be used for OS containers to
completely bypass the kernel. However, virtio cannot
be used to access the physical network without any
user-space implementation of a virtual switch. This
means that it cannot be used alone to achieve both dy-
namic and flexible communications among indepen-
dently deployed containers.

Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications

45



Host
Container 1

Application

Linux Bridge

NIC

User Space

Kernel Space

Container 2

Application

VETH PORT

VETH PORT

VETH PORT

VETH PORT

(a) Kernel-based solution.

Host

User Space Virtual Switch

Container 1

Application

NIC

User Space

Kernel Space

VIRTIO

Container 2

Application

VHOST-USER

VIRTIO

VHOST-USER

(b) Using DPDK with vhost-user.

Host

NIC

Container 1

Application

Hardware Switch

User Space

Kernel Space

VF

Container 2

Application

VF

VF

VF

(c) Using SR-IOV support.

Figure 1: Different approaches to inter-container networking.

2.2.1 Data Plane Development Kit (DPDK)

Data Plane Development Kit (DPDK)1 is an open
source framework for fast packet processing imple-
mented entirely in user-space and characterized by a
high portability across multiple platforms. Initially
developed by Intel, it now provides a high-level pro-
gramming abstraction that applications can use to
gain access to low-level resources in user-space with-
out depending on specific hardware devices.

In addition, DPDK supports virtio-based network-
ing via its implementation of vhost-user interfaces.
Applications can hence exchange data efficiently us-
ing DPDK to communicate locally using vhost-user
ports and remotely via DPDK user-space implemen-
tations of actual Ethernet device drivers: the frame-
work will simply initialize the specified ports accord-
ingly in complete transparency from the application
point of view. For this reason, DPDK has become ex-
tremely popular over the past few years when it is nec-
essary to implement fast data plane packet processing.

2.3 High-performance Switching among
Containers

After having described virtio in Section 2.2, now we
can explain better how virtio, in combination with
other tools, can be used to realize a virtual network-
ing infrastructure in user-space. There are essentially
two ways to achieve this goal: 1) by assigning each
container a virtio port, using vhost-user to bypass the
kernel, and then connect each port to a virtual switch
application running on the host (Figure 1b); 2) by
leveraging special capabilities of certain NIC devices
that allow concurrent access from multiple applica-
tions and that can be accessed in user-space by us-
ing DPDK drivers (Figure 1c). The virtual switch in-
stance, either software or hardware, is then connected

1https://www.dpdk.org/

to the physical network via the actual NIC interface
present on the host.

Many software implementations of L2/L3
switches are based on DPDK or other kernel bypass
frameworks, each implementing their own packet
processing logic responsible for packet forward-
ing. For this reason, performance among various
implementation may differ greatly from one imple-
mentation to another. In addition, these switches
consume a non-negligible amount of processing
power on the host they are deployed onto, to achieve
very high network performance. On the other hand,
special NIC devices that support the Single-Root I/O
Virtualization (SR-IOV) specification allow traffic
offloading to the hardware switch implementation
that they embed, which applications can access
concurrently without interfering with each other.

Below, we briefly describe the most common soft-
ware virtual switches in the NFV industrial practice,
and the characteristics of SR-IOV compliant devices.

DPDK Basic Forwarding Sample Application2 is a
sample application provided by DPDK that can be
used to connect DPDK-compatible ports, either vir-
tual or physical, in pairs: this means that each appli-
cation using a given port can only exchange packets
with a corresponding port chosen during system ini-
tialization. For this reason, this software does not per-
form any packet processing operation, hence it cannot
be used in real use-case scenarios.

Open vSwitch (OVS)3 is an open source virtual
switch for general-purpose usage with enhanced flex-
ibility thanks to its compatibility with the OpenFlow
protocol (Pfaff et al., 2015). Recently, Open vSwitch
(OVS) has been updated to support DPDK and virtio-
based ports, which accelerated considerably packet
forwarding operations by performing them in user-
space rather than within a kernel module (Intel, 2015).

2https://doc.dpdk.org/guides/sample_app_ug/skeleton.html
3https://www.openvswitch.org

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

46



FD.io Vector Packet Processing (VPP)4 is an ex-
tensible framework for virtual switching released
by the Linux Foundation Fast Data Project (FD.io).
Since it is developed on top of DPDK, it can run on
various architectures and it can be deployed in VMs,
containers or bare metal environments. It uses Cisco
Vector Packet Processing (VPP) that processes pack-
ets in batches, improving the performance thanks to
the better exploitation of instruction and data cache
locality (Barach et al., 2018).

Snabb5 is a packet processing framework that can
be used to provide networking functionality in user-
space. It allows for programming arbitrary packet
processing flows (Paolino et al., 2015) by connecting
functional blocks in a Directed Acyclic Graph (DAG).
While not being based on DPDK, it has its own im-
plementation of virtio and some NIC drivers in user-
space, which can be included in the DAG.

Single-Root I/O Virtualization (SR-IOV) (Dong
et al., 2012) is a specification that allows a single
NIC device to appear as multiple PCIe devices, called
Virtual Functions (VFs), that can be independently
assigned to VMs or containers and move data
through dedicated buffers within the device. VMs
and containers can directly access dedicated VFs
and leverage the L2 hardware switch embedded in
the NIC for either local or remote communications
(Figure 1c). Using DPDK APIs, applications within
containers can access the dedicated VFs bypassing
the Linux kernel, removing the need of any software
switch running on the host; however, a DPDK
daemon is needed on the host to manage the VFs.

3 RELATED WORK

The proliferation of different technologies to ex-
change packets among containers has created the need
for new tools to evaluate the performance of virtual
switching solutions with respect to throughput, la-
tency and scalability. Various works in the research
literature addressed the problem of network perfor-
mance optimization for VMs and containers.

A recent work compared various kernel bypass
frameworks like DPDK and Remote Direct Mem-
ory Access (RDMA)6 against traditional sockets, fo-
cusing on the round-trip latency measured between
two directly connected hosts (Géhberger et al., 2018).
This work showed that both DPDK and RDMA out-
perform POSIX UDP sockets, as only with kernel by-

4https://fd.io/
5https://github.com/snabbco/snabb
6http://www.rdmaconsortium.org

pass mechanisms it is possible to achieve single-digit
microsecond latency, with the only drawback that ap-
plications must continuously poll the physical devices
for incoming packets, leading to high CPU utilization.

Another work (Lettieri et al., 2017) compared
both qualitatively and quantitatively common high-
performance networking setups. It measured CPU
utilization and throughput achievable using either
SR-IOV, Snabb, OVS and Netmap (Rizzo, 2012b),
which is another networking framework for high-
performance I/O. Their focus was on VM to VM com-
munications, either on a single host or between mul-
tiple hosts, and they concluded that in their setups
Netmap is capable of reaching up to 27 Mpps (when
running on a 4 GHz CPU), outperforming SR-IOV
due to the limited hardware switch bandwidth.

Another similar comparison of various kernel by-
pass technologies (Gallenmüller et al., 2015) eval-
uates throughput performance of three networking
frameworks: DPDK, Netmap and PF_RING7. They
concluded that for each of these solutions there are
two major bottlenecks that can potentially limit net-
working performance: CPU capacity and NIC maxi-
mum transfer rate. Among them, the latter is the dom-
inating bottleneck when per-packet processing cost is
kept low, while the former has a bigger impact as
soon as this cost increases and the CPU becomes fully
loaded. Their evaluations also showed that DPDK
is able to achieve the highest throughput in terms of
packets per second, independently from the burst size;
on the contrary, Netmap can reach its highest through-
put only for a burst size greater than 128 packets per
burst, and even then it cannot reach the same perfor-
mance of DPDK or PF_RING.

The scalability of various virtual switching solu-
tions with respect to the number of VMs deployed
on the same host has been addressed in another re-
cent work (Pitaev et al., 2018), in which VPP and
OVS have been compared against SR-IOV. From their
evaluations, they concluded that SR-IOV can sustain
a greater number of VMs with respect to software-
based solutions, since the total throughput of the sys-
tem scales almost linearly with the number of VMs.
On the contrary, both OVS and VPP are only able
to scale the total throughput up to a certain plateau,
which is influenced by the amount of allocated CPU
resources: the more VMs are added, the more the sys-
tem performance degrades if no more resources are
allocated for the each software virtual switch.

Finally, a preliminary work (Ara et al., 2019) was
presented by the authors of this paper, performing a
basic comparison of various virtual switching techni-
ques for inter-container communications. That evalu-

7https://www.ntop.org/products/packet-capture/pf_ring/

Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications

47



Benchmarking Applications Stack

DPDK

Apps

Sender Receiver Client Server

POSIX API

DPDK Environment

Abstraction Library

DPDK

VIRTIO

Driver

DPDK

Device

Drivers

Linux Kernel

Networking Stack

Linux NIC Device Drivers

Hardware

User Space

Kernel Space

Logging Data Generation / ConsumptionAPI Abstraction

Software Tools

System 

Setup 

Tools

Deployment 

Tools

Post-

Processing 

Tools

Test 

Setup 

Tools

Fast Networking 

Frameworks

OVS VPP

Snabb

DPDK Basic 

Forwarding Application

Figure 2: Main elements of the proposed framework.

ation however was limited to only a single transmis-
sion flow between a sender and a receiver applica-
tion deployed on the same machine, for which SR-
IOV was the most suitable among the tested solutions.
This work extends that preliminary study to a much
broader number of test cases and working conditions,
on either one or multiple machines, and presents a
new set of tools that can be used to conveniently re-
peat the experiments in other scenarios.

Compared to the above mentioned works, in this
paper we present for the first time an open-source
framework that can be used to evaluate the perfor-
mance of various widely adopted switching solutions
among Linux containers in the common NFV indus-
trial practice. This framework can be used to carry out
experiments from multiple points of view, depending
on the investigation focus, while varying testing pa-
rameters and the system configuration. The proposed
framework eases the task of evaluating the perfor-
mance of a system under some desired working con-
ditions. With this framework, we evaluated system
performance in a variety of application scenarios, by
deploying sender/receiver and client/server applica-
tions on one or multiple hosts. This way we were able
to draw some general conclusions about the charac-
teristics of multiple networking solutions when vary-
ing the evaluation point of view, either throughput,
latency or scalability of the system. As being open-
source, the framework can be conveniently extended
by researchers or practicioners, should they need to
write further customized testing applications.

4 PROPOSED FRAMEWORK

In this section we present the framework we realized
to evaluate and compare the performance of different
virtual networking solutions, focusing on Linux con-
tainers. The framework we developed can be easily
installed and configured on one or multiple general-
purpose servers to instantiate a number of OS contain-

ers and deploy in each of them a selected application
that generates or consumes synthetic network traf-
fic. These applications, also developed for this frame-
work, serve the dual purpose to generate/consume
network traffic and to collect statistics to evaluate sys-
tem performance in the given configuration.

In particular, this framework can be used to con-
figure a number of tests, each running for a specific
amount of time with a given system configuration;
after each test is done, the framework collects per-
formance results from each running application and
provides the desired statistics to the user. In addi-
tion, multiple tests can be performed consecutively by
specifying multiple values for any test parameter.

The software is freely available on GitHub, under
a GPLv3 license, at: https://github.com/gabrieleara/
nfv-testperf . The architecture of the framework is de-
picted in Figure 2, which highlights the various tools
it includes. First there are a number of software tools
and Bash scripts that are used to install system de-
pendencies, configure and customize installation, run
performance tests and collect their results. Among
the dependencies installed by the framework there are
the DPDK framework (which includes also the Ba-
sic Forwarding Sample Application), and the other
software-based virtual switches that will be used dur-
ing testing to connect applications in LXC contain-
ers: OVS (compiled with DPDK support), VPP, and
Snabb (configured as a simple learning switch). Each
virtual switch is configured to act as a simple learning
L2 switch, with the only exception represented by the
DPDK Basic Forwarding Sample Application, which
does not have this functionality. In addition, VPP and
OVS can be connected to physical Ethernet ports to
perform tests for inter-machine communications.

Finally, a set of benchmarking applications are in-
cluded in the framework, serving the dual purpose to
generate/consume network traffic and to collect statis-
tics that can be used to evaluate the actual system per-
formance in the provided configuration. These can
measure the performance from various view points:

Throughput. As many VNFs deal with huge
amounts of packets per second, it is important to eval-
uate the maximum performance of each networking
solution with respect to either the number of pack-
ets or the amount of data per second that it is able to
effectively process and deliver to destination. To do
this, the sender/receiver application pair is provided
to generate/consume unidirectional traffic (from the
sender to the receiver) according to the given param-
eters.

Latency. Many VNFs operate with networking pro-
tocols designed for hardware implementations of cer-
tain network functions; for this reason, these proto-

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

48



cols expect very low round-trip latency between in-
teracting components, in the order of single-digit mi-
crosecond latency. In addition, in NFV infrastruc-
tures it is crucial to keep the latency of individual
interactions as little as possible to reduce the end-to-
end latency between components across long service
chains. For this purpose, the client/server application
pair is used to generate bidirectional traffic to eval-
uate the average round-trip latency for each packet
when multiple packets are sent and received in bursts
through a certain virtual switch. To do so, the server
application will send back each packet it receives to
its corresponding client.

Scalability. Evaluations from this point of view are
orthogonal with respect of the two previous dimen-
sions, in particular with respect to throughput: since
full utilization of a system is achieved only when
multiple VNFs are deployed on each host that is
present within infrastructure, it is extremely important
to evaluate how this affects performance in the men-
tioned dimensions. For this purpose there are no ded-
icated applications: multiple instances of each des-
ignated application can be deployed concurrently to
evaluate how that affects global system performance.

The benchmarking applications are implemented
in C and they are built over a custom API that masks
the differences between POSIX and DPDK; this way,
they can be used to evaluate system performance us-
ing linux-bridge or other virtual switches that bypass
the kernel to exchange data. When POSIX APIs are
used to exchange packets, raw sockets can also be
used rather than of regular UDP sockets to bypass
partially the Linux networking stack, building Ether-
net, IP and UDP packet headers in user-space. The
traffic generated/consumed by these applications can
be configured varying a set of parameters that include
the sending rate, packet size, burst size, etc. To maxi-
mize application performance, packets are always ex-
changed using polling and measurements of elapsed
time are performed by checking the TSC register in-
stead of less precise timers provided by Linux APIs.

During each test, each application is deployed
within a LXC container on one or multiple hosts and
it is automatically connected to the other designated
application in the pair. The Linux distribution that
is used to realize each container is based on a sim-
ple rootfs built from a basic BusyBox and it con-
tains only the necessary resources to run the bench-
marking applications. The framework then takes care
of all the setup necessary to interconnect these ap-
plications with the desired networking technology.
The latter may be any among linux-bridge, another
software-based virtual switch (using virtio and vhost-
user ports) or a SR-IOV Ethernet adapter; each sce-

nario is depicted in Figure 1. In any case, deployed
applications use polling to exchange network traffic
over the selected ports. For tests involving multiple
hosts, only OVS or VPP can be used among software-
based virtual switches to interconnect the benchmark-
ing applications; otherwise, it is possible to assign to
each container a dedicated VF and leverage the em-
bedded hardware switch in the SR-IOV network card
to forward traffic from one host to another.

The proposed framework can be easily extended
to include more virtual switching solutions among
containerized applications or to develop different test-
ing applications that generate/consume other types
of synthetic workload. From this perspective, the
inclusion of other virtio-based virtual switches is
straightforward, and it does not require any modifi-
cation of the existing test applications. In contrast,
other networking frameworks that rely on custom port
types/programming paradigms (e.g., Netmap) may re-
quire the extension of the API abstraction layer or
the inclusion of other custom test applications. Fur-
ther details about the framework’s extensibility can be
found at https://github.com/gabrieleara/nfv-testperf/
wiki/Extending .

5 EXPERIMENTAL RESULTS

To test the functionality of the proposed framework,
we performed a set of experiments in a synthetic use-
case scenario, comparing various virtual switches.

Experiments were performed on two similar hosts:
the first has been used for all local inter-container
communications tests, while both hosts have been
used for multi-host communication tests (using con-
tainers as well). The two hosts are two Dell Pow-
erEdge R630 V4 servers, each equipped with two
Intel® Xeon® E5-2640 v4 CPUs at 2.40 GHz, 64 GB
of RAM, and an Intel® X710 DA2 Ethernet Controller
for 10 GbE SFP+ (used in SR-IOV experiments and
multi-host scenarios). The two Ethernet controllers
have been connected directly with a 10 Gigabit Eth-
ernet cable. Both hosts are configured with Ubuntu
18.04.3 LTS, Linux kernel version 4.15.0-54, DPDK
version 19.05, OVS version 2.11.1, Snabb version
2019.01, and VPP version 19.08. To maximize re-
sults reproducibility, the framework carries out each
test disabling CPU frequency scaling (governor set
to performance and Turbo Boost disabled) and it has
been configured to avoid using hyperthreads to deploy
each testing application.

Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications

49



Table 1: List of parameters used to run performance tests
with the framework.

Parameter Symbol Values

Test Dimension D throughput or latency

Hosts Used L local or remote
(i.e. single or multi-host)

Containers Set S NvsN (where N is the
number of pairs)

Virtual Switch V linux-bridge, basic f wd,
ovs,snabb, sriov, vpp

Packet Size P Expressed in bytes
Sending Rate R Expressed in pps
Burst Size B Expressed in number of

packets per burst

5.1 Testing Parameters

The framework can be configured to vary certain pa-
rameters before running each test. Each configura-
tion is represented by a set of applications (each run-
ning within a container), deployed either on one or
both hosts and grouped in pairs (i.e. sender/receiver or
client/server) and a set of parameters that specify the
synthetic traffic to be generated. Given the number of
evaluated test cases, for each different perspective we
will show only relevant results.

To identify each test, we use the notation shown in
Table 1: each test is uniquely identified using a tuple
in following form:

(D, L, S, V, P, R, B)

When multiple tests are referred, the notation will
omit those parameters that are free to vary within a
predefined set of values. For example, to show some
tests performed while varying the sending rate the R
parameter will not be included in the tuple.

Each test uses only a fixed set of parameters and
runs for 1 minute; once the test is finished, an aver-
age value of the desired metric (either throughput or
latency) is obtained after discarding values related to
initial warm-up and shutdown phases, thus consider-
ing only values related to steady state conditions of
the system. The scenarios that we considered in our
experiments are summarized in Figure 3.

5.2 Kernel-based Networking

First we will show that performance achieved with-
out using kernel bypass techniques are much worse
than the ones achieved using techniques like vhost-
user in similar set-ups. Table 2 reports the maximum
throughput achieved using socket APIs and linux-
bridge to interconnect a pair of sender and receiver
applications on a single host (Figure 3a). In this sce-
nario, it is not possible to reach even 1 Mpps using

Table 2: Maximum throughput achieved for various socket-
based solutions: (D = throughput, L = local, S = 1vs1,
V = linux-bridge, P = 64, R = 1M, B = 64).

Technique
Max

Throughput
(kpps)

UDP sockets using send/recv 338
UDP sockets using
sendmmsg/recvmmsg 409
Raw sockets using send/recv 360
Raw sockets using
sendmmsg/recvmmsg 440

kernel-based techniques, while using DPDK any vir-
tual switch can easily support at least 2 Mpps in simi-
lar set-ups. That is why all the results that will follow
will consider kernel bypass technologies only.

5.3 Throughput Evaluations

Moving on to techniques that use DPDK, we first
evaluated throughput performance between two ap-
plications in a single pair, deployed both on the same
host or on multiple hosts, varying desired sending
rate, packet and burst sizes. In all our experiments,
we noticed that varying the burst size from 32 to
256 packets per burst did not affect throughput per-
formance, thus we will always refer to the case of
32 packets per burst in further reasoning.

5.3.1 Single Host

We first deployed a single pair of sender/receiver ap-
plications on a single host (Figure 3a), varying the
sending rate from 1 to 20 Mpps and the packet size
from 64 to 1500 bytes:

(D = throughput, L = local, S = 1vs1)

In all our tests, each virtual switch achieves the de-
sired throughput up to a certain maximum value, after
which the virtual switch has saturated his capabilities,
as shown in Figure 4a. This maximum throughput de-
pends on the size of the packets exchanged through
the virtual switch, thus from now on we will consider
only the maximum achievable throughput for each
virtual switch while varying the size of each packet.

Figures 4b and 4c show the maximum receiving
rates achieved in all our tests that employed only two
containers on a single host, expressed in Mpps and
in Gbps respectively. In each plot, the achieved rate
(Y axis) is expressed as function of the size of each
packet (X axis), for which a logarithmic scale has
been used.

From both figures it is clear that maximum per-
formance are attained by offloading network traffic

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

50



Host

Container 1

Sender

Container 2

Receiver
Switch

Single Pair Local Throughput Tests

Host

Switch

Container 5

Sender /

Client

Container 6

Receiver / 

Server

Container 3

Sender /

Client

Container 4

Receiver / 

Server

Container 1

Sender

Container 2

Receiver

Multiple Pairs Local Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver

Single Pair Remote Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver / 

Server

Container 1

Sender

Container 1

Sender

Container 2

Receiver / 

Server

Container 2

Receiver

Multiple Pairs Remote Throughput 
Tests

Host

Container 1

Client

Container 2

ServerSwitch

Local Latency Tests

Host BHost A

Switch Switch

Container 1

Client

Container 2

Server

Remote Latency Tests

(a)

Host

Container 1

Sender

Container 2

Receiver
Switch

Single Pair Local Throughput Tests

Host

Switch

Container 5

Sender /

Client

Container 6

Receiver / 

Server

Container 3

Sender /

Client

Container 4

Receiver / 

Server

Container 1

Sender

Container 2

Receiver

Multiple Pairs Local Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver

Single Pair Remote Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver / 

Server

Container 1

Sender

Container 1

Sender

Container 2

Receiver / 

Server

Container 2

Receiver

Multiple Pairs Remote Throughput 
Tests

Host

Container 1

Client

Container 2

ServerSwitch

Local Latency Tests

Host BHost A

Switch Switch

Container 1

Client

Container 2

Server

Remote Latency Tests

(b)

Host

Container 1

Sender

Container 2

Receiver
Switch

Single Pair Local Throughput Tests

Host

Switch

Container 5

Sender /

Client

Container 6

Receiver / 

Server

Container 3

Sender /

Client

Container 4

Receiver / 

Server

Container 1

Sender

Container 2

Receiver

Multiple Pairs Local Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver

Single Pair Remote Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver / 

Server

Container 1

Sender

Container 1

Sender

Container 2

Receiver / 

Server

Container 2

Receiver

Multiple Pairs Remote Throughput 
Tests

Host

Container 1

Client

Container 2

ServerSwitch

Local Latency Tests

Host BHost A

Switch Switch

Container 1

Client

Container 2

Server

Remote Latency Tests

(c)

Host

Container 1

Sender

Container 2

Receiver
Switch

Single Pair Local Throughput Tests

Host

Switch

Container 5

Sender /

Client

Container 6

Receiver / 

Server

Container 3

Sender /

Client

Container 4

Receiver / 

Server

Container 1

Sender

Container 2

Receiver

Multiple Pairs Local Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver

Single Pair Remote Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver / 

Server

Container 1

Sender

Container 1

Sender

Container 2

Receiver / 

Server

Container 2

Receiver

Multiple Pairs Remote Throughput 
Tests

Host

Container 1

Client

Container 2

ServerSwitch

Local Latency Tests

Host BHost A

Switch Switch

Container 1

Client

Container 2

Server

Remote Latency Tests

(d)

Host

Container 1

Sender

Container 2

Receiver
Switch

Single Pair Local Throughput Tests

Host

Switch

Container 5

Sender /

Client

Container 6

Receiver / 

Server

Container 3

Sender /

Client

Container 4

Receiver / 

Server

Container 1

Sender

Container 2

Receiver

Multiple Pairs Local Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver

Single Pair Remote Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver / 

Server

Container 1

Sender

Container 1

Sender

Container 2

Receiver / 

Server

Container 2

Receiver

Multiple Pairs Remote Throughput 
Tests

Host

Container 1

Client

Container 2

ServerSwitch

Local Latency Tests

Host BHost A

Switch Switch

Container 1

Client

Container 2

Server

Remote Latency Tests

(e)

Host

Container 1

Sender

Container 2

Receiver
Switch

Single Pair Local Throughput Tests

Host

Switch

Container 5

Sender /

Client

Container 6

Receiver / 

Server

Container 3

Sender /

Client

Container 4

Receiver / 

Server

Container 1

Sender

Container 2

Receiver

Multiple Pairs Local Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver

Single Pair Remote Throughput 
Tests

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver / 

Server

Container 1

Sender

Container 1

Sender

Container 2

Receiver / 

Server

Container 2

Receiver

Multiple Pairs Remote Throughput 
Tests

Host

Container 1

Client

Container 2

ServerSwitch

Local Latency Tests

Host BHost A

Switch Switch

Container 1

Client

Container 2

Server

Remote Latency Tests

(f)

Figure 3: Different testing scenarios used for our evaluations. In particular, (a), (b), and (c) refer to single-host scenarios,
while (d), (e), and (f) to scenarios that consider multiple hosts.

to the SR-IOV device, exploiting its embedded hard-
ware switch. Second best ranked the Basic Forward-
ing Sample Application, which was expected since it
does not implement any actual switching logic. The
very small performance gap between VPP and the
latter solution is also a clear indicator that the batch
packet processing features included in VPP can dis-
tribute packet processing overhead effectively among
incoming packets. Finally, OVS and Snabb follow.
Comparing these performance with other evaluations
present in literature (Ara et al., 2019), we were able to
conclude that the major bottleneck for Snabb is repre-
sented by its internal L2 switching component.

In addition, notice that while the maximum
throughput in terms of Mpps is achieved with the
smallest of the packet sizes (64 bytes), the maximum
throughput in terms of Gbps is actually achieved for
the biggest packet size (1500 bytes). In fact, through-
put in terms of Gbps is characterized by a logarithmic
growth related to the increase of the packet size, as
shown in Figure 4c.

From these plots we derived that for software
switches the efficiency of each implementation im-
pacts performance only for smaller packet sizes,
while for bigger packets the major limitation becomes
the ability of the software to actually move pack-
ets from one CPU core to another, which is equiva-
lent for any software implementation. Given also the
slightly superior performance achieved by SR-IOV,
especially for smaller packet sizes, we also concluded
that its hardware switch is more efficient at moving
large number of packets between CPU cores than the
software implementations that we tested.

5.3.2 Multiple Hosts

We repeated these evaluations deploying the receiver
application on a separate host (Figure 3d), using the

only virtual switches able to forward traffic between
multiple hosts8:

(D = throughput, L = remote, S = 1vs1,
V ∈ {ovs,sriov,vpp})

Figure 4d shows the maximum receiving rates
achieved for a burst size of 32 packets. In this sce-
nario, results depend on the size of the exchanged
packets: for smaller packet sizes the dominating bot-
tleneck is still represented by the CPU for OVS and
VPP, while for bigger packets the Ethernet standard
limits the total throughput achievable by any virtual
switch to only 10 Gbps. From these results we con-
cluded that when the expected traffic is characterized
by relatively small packet sizes (up to 256 bytes) de-
ploying a component on a directly connected host
does not impact negatively system performance when
OVS or VPP are used. In addition, we noticed that
in this scenario there is no clear best virtual switch
with respect to the others: while for smaller packet
sizes SR-IOV is more efficient, both OVS and VPP
perform better for bigger ones.

5.4 Throughput Scalability

To test how throughput performance scale when the
number of applications on the system increases, we
repeated all our evaluations deploying multiple appli-
cation pairs on the same host (Figure 3b):

(D = throughput, L = local, S ∈ {1vs1,2vs2,4vs4})
Figures 4e and 4f show the relationship between

the maximum total throughput of the system achiev-
able and the number of pairs deployed simultane-
ously, for packets of 64 and 1500 bytes respectively.
8The Basic Forwarding Sample Application does not imple-
ment any switching logic, while Snabb was not compatible
with our selected SR-IOV Ethernet controller.

Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications

51



basicfwd ovs snabb sriov vpp

1 5 10 15 20
0

6

12

18

Tentative Sending Rate [Mpps]

A
ct

ua
lR

ec
ei

vi
ng

R
at

e
[M

pp
s]

(a) (D = throughput, L = local, S = 1vs1, B = 32,
P = 64)

64 128 256 512 1024 1500
0

6

12

18

Packet Size [bytes]

M
ax

T
hr

ou
gh

pu
t[

M
pp

s]

(b) (D = throughput, L = local, S = 1vs1, B = 32)

64 128 256 512 1024 1500
0

6

12

18

Packet Size [bytes]

M
ax

T
hr

ou
gh

pu
t[

G
bp

s]

(c) (D = throughput, L = local, S = 1vs1, B = 32)

64 128 256 512 1024 1500
0

5

10

Packet Size [bytes]

M
ax

T
hr

ou
gh

pu
t[

G
bp

s]

(d) (D = throughput, L = remote, S = 1vs1, B = 32)

1vs1 2vs2 4vs4
0

3

6

9

Scenario S

M
ax

To
ta

l
T

hr
ou

gh
pu

t[
G

bp
s]

(e) (D = throughput, L = local, P = 64, B = 32)

1vs1 2vs2 4vs4
0

25

50

Scenario S

M
ax

To
ta

l
T

hr
ou

gh
pu

t[
G

bp
s]

(f) (D = throughput, L = local, P = 1500, B = 32)

1vs1 2vs2 4vs4 8vs8
0

4

8

Scenario S

M
ax

To
ta

l
T

hr
ou

gh
pu

t[
G

bp
s]

(g) (D = throughput, L = remote, P = 64, B = 32)

1vs1 2vs2 4vs4 8vs8
0

5

10

Scenario S

M
ax

To
ta

l
T

hr
ou

gh
pu

t[
G

bp
s]

(h) (D = throughput, L = remote, P = 1500, B = 32)

Figure 4: Throughput performance obtained varying system configuration and virtual switch used to connect sender/receiver
applications deployed in LXC containers.

While the maximum total throughput does not change
for relatively small packet sizes when increasing the
number of senders, for bigger packet sizes SR-IOV
can sustain 4 senders with only a per-pair perfor-
mance drop of about 18%, achieving almost linear
performance improvements with the increase of the
number of participants. On the contrary, virtio-based
switches can only distribute the same amount of re-

sources over a bigger number of network flows. From
these results we concluded that while for SR-IOV the
major limitation is mostly represented by the number
of packets exchanged through the network, for virtio-
based switches the major bottleneck is represented
by the capability of the CPU to move data from one
application to another, which depends on the overall
amount of bytes exchanged.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

52



basicfwd ovs sriov vpp

64 128 256 512 1024 1500
0

10

20

30

40

Packet Size [bytes]

M
ea

n
R

ou
nd

-T
ri

p
L

at
en

cy
[µ

s]

(a) (D = latency, L = local, S = 1vs1, B = 4,
R = 1000)

64 128 256 512 1024 1500
0

20

40

60

Packet Size [bytes]

M
ea

n
R

ou
nd

-T
ri

p
L

at
en

cy
[µ

s]

(d) (D = latency, L = remote, S = 1vs1, B = 4,
R = 1000)

64 128 256 512 1024 1500
0

40

80

120

Packet Size [bytes]

M
ea

n
R

ou
nd

-T
ri

p
L

at
en

cy
[µ

s]

(b) (D = latency, L = local, S = 1vs1, B = 32,
R = 1000)

64 128 256 512 1024 1500
0

50

100

Packet Size [bytes]

M
ea

n
R

ou
nd

-T
ri

p
L

at
en

cy
[µ

s]

(e) (D = latency, L = remote, S = 1vs1, B = 32,
R = 1000)

64 128 256 512 1024 1500
0

100

200

300

Packet Size [bytes]

M
ea

n
R

ou
nd

-T
ri

p
L

at
en

cy
[µ

s]

(c) (D = latency, L = local, S = 1vs1, B = 128,
R = 1000)

64 128 256 512 1024 1500
0

100

200

300

Packet Size [bytes]

M
ea

n
R

ou
nd

-T
ri

p
L

at
en

cy
[µ

s]

(f) (D = latency, L = remote, S = 1vs1, B = 128,
R = 1000)

Figure 5: Average round-trip latency obtained varying system configuration and virtual switch used to connect client/server
applications deployed in LXC containers. Plots on the left refer to tests performed on a single-host, while plots on the right
involve two separate hosts.

Repeating scalability evaluations on multiple
hosts (L= remote), we were able to deploy up to 8 ap-
plication pairs (S = 8vs8) transmitting data from one
host to the other one (Figure 3e). Results of these
evaluations, shown in Figures 4g and 4h, indicate that
the outcome strongly depends on the size of the pack-
ets exchanged: for bigger packets the major bottle-
neck is represented by the limited throughput of the
Ethernet standard; for smaller ones the inability of
each virtual switch to scale adequately with the num-
ber of packet flows negatively impacts even more sys-
tem performance.

5.5 Latency Performance

We finally evaluated the round-trip latency between
two applications when adopting each virtual switch

to estimate the per-packet processing overhead intro-
duced by each different solution. In particular we
focused on the ability of each solution to distribute
packet processing costs over multiple packets when
increasing the burst size. For this purpose, a single
pair of client/server applications has been deployed
on a single or multiple hosts to perform each evalua-
tion. Each test is configured to exchange a very low
number of packets per second, so that there is no inter-
ference between the processing of a burst of packets
and the following one.

First we considered a single pair of client/server
applications deployed on a single host (Figure 3c).
In these tests we varied the burst size from 4 to
128 packets and the packet size from 64 to 1500 bytes:

(D = latency, L = local, S = 1vs1, R = 1000)

Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications

53



In all our tests, Snabb was not able to achieve
comparable latency with respect to other solutions;
for example, while all other virtual switches could
maintain their average latency under 40 µs for B = 4,
Snabb’s delay was always greater than 60 µs, even for
very small packet sizes. Since this overall behavior is
repeated in all our tests, regardless of which parame-
ters are applied, Snabb will not be discussed further.

Figures 5a to 5c show that only virtio-based so-
lutions were able to achieve single-digit microsec-
ond round-trip latency on a single host, while SR-
IOV has a higher latency for small packet and burst
sizes. Increasing the burst size over 32 packets, these
roles are reversed, with SR-IOV becoming the most
lightweight solution, although it was never able to
achieve single-digit microsecond latency. From this
we inferred that SR-IOV performance are less influ-
enced by the variation of the burst size with respect to
the other options available and thus it is more suitable
when traffic on a single host is grouped into bigger
bursts.

We then repeated the same evaluations by deploy-
ing the server application on a separate host (L =
remote, Figure 3f). In this new scenario, SR-IOV al-
ways outperforms OVS and VPP, as shown in Fig-
ures 5d to 5f. This can be easily explained, since
when using a virtio-based switch to access the phys-
ical network two levels of forwarding are introduced
with respect to the case using only SR-IOV: the two
software instances, each running in their respective
hosts, introduce additional computations with respect
to the one performed in hardware by the SR-IOV de-
vice.

6 CONCLUSIONS AND FUTURE
WORK

In this work, we presented a novel framework aimed
to evaluate and compare the performance of various
virtual networking solutions based on kernel bypass.
We focused on the interconnection of VNFs deployed
in Linux containers in one or multiple hosts.

We performed a number of performance evalu-
ations on some virtual switches commonly used in
the NFV industrial practice. Test results show that
SR-IOV has superior performance, both in terms of
throughput and scalability, when traffic is limited to a
single host. However, in scenarios that consider inter-
host communications, each solution is mostly con-
strained by the limits imposed by the Ethernet stan-
dard. Finally, from a latency perspective we showed
that both for local and remote communications SR-
IOV can attain smaller round-trip latency with respect

to its competitors when bigger burst sizes are adopted.
In the future, we plan to support additional vir-

tual networking solutions, like NetVM (Hwang et al.,
2015), Netmap (Rizzo, 2012a), and VALE (Rizzo and
Lettieri, 2012). We also plan to extend the functional-
ity of the proposed framework, for example by allow-
ing for customizing the number of CPU cores allo-
cated to the virtual switch during the runs. Finally, we
would like to compare various versions of the consid-
ered virtual switching solutions, as we noticed some
variability in the performance figures after upgrading
some of the components, during the development of
the framework.

REFERENCES

Ara, G., Abeni, L., Cucinotta, T., and Vitucci, C. (2019).
On the use of kernel bypass mechanisms for high-
performance inter-container communications. In High
Performance Computing, pages 1–12. Springer Inter-
national Publishing.

Barach, D., Linguaglossa, L., Marion, D., Pfister, P.,
Pontarelli, S., and Rossi, D. (2018). High-speed
software data plane via vectorized packet processing.
IEEE Communications Magazine, 56(12):97–103.

Barik, R. K., Lenka, R. K., Rao, K. R., and Ghose, D.
(2016). Performance analysis of virtual machines and
containers in cloud computing. In 2016 International
Conference on Computing, Communication and Au-
tomation (ICCCA). IEEE.

Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., and Guan, H.
(2012). High performance network virtualization with
SR-IOV. Journal of Parallel and Distributed Comput-
ing, 72(11):1471–1480.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015).
An updated performance comparison of virtual ma-
chines and linux containers. In 2015 IEEE Interna-
tional Symposium on Performance Analysis of Sys-
tems and Software (ISPASS). IEEE.

Gallenmüller, S., Emmerich, P., Wohlfart, F., Raumer,
D., and Carle, G. (2015). Comparison of frame-
works for high-performance packet IO. In 2015
ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (ANCS). IEEE.

Géhberger, D., Balla, D., Maliosz, M., and Simon, C.
(2018). Performance evaluation of low latency com-
munication alternatives in a containerized cloud envi-
ronment. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). IEEE.

Hwang, J., Ramakrishnan, K. K., and Wood, T. (2015).
NetVM: High performance and flexible networking
using virtualization on commodity platforms. IEEE
Transactions on Network and Service Management,
12(1):34–47.

Intel (2015). Open vSwitch enables SDN and NFV trans-
formation. White Paper, Intel.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

54



Lettieri, G., Maffione, V., and Rizzo, L. (2017). A survey
of fast packet I/O technologies for Network Function
Virtualization. In Lecture Notes in Computer Science,
pages 579–590. Springer International Publishing.

Paolino, M., Nikolaev, N., Fanguede, J., and Raho, D.
(2015). SnabbSwitch user space virtual switch bench-
mark and performance optimization for NFV. In 2015
IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN). IEEE.

Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Ra-
jahalme, J., Gross, J., Wang, A., Stringer, J., Shelar, P.,
et al. (2015). The design and implementation of Open
vSwitch. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
117–130.

Pitaev, N., Falkner, M., Leivadeas, A., and Lambadaris, I.
(2018). Characterizing the performance of concur-
rent virtualized network functions with OVS-DPDK,
FD.IO VPP and SR-IOV. In Proceedings of the
2018 ACM/SPEC International Conference on Perfor-
mance Engineering - ICPE '18. ACM Press.

Rizzo, L. (2012a). Netmap: A novel framework for fast
packet I/O. In 2012 USENIX Annual Technical Con-
ference (USENIX ATC 12), pages 101–112, Boston,
MA. USENIX Association.

Rizzo, L. (2012b). Revisiting network I/O APIs: The
Netmap framework. Queue, 10(1):30.

Rizzo, L. and Lettieri, G. (2012). VALE, a switched eth-
ernet for virtual machines. In Proceedings of the
8th international conference on Emerging networking
experiments and technologies - CoNEXT '12. ACM
Press.

Russell, R., Tsirkin, M. S., Huck, C., and Moll, P. (2015).
Virtual I/O Device (VIRTIO) Version 1.0. Standard,
OASIS Specification Committee.

Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container Communications

55


