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Abstract: Video compression algorithms are pervasively applied at the camera level prior to video transmission due to
bandwidth constraints, thereby reducing the quality of video available for video analytics. These artifacts
may lead to decreased performance of some core applications in video surveillance systems such as object
detection. To remove such distortions during video decoding, it is required to recover original video frames
from distorted ones. To this end, we present a fully convolutional residual network for compression artifact
removal (CAR-CNN) without prior knowledge on the noise distribution trained using a novel, differentiable
loss function. To provide a baseline, we also trained our model by optimizing the Structural Similarity (SSIM)
and Mean Squared Error (MSE). We test CAR-CNN on self-collected data, and we show that it can be applied
as a pre-processing step for the object detection task in practical, non-idealized applications where quality
distortions may be present.

1 INTRODUCTION

In real deployments of public safety video systems,
cameras are often backhauled via wireless media,
where packet loss and jitter impact video quality
available for video analytics. Furthermore, due to
bandwidth constraints, lossy compression algorithms
are often used to encode videos before transmission to
central storage and processing sites in order to avoid
network congestion and lower communication latency
at the expense of introducing undesired complex ar-
tifacts (e.g., blocking, blurring, floating), which re-
move textures and details in video frames as shown
in Figure 1. These artifacts are not only unpleasant to
the human eye but also adversely impact the perfor-
mance of various high-level vision algorithms such as
object detectors (Aqqa et al., 2019).

Typically, video compression algorithms come
with a parameter to tune the trade-off between file
size and quality of the video. The larger this pa-
rameter, the stronger are quality distortions stemming
from compression artifacts. However, merely opting
for low compression rates is not always a practical
solution. In video surveillance systems, video trans-
portation from the transmitting node to the video ana-
lytics compute engine is typically performed over an
IP network infrastructure, where transmission chan-
nels have limited bandwidth and are allowed a certain

quota per camera. This constraint is often ensured by
strong compression.

Most surveillance cameras adopt the H.264/AVC
standard for video encoding (Wiegand et al., 2003),
which is a lossy compression technique. A video
consists of images; an image is divided into slices
and blocks. A block is a square part (16×16, 8×8,
and 4×4) of the image. H.264 is a block-based
coder/decoder, meaning that a series of mathemat-
ical functions are applied on individual blocks to
achieve compression and decompression (Juurlink
et al., 2012). Also, it exploits spatial redundancy
within images and temporal redundancy in videos to
achieve appealing compression ratios with low la-
tency, making it a widely accepted standard for video
transmission for a myriad of applications.

Much work has been done on removing different
compression artifacts from JPEG images using differ-
ent techniques, from optimizing discrete cosine trans-
form (DCT) coefficients (Zhang et al., 2013) to re-
cently leveraging the representational power of con-
volutional neural network (CNN) (Galteri et al., 2017;
Svoboda et al., 2016; Yu et al., 2015). CNNs have
been successfully used in many other image restora-
tion tasks including super-resolution (Kim et al.,
2016; Dong et al., 2014), denoising (Zhang et al.,
2017), structured noise removal (Eigen et al., 2013),
and blind deconvolution (Schuler et al., 2016) with
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Figure 1: An uncompressed patch taken from a video frame and its 12 compressed versions. The compression artifacts can
be visually perceived as CRF value increases and bitrate decreases. The combination of CRF=29 and maximum bitrate of
2Mb/s results in the lowest compressed version, thus better image quality. The combination of CRF=47 and maximum bitrate
of 1Mb/s results in highest compressed version, thus worst image quality.

state-of-the-art performance.

In this paper, we target the problem of compres-
sion artifact removal (CAR) in H.264/AVC encoded
videos. Compared to JPEG compression method
(Wallace, 1992), the degradation caused by H.264 is
not only originated from spatial artifacts (e.g. block-
ing, blurring, ringing) but also from temporal artifacts
(e.g., floating, flickering). The aim is to devise an ap-
proach that can be applied as a post-processing step
on decompressed frames, and therefore it can be used
on many lossy video compression algorithms. In ad-
dition, it should be able to handle videos encoded at
different bit rates, and thus at different qualities. This
allows avoiding any changes to the existing compres-
sion pipelines, which are usually optimized (e.g., us-
ing dedicated hardware).

The contributions of our work are three-fold: (i)
We present a feed-forward fully convolutional resid-
ual generative network by optimizing a novel loss
function, and we show its superior performance com-
pared to de facto error metrics in image recon-
struction. (ii) We evaluate the performance of our
approach using self-collected data, which consists
of thirty uncompressed videos recorded in different
surveillance scenarios (indoor and outdoor). The
video frames from these videos are considered to be
of high quality. We augment this dataset by introduc-
ing complex artifacts under different levels of video

compression using H.264/AVC standard. (iii) We
show that our method can be used as a pre-processing
step for object detectors in video surveillance sys-
tems.

In section 2, we review some of the related work.
In section 3, we detail the proposed method and dif-
ferent loss functions used in this work. We describe
in section 4 the dataset, performance metrics, and im-
plementation details. Section 5 reports the results ob-
tained from our experiments. In section 6, we con-
clude our work.

2 RELATED WORK

There is a vast literature of image restoration, address-
ing image compression artifacts. These methods are
ranging from hand-designed filters relying on infor-
mation in the DCT domain to recently using deep con-
volutional neural networks (DCNN) following their
success in other machine vision tasks.

Simple artifact removal filters are included in
many software for handling images, videos, and other
multimedia files. For example, the FFmpeg frame-
work includes the simple postprocessing (ssp) filter
(Nosratinia, 1999), which applies JPEG compression
to the shifted versions of the already-compressed im-
age, and averages the results. Foi et al. devel-
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oped Pointwise Shape-Adaptive DCT (SA-DCT) (Foi
et al., 2006), in which the thresholded transform co-
efficients are used to reconstruct a local estimate of
the image signal within the adaptive-shape support.
Yang et al. presented in (Yang et al., 2000) a differ-
ent approach, which consists of applying DCT-based
lapped transform on the signal already in the DCT do-
main. The authors in (Li et al., 2014) decompose im-
ages into texture and structure components, then elim-
inate artifacts that are part of the texture component
due to contrast enhancement. Chang et al. (Chang
et al., 2014) propose to remove blocking artifacts of
JPEG compression images by finding a sparse rep-
resentation over a learned dictionary from a training
set of images. The main disadvantage of these algo-
rithms is that they explicitly attempt to reverse the ef-
fect of DCT-domain quantization optimally, and thus
they are very specific to the applied compressor. Fur-
thermore, they tend to overly smooth texture regions
without reproducing sharp edges.

The work presented in this paper was inspired
by DCNN based approaches. The main idea is to
learn an image transformation function that can pro-
duce a restored version of the given input image.
Dong et al. (Dong et al., 2015) propose artifact re-
duction CNN (AR-CNN), which extends their super-
resolution CNN (SRCNN) architecture with feature
enhancement layers. They trained AR-CNN in two
stages - a shallow network is trained first, then it is
used as an initialization for a final 4 layer CNN due
to training difficulties encountered when training the
later from scratch. Differently from AR-CNN, Svo-
boda et al. (Svoboda et al., 2016) report better re-
sults by training a feed-forward CNN that combines
residual learning and skip architecture to get a better
reconstruction quality.

Convolutional networks have successfully shown
their ability in different image transformation prob-
lems, such as image denoising (Zhang et al., 2017),
super-resolution (Kim et al., 2016; Dong et al., 2014),
and style-transfer (Gatys et al., 2016). Zhang et al.
(Zhang et al., 2017) propose a denoising convolu-
tional neural network (DnCNN) to eliminate Gaus-
sian noise, showing that residual learning and batch
normalization are beneficial for this task. Kim et al.
(Kim et al., 2016) addressed the problem of image
super-resolution, using a deep architecture trained on
residual images. Ledig et al. (Ledig et al., 2017) pro-
pose a deep residual convolutional network, trained in
an adversarial fashion by optimizing a perceptual loss
that combines an adversarial loss and a content loss.
The authors state that their model can recover photo-
realistic textures from heavily downsampled images.
A style-transfer method of Gatys et al. (Gatys et al.,

2016) uses image representations from convolutional
neural network optimized for object recognition while
optimizing a loss that accounts for both image content
and style to keep the content of an arbitrary photo-
graph with the appearance of numerous well-known
artworks.

To the best of our knowledge, we are the first to
adapt the idea of residual learning (Kim et al., 2016)
for H.264/AVC compression artifact removal based
on CNN in video surveillance systems. We follow
the assumption ”deeper is better”, and we propose 34-
layer fully convolutional residual neural network and
is, therefore, able to restore images of any resolution.
Moreover, we investigate the use of two loss functions
(MSE and SSIM), and define a new loss function that
combines the advantages of MSE and SSIM.

3 METHODOLOGY

In H.264/AVC compression artifact removal task, the
goal is to restore a video frame IR from a compressed
one IL. Most video compression algorithms (e.g.,
H.264/AVC, H.265/HEVC) encode images by imple-
menting less resolution for chroma information than
for luma information, taking advantage of the human
visual system’s lower acuity for color differences than
for luminance. Therefore, we transform the color im-
ages to YCbCr space, and only the luminance channel
Y is used further.

In [0,255]W×H×C, we define IH , IL, and IR as im-
age tensors with width W , height H and number of
image channels C. During H.264/AVC video encod-
ing process, an uncompressed image IH is encoded
by:

IL = E(IH ,QP) (1)

using H.264 encoder E with some quantization pa-
rameter QP. The goal is to learn an inverse function
φ ≈ E−1

QP to remove compression artifacts introduced
by E, thus restoring IH from IL:

IH ≈ IR = φ(IL) (2)

To this end, we define φ(.) as a fully convolutional
residual network φ(IL;θ) with parameters θ that are
learned by optimizing a loss function lCAR. Given N
training video frames, we solve:

θ̂ = argmin
θ

1
N

N

∑
i=1

lCAR(IH ,φ(IL;θ)) (3)

In the following, we describe the architecture of
CAR-CNN and different loss functions used to remove
H.264/AVC compression artifacts.
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Figure 2: An Overview of CAR-CNN architecture. The network contains 15 residual blocks indicating with n the number of
filters and s the stride of each convolutional layer.

3.1 CAR-CNN Architecture

An overview of our proposed network is shown in
Figure 2. Inspired by (Kim et al., 2016), we propose
a 34-layers residual generative network that contains
only blocks of convolutional layers and LeakyReLU
non-linearities. In particular, we use convolutional
layers with 3× 3 kernels and 64 feature maps. All
convolutional layers are followed by a LeakyReLU
activation with a slope of 0.2 for negative inputs. Af-
ter every convolution, we apply a padding of 1 pixel
to keep the same image size across all convolution
layers. Since the input images were transformed to
gray-scale considering only the luminance channel Y ,
the last layer is a simple convolutional layer with one
feature map followed by a tanh activation function to
keep the output values between the [−1,1] range.

3.2 Loss Functions

In this section, we describe different loss functions
used to train CAR-CNN.

3.2.1 Mean Squared Error

As first attempt to remove compression artifact, we
use Mean Squared Error loss (MSE):

lMSE =
1

WH

H

∑
i=1

W

∑
j=1

(IH
i, j− IR

i, j)
2 (4)

Although MSE has shown improved performance
in JPEG artifact removal task (Svoboda et al., 2016),
its results are still sub-optimal as it doesn’t recover
most of the high-frequency details from a distorted
video frame.

3.2.2 Stuctural Similarity

A popular index in the image restoration task is the
structural similarity index (SSIM) (Wang et al., 2004).
It evaluates images accounting for the fact that the
human visual system is sensitive to changes in local
structure. If the goal is to produce visually pleasing
images, the loss function should be perceptually mo-
tivated, as is the case of SSIM.

SSIM for pixel p is defined as:

SSIM(p) =
2µiµ j +C1

µ2
i +µ2

j +C1
·

2σi j +C2

σ2
i +σ2

j +C2
(5)

The loss function for SSIM can be then written as:

lSSIM = 1−SSIM(p) (6)

The network is trained to optimize the structural
similarity between the reference images and the re-
stored ones.

3.2.3 The Best of Both Worlds: SSIM + MSE

To capture the best characteristics of both SSIM and
MSE, we propose to combine them:

lboth = α · lSSIM +(1−α) · lMSE (7)

where we empirically set α = 0.79. This is motivated
by the fact that MSE can excel in recovering low fre-
quencies while SSIM can better preserve contrast in
high-frequency regions.
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Figure 3: Samples of video frames from uncompressed videos recorded in indoor and outdoor surveillance scenarios.

4 EXPERIMENTAL SETUP

4.1 Dataset

Previous work for JPEG compression artifact removal
were tested on BSDS500 (Martin et al., 2001) and
LIVE1 (Sheikh et al., 2014) datasets. These datasets
contain still images that have distinctly different char-
acteristics as compared to video frames encountered
in video surveillance systems. For this reason, we
have collected thirty uncompressed videos that rep-
resent common scenarios where video surveillance
cameras are deployed. The videos are 5 minutes long
movie clips and were acquired using AXIS P3227-
LVE network camera and recorded in 1080p high def-
inition (1920× 1080) at 30fps. Samples of video
frames are shown in Figure 3.

H.264/AVC encoding uses Constant Rate Factor
(CRF) as the default quality (and rate control) setting.
CRF achieves constant quality by compressing dif-
ferent frames by different amounts, thus varying the
Quantization Parameter (QP) as necessary to main-
tain a certain level of perceived quality. It does this
by taking motion into account, similar to the encoder
on a surveillance camera. CRF ranges between 0 and
51, where lower values would result in better qual-
ity, and higher values lead to more compression. To
simulate the trade-of between quality and bitrate, we
have used CRF in conjunction with Video Buffer Ver-
ifier (VBV) mode to ensure that the bitrate is con-
strained to a certain maximum as in real-world set-
tings. An exhaustive combination of CRF values (29,
35, 41, and 47) and maximum bitrate values (2Mb/s,
1.5Mb/s, and 1Mb/s) are selected to create a total of
12 data variants.

4.2 Performance Metrics

The most wide-spread evaluation metrics for qual-
ity assessment in compression artifact removal task
are MSE, and the peak signal-to-noise ratio (PSNR),

which is the MSE normalized to the maximum pos-
sible signal values expressed in decibel (dB). An-
other alternative is to use the structural similarity in-
dex (SSIM), which is the mean of the product of three
terms assessing similarity in luminance, contrast, and
structure over multiple localized windows. We report
the mean PSNR and SSIM across the 12 data variants
created.

4.3 Implementation Details

For training our networks, we use 90k video frames as
the training set and 12k for the validation set. Testing
is performed on 17k video frames for each of the 12
data variants.

We use the PyTorch framework (Paszke et al.,
2017) for our evaluations. The training process was
distributed over two Nvidia Tesla v100 GPUs with a
mini-batch of 128 images and have been carried on
for 360 epochs. For each image, we first rescale it
to (910× 512), and then we randomly crop a 64×
64 patch with horizontal flipping. We optimize the
network’s parameters with Adam (Kingma and Ba,
2015), starting with a learning rate of 10−4 and a mo-
mentum of 0.9.

5 RESULTS

5.1 Artifact Removal

The evaluation results of the mean PSNR and SSIM
across different data variants are shown in Table 1
and Table 2, respectively. We compare our results
to the simple postprocessing filter (ssp) in the FFm-
peg framework. As can be seen from the results, our
approach outperforms ssp in all data variants. More
specifically, in the case of the highest compression
level (i.e., Bitrate=1Mb/s and CRF=47), we can see
an improvement in PSNR of 0.30 dB over ssp while
SSIM is improved from 0.604 to 0.693. At the low-
est compression (i.e., Bitrate=2Mb/s and CRF=29),
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Table 1: Restoration Quality Comparison. Results reported for average PSNR (dB) using luminance.

Method Bitrate = 2 Mb/s Bitrate = 1.5 Mb/s Bitrate = 1 Mb/s
CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47

ssp 29.65 28.09 25.93 24.53 29.25 28.07 25.90 24.53 28.58 27.70 25.85 24.53
Our MSE 30.07 28.36 26.65 25.27 29.61 28.36 26.64 25.17 28.88 27.98 26.62 25.05
Our SSIM 29.69 28.12 26.02 24.78 29.32 28.12 25.91 24.78 28.54 27.72 25.88 24.78
CAR-CNN 29.76 28.19 26.07 24.81 29.38 28.18 25.96 24.81 28.60 27.78 25.93 24.81

Table 2: Restoration Quality Comparison. Results reported for average SSIM using luminance.

Method Bitrate = 2 Mb/s Bitrate = 1.5 Mb/s Bitrate = 1 Mb/s
CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47

ssp 0.817 0.789 0.725 0.604 0.807 0.788 0.723 0.604 0.787 0.774 0.720 0.604
Our MSE 0.827 0.805 0.758 0.681 0.822 0.801 0.757 0.681 0.794 0.784 0.756 0.681
Our SSIM 0.845 0.829 0.777 0.689 0.837 0.819 0.763 0.689 0.817 0.794 0.761 0.687
CAR-CNN 0.873 0.867 0.786 0.695 0.858 0.826 0.762 0.693 0.835 0.796 0.765 0.693

Table 3: Detection performance of YOLO measured as mean average precision (mAP) at IoU=0.50 on the 12 data variants
for different reconstruction methods.

Method Bitrate = 2 Mb/s Bitrate = 1.5 Mb/s Bitrate = 1 Mb/s
CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47

ssp 0.766 0.736 0.661 0.522 0.756 0.735 0.661 0.519 0.745 0.733 0.557 0.519
Our MSE 0.774 0.759 0.698 0.577 0.768 0.761 0.697 0.577 0.758 0.753 0.669 0.577
Our SSIM 0.783 0.772 0.703 0.587 0.779 0.773 0.706 0.587 0.764 0.759 0.675 0.587
CAR-CNN 0.789 0.781 0.723 0.589 0.783 0.776 0.727 0.589 0.769 0.763 0.676 0.588

we see a gain of 0.42 dB in PSNR over ssp, and
we improve SSIM from 0.817 to 0.873. From a
quality index point of view, MSE based model out-
performs SSIM and (SSIM+MSE) based models in
PSNR, which can be explained by the fact that MSE
tends to evaluate better more blurry and smooth re-
gions than realistic textures.

5.2 Object Detection

In video surveillance systems, we are more inter-
ested in understanding how video quality affects ma-
chine vision algorithms. During video compression,
quality distortions stemmed from spatial and tempo-
ral artifacts are introduced to the video frames lead-
ing to decreased performance of object detectors,
as shown in (Aqqa et al., 2019). This degradation
in performance can be explained because compres-
sion artifacts remove textures and details in these
video frames. These high-frequency features repre-
sent edges and shapes of objects that the detector may
be looking for to classify an object.

In this experiment, we select YOLO (Redmon
et al., 2016) as the object detector. We consider its
detections on uncompressed videos as ground-truth
bounding boxes, and we compare them against its
detections on reconstructed versions of the 12 com-
pressed variants. As a lower bound, we report per-
formance on images restored using ssp; results are
reported in Table 3. As can be seen, the perfor-
mance drop of YOLO with respect to its perfor-

mance on uncompressed video frames is significant.
Even for moderate compression levels (i.e., CRF=29),
the performance decreases by at least 21.1%. Our
(SSIM+MSE) based network outperforms MSE and
SSIM based networks across all data variants. In
particular, at the lowest compression level (i.e., Bi-
trate=2Mb/s and CRF=29) the improvement in mAP
using CAR-CNN is the following: ssp(+2.3%),
MSE(+1.5%) and SSIM(+0.6%) highlighting the
benefits of combining both MSE and SSIM for the
compression artifacts removal task. As can be ob-
served in Table 3, at the highest compression level
(i.e., Bitrate=1Mb/s and CRF=47), our approach has
an improvement in mAP of 6.9% over ssp, 1.1% over
MSE, and 0.1% over SSIM.

6 CONCLUSION

We have presented a 34-layer fully convolutional
residual neural network for H.264/AVC compres-
sion artifact removal in video surveillance systems.
Our network was trained using a novel loss func-
tion and outperforms MSE and SSIM based networks.
Moreover, we have shown that it is possible to im-
prove video quality, both for human viewers and ma-
chines and thus avoiding changes to the compression
pipelines through applying a pre-processing step that
removes compression artifacts.
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