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Abstract: We present BiDaML (Big Data Analytics Modeling Languages), an integrated suite of visual languages and 
supporting tool to help end-users with the engineering of big data analytics solutions. BiDaML, our visual 
notations suite, comprises six diagrammatic notations: brainstorming diagram, process diagram, technique 
diagrams, data diagrams, output diagrams and deployment diagram. BiDaML tool provides a platform for 
efficiently producing BiDaML visual models and facilitating their design, creation, code generation and 
integration with other tools. To demonstrate the utility of BiDaML, we illustrate our approach with a real-
world example of traffic data analysis. We evaluate BiDaML using two types of evaluations, the physics of 
notations and a cognitive walkthrough with several target end-users e.g. data scientists and software engineers.

1 INTRODUCTION 

Using big data analytics to improve decision-making 
has become a highly active research and practice area 
(Landset, 2015; Portugal, 2016). Gartner’s technical 
professional advice (Sapp, 2017) recommends six 
stages for machine learning (ML) applications: 
classifying the problem, acquiring data, processing 
data, modeling the problem, validation and execution, 
and finally deployment. Traditionally, advanced ML 
knowledge and experience of complex data science 
toolsets were required for data analytics applications. 
Emerging analytics approaches seek to automate 
many of these steps in model building and its 
application, making ML technology more accessible 
to those who lack deep quantitative analysis and tool 
building skills (Rollins, 2015).  
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Recently, a number of data analytics and ML tools 
have become popular, providing packaged data 
sourcing, integration, analysis and visualization 
toolkits oriented towards end-users. Many of these 
tools do not require programming language 
knowledge and are based on simple drag-and-drop 
interfaces. However, they mostly focus on the ML 
algorithms and sometimes one-click deployment, but 
lack domain knowledge and business problem 
capturing, modeling, traceability to the solution and 
validation of the solution against the problem. They 
also lack an explanation of the model from an end-
user perspective.  

To address this, data analytics and ML steps need 
to be more tightly connected to the control and 
management of business and requirements 
engineering processes. However, the primary focus of 
most current big data analytics tools and technologies  
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Figure 1: How data scientists currently design their big data analytics solutions. 

is on storage, processing, and particularly the data 
analysis and ML tasks.  

Current data analytics tools rarely focus on the 
improvement of end-to-end processes (Aalst, 2015). 
To address this issue, better integration of data 
science, data technology and process science is 
needed (Aalst, 2015). Data science approaches tend 
to be process agonistic whereas process science 
approaches tend to be model-driven without 
considering the evidence hidden in the data. Bringing 
scalable process mining analytics to big data toolkits, 
while enabling them to be easily tailored to 
accommodate domain-specific requirements, is 
required (Aalst, 2015). Tools filling these gaps would 
be useful for end-users like data scientists, for the 
discovery and exploration phase, to be able to model 
the problem, extract insights/patterns, and develop 
predictive and clustering models if it is feasible 
before they need to involve software engineers. 

We present our novel approach to addressing this 
problem - Big Data Analytics Modeling Languages 
(BiDaML) - a set of domain specific visual languages 
(DSVLs) at different levels of abstraction (extended 
from Khalajzadeh, 2019a), to capture and refine 
requirements and specify different parts of the data 
analytics process. Through these DSVLs, we aim to 
make data analytics design more accessible to end-
users and facilitate dialogues with expert data 
scientists and software engineers. BiDaML provides 
better tool support and collaboration between 
different users while improving the speed of 
implementing data analytics solutions. 

The rest of the paper is organized as follows. In 
Section 2, the background and motivation of this 
research are described with a real-world example of 
traffic data analysis. Our approach is discussed in 

Section 3 and evaluated in Section 4. A 
comprehensive comparison to related work is 
presented in Section 5. Finally, we draw conclusions 
and discuss key future directions in Section 6. 

2 MOTIVATING EXAMPLE 

We discuss key data analytics steps and the different 
types of communication needed between users in a 
data analytics project. A real traffic data analysis 
example integrating data from diverse data sources 
including VicRoads’ SCATS traffic system (Sydney 
Coordinated Adaptive Traffic System, an intelligent 
transport system used to manage traffic signals in the 
state of Victoria, Australia as well as other 
states/cities) (VicRoads, 2018) is then demonstrated 
to reflect the issues and some key challenges in the 
process of data analytics. 

2.1 Data Analytics Process Steps 

The key steps that data scientists take to design their 
solutions are illustrated in Figure 1. Business owners, 
business analysts, data analysts and data scientists 
need to have (a) several rounds of meetings and 
interviews with domain  experts and users; (b) acquire 
datasets from different resources; (c) get access to 
government information; (d) integrate all data items 
with different format, analyze and visualize them; (e) 
communicate with each other to discuss the analyses; 
and (f) finally use different tools to design their 
approaches and develop their models. However, there 
is no unified language that allows to facilitate the 
communication among domain experts, business 
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owner/analysts and software engineers and they need 
to wait until their models are usable and deployable. 
In this section, we will show an example of the traffic 
data analysis to discuss some of the problems they 
face during the solution design process. 

2.2 Example: Traffic Data Analysis 

For this real-world large project there was a need to 
formally capture detailed requirements for a new 
traffic data platform that would ingest a real-time 
stream of traffic data received from VicRoads (the 
Victorian road transport authority), integrate this with 
other transport data sources, and support modeling 
and visualization of the transport network at a state-
wide level. There were some issues arising in the 
initiation of the project. The project leader and traffic 
modeling experts identified the need for a big data 
platform; however, without a background in software 
engineering or familiarity with modern data science 
tools, they were unable to determine whether the big 
data technology stack offered by the software 
outsourcing company was likely to meet their needs. 
Moreover, the software outsourcing company lacked 
understanding of the domain and thus did not 
understand what tasks were required of them.  

To overcome the communication difficulties, a 
meeting was arranged between the project leader, the 
traffic modeling expert, a data engineer/visualization 
designer, the project team from the software 
outsourcing company, and the eResearch high 
performance computing services team. However, the 
lack of a common language meant that 
communication could only take place at a high-level 
rather than at the level of detail necessary to initiate 
direct technical action. The software outsourcing 
company produced a plan for software they intended 
to deploy; however, no plan existed for who would 
monitor and maintain the software and systems after 
deployment, such as responding to faults in real-time 
data ingestion or adding support for new types of 
data. To justify the cost and time investment into the 
project, the project leader wanted to be able to reuse 
the platform for related projects, such as a smart city. 
However, it was unclear whether the work invested 
into the design of the transport data platform could be 
reused in other projects. Moreover, the software 
outsourcing company lacked deep understanding of 
the datasets and intended use of the platform, thus 
were unable to begin work on the project. It was also 
unclear who would maintain the computing 
infrastructure, monitor data quality, and integrate new 
data sources after the initial phase of the project.  

We  worked  with  transport  researchers  and used 

BiDaML and toolset to specify the intended software 
solution workflow. We performed in-depth 
interviews with the project leader and traffic 
modeling expert, then used BiDaML tool to 
document the entire data analytics workflow 
including data ingestion, transport modeling and 
simulation, and result visualization. This allowed us 
to assist in the formation of an alternative software 
solution that made better use of the systems and 
services already available. As BiDaML forces the 
user to consider all phases of the project, the 
modeling process helped reveal gaps in planning that 
required attention. We will use the examples of the 
diagrams we created throughout this paper. 

2.3 Key Challenges 

As illustrated, there is no trace back to the business 
needs/requirements that triggered the project. 
Furthermore, communicating and reusing existing big 
data analytics information and models is shown to be 
a challenge for many companies new to data 
analytics. Users need to be able to collaborate with 
each other through different views and aspects of the 
problem and possible solutions. Current practices and 
tools do not cover most activities of data analytics 
design, especially the critical business requirements. 
Most current tools focus on low-level data analytics 
process design, coding and basic visualization of 
results and they mostly assume data is in a form 
amenable to processing. In reality, most data items 
are in different formats and not clean or integrated, 
and great effort is needed to source the data, integrate, 
harmonize, pre-process and cleanse it. Only a few off-
the-shelf ML tools offer the ability for the data 
science expert to embed new code and expand 
algorithms and provide visualizations for their needs.  

Data processing and ML tasks are only a small 
component in the building blocks necessary to build 
real-world deployable data analytics systems 
(Sculley, 2015).  Figure 2 illustrates these tasks cover 
a small part of data and ML operations and 
deployment of models. Business and management 
modeling tools usually do not support many key data 
analytics steps including data pre-processing and ML 
steps. There is a need to capture the high-level goals 
and requirements for different users such as domain 
expert, business analyst, data analyst, data scientist, 
software engineer, and end-users and relate them to 
low level diagrams and capture details such as 
different tasks for different users, requirements, 
objectives, etc. Finally, most of the tools covering ML 
steps require data science and programming 
knowledge to embed code and change features based 
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on the user requirements. 

 

Figure 2: Data analytics steps (adapted from Sculley, 2015). 

3 OUR APPROACH 

Many current big data analytics tools, such as Azure 
ML Studio, Amazon AWS ML and Google Cloud 
ML, provide only low-level data science solution 
design, despite many other steps being involved in 
solution development (Khalajzadeh, 2019). 
Therefore, a high-level presentation of the steps to 
capture, represent, and communicate the business 
requirements analysis and design, data pre-
processing, high-level data analysis process, solution 
deployment and data visualization is required.  

3.1 BiDaML Visual Language 

We present BiDaML, a set of domain-specific visual 
languages using six diagram types at different levels 
of abstraction to support key aspects of big data 
analytics: 

- Brainstorming diagram provides an overview 
of a data analytics project and all the tasks and sub-
tasks that are involved in designing the solution at a 
very high level; 

- Process diagram specifies the data analytics 
processes/steps including key details related to the 
participants (individuals and organizations), 
operations, and data items in a data analytics project 
capturing details from a high-level to a lower-level; 

- Technique diagrams show the step by step 
procedures, processes and techniques for each sub-
task in the brainstorming and process diagrams at a 
low level of abstraction; 

- Data diagrams document the data and artifacts 
that are produced in each of the above diagrams in a 
low level, i.e. technical AI based layer; 

- Output diagrams define in detail the outputs 
associated with different tasks e.g. output 
information, reports, results, visualizations, 
outcomes, etc. 

- Deployment diagram depicts the run-time 
configuration, i.e. the system hardware, the software 

installed on it, and the middleware connecting 
different machines to each other. 

Figure 3 shows how our diagrams are connected 
to each other from a high level to a low level. A 
brainstorming diagram is defined for every data 
analytics project. Then, at a lower level to include 
more details and involve the participants, we use a 
process diagram. Every operation in a process 
diagram can be further extended by technique and 
data diagrams, and then, the technique and data 
diagrams are connected to a result output diagram. 
Finally, the deployment diagram, defined for every 
data analytics problem, models deployment related 
details at a low level.  

 

Figure 3: BiDaML diagrams overview for traffic data 
analysis example. 

3.1.1 Brainstorming Diagram 

A data analytics brainstorming diagram’s scope 
covers the entirety of a data analytics project 
expressed at a high-level. There are no rules as to how 
abstractly or explicitly a context is expanded. The 
diagram overviews a data analytics project in terms 
of the specific problem it is associated with, and the 
task and subtasks to solve the specific problem. It 
supports interactive brainstorming to identify key 
aspects of a data analytics project such as its 
requirements implications, analytical methodologies 
and specific tasks.  

Figure 4 (a) shows the visual notation used. It 
comprises an icon representing the data analytics 
problem, tasks which the problem is associated with, 
a hierarchy of sub-tasks for each task, and finally the 
specific information about sub-systems used or 
produced.  

We group the building blocks of an AI-powered 
system into four groups: Domain and business-related 
activities (BusinessOps); data-related activities 
(DataOps); artificial intelligence and ML-related 
activities (AIOps); and development and deployment 
activities (DevOps). The BusinessOps covers domain  
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Figure 4: a) Brainstorming diagram notational elements and b) an example for the traffic data analysis problem. 

and business knowledge and requirement gathering, 
modeling and analysis. The DataOps includes data 
collection/ingestion, data validation, cleansing, 
wrangling, filtering, union, merge, etc. AIOps covers 
feature engineering and model selection, model 
training and tuning. Finally, DevOps covers model 
integration and deployment, monitoring and serving 
infrastructure. Figure 4 (b) depicts a high-level 
brainstorming diagram for traffic data analysis 
example. From this figure we can see that: 
1) Sensor data collection will be done in both 

historical and realtime formats; 
2) SCATS converter is used to convert binary data to 

an open format; and 
3) Traffic modeling consists of traffic simulation, 

driver behavior modeling, demand modeling, and 
supply modeling. 

3.1.2 Process Diagram 

The key business processes in a data analytics 
application are shown in a process diagram, whose 
basic notation is shown in Figure 5. We adapt the 
Business Process Modeling Notation (BPMN) 
(OMG, 2011) to specify big data analytics processes 
at several levels of abstraction. Process diagrams 
support business process management, for both 
technical users such as data analysts, data scientists, 
and software engineers as well as non-technical users 
such as domain experts, business users and 
customers, by providing a notation that is intuitive to 
business users, yet able to represent complex process 
semantics. 

In this diagram type, we use different “pools” for 
different organizations and different “swim lanes” for 
the people involved in the process within the same 

organization. Different layers are also defined based 
on different tasks such as business-related tasks 
(BusinessOps), technical (DataOps and AIOps), and 
operational tasks (DevOps and application-based 
tasks). Data and artifacts produced and used in each 
step can be shown as icons specific to the source and 
type of data. Preparation of data items or different 
events trigger other events and redirect the process to 
the other users in the same or different pool. 
Particular detailed activities or tasks performed by 
different users and the order of them are represented 
using rectangles and arrows. Diamonds show 
different decision points that can adjust the path based 
on conditions and double circles show unexpected 
events that can change the process at any step. 
 

 

Figure 5: Process diagram notational elements. 

A high-level process diagram for our traffic data 
analysis example is shown in Figure 6. In this, 1) 
project starts when VicRoads, as the data provider, 
provides historical data. 2) Domain knowledge is 
shared with the software outstanding company to 
provide the project’s cost estimate. 3) Technical lead 
develops web-based interface. 4) eResearch services 
provides big data storage/archival using MyTardis (A 
large scale (research) data management/archival sys- 
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Figure 6: A process diagram example for the traffic data analysis problem. 

tem developed by eResearch). 5) The extracted 
insights are shared with the transport group in order 
to clean and aggregate the dataset. 6) The researchers 
run simulations and deploy algorithms, and finally 7) 
if the final deployed models are satisfactory, then 
further action to progress the project will be taken, 
otherwise the problem needs to be found and 
resolved. In this case, an alert needs to be triggered 
and an issue tracking ticket assigned to the 
responsible participant to improve the process and 
consequently the outcome. 

3.1.3 Technique Diagram 

Data analytics technique diagrams extend the 
brainstorming diagram to low-level detail specific to 
different big data analytics tasks and sub-tasks. For 
every sub-task, the process is broken down into the 
specific stages and the technique used to solve a 
specific sub-task specified. Figure 7 shows the 
technique diagram notation. 

 

Figure 7: Technique diagram notational elements. 

In Figure 8, “Aggregate cycle-by-cycle data into 
15 minutes bins” and “Report volumes as NA and log 
warning if faulty sensor” are used as the 
methods/techniques to clean/aggregate data, and then 
the sub-techniques to solve challenges implementing 
each of the methods are further specified. We can 

create such diagrams for every task and sub-task in 
brainstorming and process diagrams. 

 

Figure 8: A technique diagram example for the traffic data 
analysis problem. 

3.1.4 Data Diagram 

To document the data and artifacts consumed and 
produced in different phases described by each of the 
above diagrams, one or more low-level data 
diagrams are created, using the notations shown in 
Figure 9 (a). Data diagrams support the design of data 
and artifacts collection processes. They represent the 
structured and semi-structured data items involved in 
the data analytics project in different steps. A high-
level data diagram can be represented by connecting 
the low-level diagrams for different BusinessOps, 
DataOps, AIOps, and DevOps. 

A data diagram for our traffic analysis problem is 
shown in Figure 9 (b). Here, data and artifacts related 
to all tasks and sub-tasks in brainstorming and 
process diagrams are connected to different data 
entities. In this case, different data items, features, 
outliers, the algorithms used, parameters related to 
these algorithms, model created based on different 
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Figure 9: a) Data diagram notational elements and b) an example created for the traffic data analysis problem. 

 

Figure 10: a) Output diagram notational elements and b) an example created for the traffic data analysis problem. 

 

Figure 11: a) Deployment diagram notational elements and b) an example for the traffic data analysis problem. 

algorithms, and the evaluation metrics used for the 
model are captured for the AIOps entity. Data and 
artifacts produced for other data entities such as 
DataOps, DevOps, etc can be detailed and depicted 
with other data diagrams. 

3.1.5 Output Diagram 

Output diagrams specify an individual technique in 
more detail. This diagram type, shown in Figure 10 
(a), reuses and merges the technique diagram and data 
diagrams and adds information on the technique 
(logic entity) and the data produced by it (as output 
ports).  

Figure 10 (b) shows an application in our traffic 
data analysis example. Here we see (1) datasets used, 
(2) part of the data diagram relating to the test for the 
sampled data set and (3) a data analytics output 
diagram defining the expected outputs from the 
technique and data diagrams used for test and its 
output. From this, we can see the outputs and reports 
that can be extracted using current techniques and 
data items, such as simulated vehicle trajectories, 
flow prediction, traffic congestion prediction, etc. 

3.1.6 Deployment Diagram 

Since  the  deployment  part follows the same rules as 
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the deployment process in software development, we 
have adapted the deployment diagram from the 
Unified Modeling Language (UML) (Ambler, 2004). 
Our extended UML deployment diagram notation is 
shown in Figure 11 (a).  

In a deployment diagram, three-dimensional 
boxes, known as nodes, represent the basic elements 
of the software or hardware. Rectangles indicate the 
objects in the system and the objects could be 
contained within the nodes to represent the software 
artifacts that are deployed and the components that 
run on those nodes. Lines from one node to another 
node specify the relationships between elements. 
Figure 11 (b) shows an example deployment diagram 
for our traffic data analysis problem, e.g. interactive 
map, data quality monitoring, and live traffic 
prediction demo are deployed on the web server, that 
is in turn deployed within the NeCTAR environment 
(an OpenStack-based cloud computing environment) 
(NeCTAR, 2019). 

3.2 BiDaML Support Tool 

We have developed an integrated design environment 
for creating BiDaML diagrams. The tool support aims 
to provide a platform for efficiently producing 
BiDaML visual models and to facilitate their creation, 
display, editing, storage, code generation and 
integration with other tools. We have used MetaEdit+ 
Workbench (MetaCase, n.d.) to implement our tool. 
Using MetaEdit+, we have created the objects and 
relationships defined as the notational elements for all 
the diagrams, different rules on how to connect the 
objects using the relationships, and how to define low 

level sub-graphs for the high level diagrams. 

 

Figure 12: Defining brainstorming notational elements in 
MetaEdit+. 

 

Figure 13: An example of BiDaML tool for creating brainstorming diagram for the traffic data analysis problem. 
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Figure 12 shows (a) how the objects, relationships, 
and roles are defined, (b) how the rules for connecting 
objects through relationships are defined, (c) how the 
sub-graphs are connected to different objects of a 
graph, for a brainstorming diagram. We have defined 
these for all other diagrams. 

 

Figure 14: A snippet of the a) python code generated from 
the brainstorming diagram, and b) report generated from the 
process diagram. 

Figure 13 shows our tool used to create the 
brainstorming diagram for our traffic analysis 
example. Here, users (a) choose the notations of 
objects/relationships and (b) modify the properties of 
the object/relationship. Notations added to the 
diagram are all listed (c) and details are shown by 
clicking on the notations (d). Users can click on any 
of the objects and create a sub-graph i.e., data, 
technique, and output diagram for them. Finally, once 
completed, (e) code generation features can be 
embedded and modified and (f) and finally Python 
code, BigML API recommendations and reports can 
be generated for our traffic data analysis example in 
this designed brainstorming diagram. Figure 14 (a) is 
a snippet of the Python code generated from the 
brainstorming diagram and Figure 14 (b) shows the 
report generated from the process diagram. 

4 EVALUATION 

We have evaluated the usability and suitability of our 
visual languages and tool suite in two ways (results 
originally reported in Khalajzadeh, 2019a). The first 
was an extensive physics of notations evaluation 
(Moody, 2009). This was a useful end-user 
perspective evaluation without having to involve a 

large-scale usability trial. To understand how easy 
BiDaML diagrams are to learn and use, we also 
conducted a cognitive walkthrough using several 
target domain expert end-users, including data 
scientists and software engineers, as test subjects. 

4.1 Physics of Notations Evaluation 

Semiotic clarity specifies that a diagram should not 
have symbol redundancy, overload, excess and 
deficit. All our visual symbols in BiDaML have 1:1 
correspondence to their referred concepts. Perceptual 
discriminability is primarily determined by the visual 
distance between symbols. All our symbols in 
BiDaML use different shapes as their main visual 
variable, plus redundant coding such as color and/or 
textual annotation. Semantic transparency identifies 
the extent to which the meaning of a symbol should 
be inferred from its appearance. In BiDaML, icons 
are used to represent visual symbols and minimize the 
use of abstract geometrical shapes. Complexity 
management restricts a diagram to have as few visual 
elements as possible to reduce its diagrammatic 
complexity. We used hierarchical views in BiDaML 
for representation and as our future work, we will add 
the feature for users to hide visual construct details 
for complex diagrams. Cognitive integration 
identifies that the information from separate diagrams 
should be assembled into a coherent mental 
representation of a system; and it should be as simple 
as possible to navigate between diagrams. All the 
diagrams in BiDaML have a hierarchical tree-based 
structure relationship as shown in Figure 3. 

Visual expressiveness defines a range of visual 
variables to be used, resulting in a perceptually 
enriched representation that exploits multiple visual 
communication channels and maximizes 
computational offloading. Various visual variables, 
such as shape, color, orientation, texture, etc are used 
in designing BiDaML visual symbols. Dual coding 
means that textual encoding should also be used, as it 
is most effective when used in a supporting role. In 
BiDaML, all visual symbols have a textual 
annotation. Graphic economy discusses that the 
number of different visual symbols should be 
cognitively manageable. As few visual symbols as 
possible are used in BiDaML. Cognitive fit means 
that the diagram needs to have different visual 
dialects for different tasks or users. All the symbols 
in BiDaML are usable for different users and tasks. 
However, in the future, we will provide different 
views for different users in our BiDaML support tool, 
and users will be able to navigate between views 
based on their requirements. 
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Figure 15: Example brainstorming and technique diagrams from our evaluators. 

4.2 Cognitive Walkthrough 

We asked 3 data scientists and 2 software engineers 
(all experienced in big data analytics) to carry out a 
task-based end-user evaluation of BiDaML. The 
objective was to assess how easy it is to learn to use 
the visual models and how efficiently it can solve the 
diagram complexity problem. BiDaML diagrams 
were briefly introduced to the participants who were 
then asked to perform three predefined modeling 
tasks. The first was to design BusinessOps, DataOps, 
AIOps, or DevOps part of a brainstorming diagram 
for a data analytics problem of their choice from 
scratch. In the second, the subject was given a process 
diagram and asked to explain it, comment on the 
information represented and provide suggestions to 
improve it. The third involved subjects designing a 
technique diagram related to a specific task of the data 
analytics problem they chose for the first part of the 
evaluation. Figure 15 shows (a) devOps part of one of 
the brainstorming diagrams and (b and c) two of the 
technique diagrams that the data scientists/software 
engineers drew to help explain their current work 
tasks of (a) automated testcase generation (b) data 
wrangling and (c) data augmentation. 

Overall, users’ feedback indicated that BiDaML 
is very straightforward to use and understand. Users 
felt they could easily communicate with other team 
members and managers and present their ideas, 
techniques, expected outcomes and progress in a 
common language during the project before the final 
solution. They liked how different layers and 
operations are differentiated. Moreover, they could 
capture and understand business requirements and 

expectations and make agreements on requirements, 
outcomes, and results through the project. These 
could then be linked clearly to lower-level data, 
technique and output diagrams. Using this feedback 
we have made some minor changes to our diagrams 
such as the shape and order of some notations, and the 
relationships between different objects. 

However, several limitations and potential 
improvements have also been identified in our 
evaluations. Some users prefer to see technique and 
data diagrams components altogether in a single 
diagram, while some others prefer to have these 
separate. Moreover, in the process diagram, some 
users prefer to only see the operations related to their 
tasks and directly related tasks. Finally, one of the 
users wanted to differentiate between 
tasks/operations that are done by humans versus a 
tool. In future tool updates, we will provide different 
views for different users and will allow users to 
hide/unhide different components of the diagrams 
based on their preference. Moreover, in our future 
code generation plan, we will separate different tasks 
based on whether they are conducted by humans or 
tools. We will run a larger user evaluation with 
business and domain expert end-users. The future 
user study will be conducted in a more structured 
manner, and the feedback will be collected 
anonymously. Moreover, in order to evaluate the 
usability of the current interface for new users of the 
BiDaML tool, the participants will be given more 
independent tasks. Finally, BiDaML will be 
compared with the existing solutions, such as UML. 
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5 RELATED WORK 

There are many data analytics tools available, such as 
Azure ML Studio, Amazon AWS ML, Google Cloud 
ML, and BigMl as reviewed in Khalajzadeh, 2019b. 
However, these tools only cover a few phases of 
DataOps, AIOps, and DevOps and none cover 
business problem description, requirements analysis 
and design. Moreover, since most end-users have 
limited technical data science and programming 
knowledge, they usually struggle using these tools. 

Some DSVLs have been developed for supporting 
enterprise service modeling and generation using 
end-user friendly metaphors. An integrated visual 
notation for business process modeling is presented 
and developed in (Li, 2014) using a novel tree-based 
overlay structure that effectively mitigates 
complexity problems. MaramaAIC (Kamalrudin, 
2017) provides end-to-end support between 
requirements engineers and their clients for the 
validation and improvement of the requirements 
inconsistencies. SDLTool (Kim, 2015) provides 
statistician end-users with a visual language 
environment for complex statistical survey 
design/implementation. These tools provide 
environments supporting end-users in different 
domains. However, they do not support data analytics 
processes, techniques, data and requirements, and do 
not target end-users for such applications. 

Scientific workflows are widely recognized as 
useful models to describe, manage, and share 
complex scientific analyses and tools have been 
designed and developed for designing, reusing, and 
sharing such workflows. Kepler (Ludäscher, 2005) 
and Taverna (Wolstencroft, 2013) are Java-based 
open source software systems for designing, 
executing, reusing, evolving, archiving, and sharing 
scientific workflows to help scientists, analysts, and 
computer programmers. VisTrails (Callahan, 2006) is 
a Python/Qt-based open-source scientific workflow 
and provenance management system supporting 
simulation, data exploration and visualization. It can 
be combined with existing systems and libraries as 
well as your own packages/modules. Finally, 
Workspace (Cleary, 2015), built on the Qt toolkit, is 
a powerful, cross-platform scientific workflow 
framework enabling collaboration and software reuse 
and streamlining delivery of software for commercial 
and research purposes. Users can easily create, 
collaborate and reproduce scientific workflows, 
develop custom user interfaces for different 
customers, write their own specialized plug-ins, and 
scale their computation using Workspace’s 
remote/parallel task scheduling engine. Different 

projects can be built on top of these drag and drop 
based graphical tools and these tools are used in a 
variety of applications and domains. However, they 
only offer a limited number of data analysis steps and 
no data analytics and ML capabilities and libraries. 

Finally, some software tools implement 
algorithms specific to a given graphical model such 
as Infer.NET (Minka, 2010). This approach for 
implementing data analytics techniques is called a 
model-based approach to ML (Bishop, 2012). An 
initial conceptualization of a domain specific 
modeling language supporting code generation from 
visual representations of probabilistic models for big 
data analytics is presented in (Breuker, 2014) by 
extending the analysis of the Infer.NET. However, it 
is in very early stages and does not cover many of the 
data analytics steps in real-world problems. 

6 CONCLUSIONS 

We have described a set of visual notations for 
specifying data analytics project software 
requirements and solutions. Our DSVLs, namely 
BiDaML, are aimed at providing a similar modeling 
framework for data analytics solution design as UML 
does for software requirements and design. It is 
comprised of six high- and low-level diagrammatic 
types. These diagrams represent both data- and 
technique-oriented components of a data analytics 
solution design. A physics of notations analysis and a 
cognitive walkthrough with several end-users were 
undertaken to evaluate the usability of BiDaML. We 
have also used our diagrams to model several 
complex big data analytics problems.  

Our future work includes providing multiple 
view/elision support for large diagrams in our 
BiDaML modeling tool. In addition, we see 
considerable scope for providing back end integration 
with other data analytics tools, such as Azure ML 
Studio. Our tool can be used at an abstract level 
during requirements analysis and design, and then 
connected to existing software tools that operate at a 
low level. Therefore, our DSVLs can be used to 
design, implement and control a data analytics 
solution. Our tool will support modeling and code 
generation, together with collaborative work support 
in the future. Since big data analysis has the same 
steps, the code generation feature of our tool will 
provide a set of templates for handling different 
classes of systems in data analytics projects. These 
will be leveraged to integrate our BiDaML tool with 
other data analytics packages. 

Visual Languages for Supporting Big Data Analytics Development

25



ACKNOWLEDGMENTS 

Support from ARC Discovery Project DP170101932 
and ARC Laureate Program FL190100035 is 
gratefully acknowledged. We would also like to 
acknowledge Prof. Hai L. Vu and Dr. Nam H. Hoang 
from the Monash Institute of Transport Studies for 
their collaboration, and thank the VicRoads 
(Department of Transport, Victoria) for sharing the 
transport data. 

REFERENCES 

Aalst, W. v. d., & Damiani, E. (2015). Processes Meet Big 
Data: Connecting Data Science with Process Science. 
IEEE Transactions on Services Computing, 8(6), 810-
819.  

Ambler, S. (2004). The Object Primer: Agile Model-Driven 
Development With Uml 2.0 3rd Edition: Cambridge 
University Press  

Bishop, C. M. (2012). Model-based Machine Learning. 
Philosophical Transactions of the Royal Society A, 
Mathematical, Physical and Engineering Sciences, 
371(1984).  

Breuker, D. (2014). Towards Model-Driven Engineering 
for Big Data Analytics – An Exploratory Analysis of 
Domain-Specific Languages for Machine Learning. 
Paper presented at the 47th Hawaii International 
Conference on System Science.  

Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., 
Silva, C. T., & Vo, H. T. (2006). VisTrails: 
Visualization Meets Data Management. Paper 
presented at the ACM SIGMOD international 
conference on Management of data. 

Cleary, P. W., Thomas, D., Bolger, M., Hetherton, L., 
Rucinski, C., & Watkins, D. (2015). Using Workspace 
to Automate Workflow Processes for Modelling and 
Simulation in Engineering. Paper presented at the 21st 
International Congress on Modelling and Simulation. 
https://research.csiro.au/workspace/ 

Kamalrudin, M., Hosking, J., & Grundy, J. (2017). 
MaramaAIC: Tool Support for Consistency 
Management and Validation of Requirements. 
Automated Software Engineering, 24(1), 1-45.  

Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J., 
& He, Q. (2019a). BiDaML: A Suite of Visual 
Languages for Supporting End-user Data Analytics. 
Paper presented at the IEEE Big Data Congress, Milan, 
Italy. 

Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J., 
& He, Q. (2019b). Survey and Analysis of Current End-
user Data Analytics Tool Support. IEEE Transactions 
on Big Data, 5. doi:10.1109/TBDATA.2019.2921774 

Kim, C. H., Grundy, J., & Hosking, J. (2015). A Suite of 
Visual Languages for Model-Driven Development of 
Statistical Surveys and Services. Journal of Visual 
Languages and Computing, 26(C), 99-125. 

Landset, S., Khoshgoftaar, T. M., Richter, A. N., & 
Hasanin, T. (2015). A Survey of Open Source Tools for 
Machine Learning with Big Data in the Hadoop 
Ecosystem. Journal of Big Data, 2(24). 
doi:https://doi.org/10.1186/s40537-015-0032-1 

Li, L., Grundy, J., & Hosking, J. (2014). A Visual Language 
and Environment for Enterprise System Modelling and 
Automation. Journal of Visual Languages & 
Computing, 25(4), 253-277.  

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, 
E., Jones, M., Zhao, Y. (2005). Scientific Workflow 
Management and the Kepler System. Concurrency and 
Computation: Practice and Experience, 18(10), 1039-
1065. doi:https://doi.org/10.1002/cpe.994 

MetaEdit+ Domain-Specific Modeling tools – MetaCase. 
Retrieved from https://www.metacase.com/ 
products.html 

Minka, T., Winn, J., Guiver, J., & Knowles, D. (2010). Infer 
.NET 2.4, 2010. Microsoft Research Cambridge.  

Moody, D. (2009). The “Physics” of Notations: Toward a 
Scientific Basis for Constructing Visual Notations in 
Software Engineering. IEEE Transactions on Software 
Engineering, 35(6), 756-779. 
doi:https://doi.org/10.1109/TSE.2009.67 

NeCTAR. (2019). ARDC’s Nectar Research Cloud. 
Retrieved from https://nectar.org.au/cloudpage/ 

OMG. (2011). Business Process Model And Notation 
(BPMN). Retrieved from https://www.omg.org/ 
spec/BPMN/2.0/ 

Portugal, I., Alencar, P., & Cowan, D. (2016). A 
Preliminary Survey on Domain-Specific Languages for 
Machine Learning in Big Data. Paper presented at the 
IEEE International Conference on Software Science, 
Technology and Engineering (SWSTE), Beer-Sheva, 
Israel.  

Rollins, J. B. (2015). Foundational Methodology for Data 
Science. Retrieved from IBM Analytics:  

Sapp, C. E. (2017). Preparing and Architecting for 
Machine Learning. Retrieved from Gartner Technical 
Professional Advice:  

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, 
T., Ebner, D., . . . Dennison, D. (2015). Hidden 
Technical Debt in Machine Learning Systems. Paper 
presented at the 28th International Conference on 
Neural Information Processing Systems (NIPS), 
Montreal, Canada.  

VicRoads. (2018). SCATS. Retrieved from 
https://www.vicroads.vic.gov.au/traffic-and-road-
use/traffic-management/traffic-signals/scats 

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., 
Withers, D., Owen, S., Goble, C. (2013). The Taverna 
workflow suite: designing and executing workflows of 
Web Services on the desktop, web or in the cloud. 
Nucleic acids research, 41(1), 557-561. 

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

26


