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Abstract: The paper shows results of the study which aims to predict values of arterial pressure by means of heart rate 
variability features. A total list of 64 features was tested, which included features in time and frequency 
domain, as well as non-linear features. As a means of feature selection, the genetic programming was used. 
In particular binary encoding was used for generation of features in combinations as well as degree of the 
polynomial. Data of 50 students-volunteers recorded in sitting position was used. Results of the study suggests 
that certain heart rate variability features can be used for prediction of the change of arterial pressure. 
Perspectives and future plans for results improvement were described. 

1 INTRODUCTION 

Arterial hypertension is one of the most common 
diseases of the cardiovascular system worldwide. 
Sharp fluctuations in blood pressure can lead to a 
deterioration in the patient's condition. It is especially 
worth noting that the rate of change of pressure has a 
great influence. Therefore, the task of continuous 
monitoring of blood pressure becomes extremely 
important and in demand (WHO, 2018). 

Currently used long-term monitoring systems are 
usually invasive (and can only be carried out under 
clinical conditions), or intrusive (and do not allow 
continuous measurements due to the influence of 
residual occlusion). Therefore, methods of indirect, 
non-invasive and non-intrusive assessment of blood 
pressure are becoming more common. 

Blood pressure depends on several factors, heart 
rate is one of them. However, many other variables 
also affect blood pressure, such as arterial stiffness, 
blood viscosity, volume of blood pumped into the 
aorta, microcirculation impedance, etc. Artificial 
intelligence methods based on using the capabilities 
of machine learning can help solve this problem. Such 
an approach allows not only to formalize the 
description of complex living systems and conduct 
prognostic analysis, but also to find implicit patterns 
in the data. 
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Most of the work in this area comes down to using 
plethysmogram signals or a combination of 
plethysmograms with an electrocardiogram, where 
standard parameters are calculated, such as the arrival 
time of the pulse, the period of the pulse ejection, the 
pulse propagation time, and the pulse wave velocity 
(Anisimov et al., 2014; Kurylyak et al., 2013; 
Sannino et al., 2015). However, approaches that 
combine several signals are not practical for everyday 
use. 

At the same time, the possibilities of using only 
electrocardiogram signals in the task of indirectly 
assessing blood pressure have not been sufficiently 
studied. Available works, as a rule, are limited to a 
rough prediction of the level of pressure (high, normal 
or low) and do not allow to obtain accurate estimates 
(Simjanoska et al., 2018, 2019). 

In previous works, a study was carried out of the 
found complexes of significant parameters of heart 
rate variability to assess the effectiveness of 
treatment, which showed the consistency of the 
calculated estimates with blood pressure 
measurements (Vladimir Kublanov & Dolganov, 
2019). This indicates the prospects of using the 
parameters of heart rate variability signals in the task 
of indirect estimation of blood pressure. 
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2 MATERIALS AND METHODS 

2.1 Biomedical Signals Data 

Pilot study was performed in Research Medical and 
Biological Engineering Centre of High Technologies 
(Ural Federal University, Russian Federation). A total 
of 50 students volunteers have performed in the study. 
Prior to the biomedical signals acquisition the 
participants were informed of the study paradigm and 
gave the consent to participate in the study. 

The diagram of the study is presented on Figure 1. 

 

Figure 1: Study Timeline. 

All subjects were sitting during the whole Study. 
Initially, the Arterial Pressure (AP) is measured using 
a professional tonometer OMRON HEM-907 
(Omron Healthcare, Japan). The measurement of AP 
takes around 30 sec. After that the 
ElectroCardioGraphy (ECG) signals were registered 
in the first limb lead by the “Encephalan-131-03” 
device (manufactured by “Medicom-MTD” 
company, Russian Federation) for 300 sec. After that 
the AP is measured again. Follows 300 sec of ECG 
signals recording. In the end the AP is measured 
again. 

Overall, for each person there were 3 
measurements of AP and 2 measurements of ECG 
signals. The first measurement of ECG is used for 
Training and Testing, the second measurement is 
used for the Validation. 

The software of “Encephalan-131-03” device 
allows one to automatically derive the signals of 
Heart Rate Variability (HRV) from the ECG signals.  

2.2 Heart Rate Variability Features 

Present work involves list of 64 HRV features, that 
were in detail described in (Vladimir Kublanov & 
Dolganov, 2019). Briefly, that list includes 
commonly used time- and frequency-domain 
features, non-linear features as well as certain 
features of wavelet transform. The in-house software 
in Python was used to evaluate these 64 features. 

All these features are presented and briefly 
described below: 
Statistical Features 
• M, the mean value of the NN time series; 

• HR, the Heart Rate, an inverse ratio to the M; 
• SDNN, the standard deviation of the NN intervals; 
• the skewness of the dataset;  
• the kurtosis of the dataset (Zwillinger & Kokoska, 
1999); 
• CV, the coefficient of variation; 
• RMSSD is the square root of mean of squares of 
differences between successive elements (Stein et al., 
1994); 
• NN5O, the number of pairs of successive elements 
that differ by more than 50 ms; 
• pNN50, is normalized NN50 by length; 
• SDSD is the standard deviation of differences 
between successive elements (Stein et al., 1994); 
• Zero-crossing rate, ZCR, the rate of sign-changes. 
For evaluation of this feature, M is substracted from 
the HRV time-series. 

Geometric Features 

• М0, the mode; 
• VR, the variation range; 
• АМ0, the amplitude of the mode. 
These three main geometric features comprises 
following indexes:  

• SI, the Stress Index 
SI = AM0/(2·M0·VR) 

• IAB, the Index of the Autonomic Balance 
IAB = AM0/VR 

• ARI, the Autonomic Rhythm Index 
ARI = 1/(M0·VR) 

• IARP, the Index of Adequate Regulation 
Processes 

IARP = AM0/(2·M0·VR) 
• Triangular Index, also know as St. George Index 
(Malik, 1996).  
Non-linear Features 
The list of nonlinear methods studied in this work 
includes: Shannon Entropy, Aproximate Entropy 
(ApEn), Sample Entropy (SampEn) and Poincare plot 
features. 
Fourier Spectral Features 
Spectral analysis is used to quantify periodic 
processes in the heart rate by the means of the Fourier 
transform. The main spectral components of the HRV 
signal are High Frequency – HF (0.4 – 0.15 Hz), Low 
Frequency – LF (0.15 – 0.04 Hz), Very Low 
Frequency – VLF (0.04 – 0.003 Hz) (Malik, 1996; 
Ushakov et al., 2013). Features include spectral 
power of component, normalized power of 
component, maximal power and corresponding 
frequency. 
Wavelet Spectral Features 
The wavelet transform can be used as an alternative 
to the Fourier analysis (Addison, 2005). For 

AP1 AP2 AP3ECG1 ECG2 
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evaluation of the continious wavelet transfrom the 
Gaus wavelet of 8-th order was used (Mallat, 2009). 
The wavelet transform allows to obtain continious 
time series, in this case of HFwt(t), LFwt(t) and 
VLFwt(t) - time series of the HF, LF and VLF spectral 
components, respectively. The spectral features 
obtained by the wavelet transform include mean, 
standard deviation and Shannon Entropy of the 
wavelet time series. 

Moreover, one can study continious function of 
the LF/HF ratio – (LF/HF)[t]. In current study the 
following features of (LF/HF)[t] were used: 

• Nd - the number of dysfunctions; 
• pNd - the propotion of the number of dysfunctions 
divided by the length of the (LF/HF)[t]. 
• (LF/HF)max the maximal value of dysfunction 
• (LF/HF)int the intensity of dysfunction (Egorova 
et al., 2014).  

Prior to the application of genetic programming 
the features were normalized using z-normalisation.  

2.3 Genetic Programming  

In the course of the previous study, the genetic 
programming approach has proven itself to search for 
significant parameters and select the optimal machine 
learning method. However, the work was devoted to 
classification problems. Therefore, during the 
implementation of this study, solutions will be 
proposed for the use of genetic programming in 
regression problems. 

For regression task the sklearn library was used. 
In particular, LinearRegression module was used to 
evaluate the linear regression models. The 
polynomial models were evaluated using 
combination of PolynomialFeatures and Pipeline 
modules.  

The main points that should be determined when 
using genetic algorithms are the encoding, the initial 
population, the selection criterion, and the 
evolution strategy. 

In this paper, we used the simplest binary 
encoding. Each “chromosome” consists of 66 genes. 
For first 64 genes a value of "1" in the chromosome 
means that a particular HRV feature is included in the 
combination, a value of "0" means that a particular 
HRV feature is not included in the combination. Last 
2 genes are used to code the degree of Polynomial 
(from 1 to 5). Empirical evidence had shown that 
polynomials of higher order were ineffective. Overall 
each “chromosome” represents list of features in 
combination and degree of polynomial for a particular 
combination of features.  

As the initial population, it was decided to choose 
100 randomly generated chromosomes. It was 
ensured that first 64 genes contain at least single "1" 
(there is at least one feature in combination). 
Additionally, all duplicate chromosomes were 
removed.  

The selection criterion was a minimizing of the 
following fitness function f with the leave-one-out 
cross validation (LOOCV): 

f=a*Train+b*Test+c*Validate 
where Train is a term related to a training error 
(obtained on train using .score method on each 
iteration of LOOCV), Test is a term related to a test 
error (obtained on test point on each iteration of 
LOOCV), Validate is a term related to a validation 
error (obtained on a validation measurement on each 
iteration of LOOCV), a, b, c are the weight constants, 
which are 1, 2, 2 respectfully. Each term consists of 
median, maximum, minimum and standard deviation 
of absolute errors.  

As a rule, the strategy of evolution is determined 
by the ratio of the three main genetic operations - 
copying, crossover and mutation. 

In case of copying, the descendant is an exact 
copy of the ancestor. In our case, 10 representatives 
of the current generation who have the best ratings by 
the selection criterion are directly copied to the next 
generation. In case of crossover, the chromosomes of 
a child are determined by the interaction between the 
chromosomes of their parents. In our case, each 
chromosome is a normalized sum of both parents. 10 
representatives of the current generation randomly 
form 30 pairs of parents, which as a result form 30 
descendants with cross chromosomes. Mutations are 
manifestations of random changes in the 
chromosome. In our case, the mutation changes the 
gene to the opposite - “1” to “0” and “0” to “1”, 
respectively. Each gene on the chromosome has a 5% 
chance of mutating. In total, 60 mutants obtained 
from the 10 best representatives of the current 
generation pass into each subsequent generation. 
Prior to the further evaluations repeated 
chromosomes are excluded. 

The maximum number of generations in the work 
is 10. For a greater account of various probabilities, 
the Genetic algorithm was applied 25 times. Overall 
diagram of the algorithm is presented on Figure 2. 

The algorithm starts with generation of 100 
randomly generated chromosomes. After removal of 
duplicate chromosomes, for remaining chromosomes 
fitness function f is evaluated. All chromosomes are 
sorted by the value of the f. Best 10 chromosomes are 
used for Copy, Crossover and Mutation operations. 
As the result, the next generation is formed, and 
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fitness function f is evaluated again. The process of 
next generation formation and evaluation is repeated 
for 10 times. The algorithm is repeated 25 times. 

 

 

Figure 2: Genetic Programming Diagram (V. Kublanov et 
al., 2017). 

3 RESULTS 

At the first step data of AP1 and ECG1 is used for 
training. Data of AP2 and ECG2 is used for 
validation. The results of applying the genetic 
algorithm for all 25 implementations are given in 
Figures 3 and 4 for Systolic (APS) and Diastolic 
(APD) AP. Each line represents change of minimal 
fitness function f within a single evolution. Each 
column represents step of generation within a single 
evolution. Different lines represent 25 
implementations of genetic programming. The value 

itself is the minimal value of the fitness function f for 
each evolution for each generation.  

Relative errors for best representatives among all 
evolutions are presented in Tables 1 and 2.  

 

Figure 3: Genetic Programming Results for APS. 

Table 1: Errors for APS. 

  median max min std 
test 8.23% 24.09% 0.62% 6.15% 
validate 7.93% 33.97% 0.00% 7.68% 

Table 2: Errors for APD. 

  median max min std 
test 5.60% 26.35% 0.18% 6.71% 
validate 6.32% 34.45% 0.01% 7.05% 

 

As it can be seen, the best median results on test 
data is around 8% for APS and 6% for APD. In 
addition, alternative variant was considered: to the 
feature vector values of HRV features of arterial 
pressure on a previous segment were added. In 
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particular AP1 and ECG1 were used for prediction of 
AP2. At the same time validation was performed on 
data of AP2 and ECG2 for prediction of AP3.  

Results of such alternative approach are presented 
on Figures 5 and 6, and on Tables 3 and 4. 

 

Figure 4: Genetic Programming Results for APD. 

It can be seen that alternative approach can 
significantly improve results. It can be concluded that 
task of predicting AP by means of only HRV features 
can be too ambitious. At the same time the proposed 
approach can be used to evaluate change in AP after 
a certain time, when the original “calibration” value 
is known. 

It was noted that the best result was obtained for 
the linear regression (polynomial of 1st degree). Best 
combinations consist of around 20 features. Which 
coupled with 1 degree lessen overtraining. 

The results, presented in current work are 
comparable with ones obtained using Pulsation Wave 
propagation time (Anisimov et al., 2014). In that work 

authors reported that for a 1/3 of validation set error 
was less than 1 mmHg, average error was 9%. 

 

Figure 5: Alternative Genetic Programming Results for 
APS. 

Table 3: Alternative Errors for APS. 

  median max min std 
test 2.65% 10.07% 0.06% 2.58% 
validate 4.04% 13.77% 0.00% 3.62% 

Table 4: Alternative Errors for APD. 

  median max min std 
test 4.72% 13.12% 0.05% 3.46% 
validate 5.91% 21.38% 0.00% 4.84% 

 

Results of the current work are also comparable 
with results application of genetic algorithms for 
symbolic regression (Dolganov, 2019). Although 
additional comparison is required.  
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Figure 6: Alternative Genetic Programming Results for 
APD. 

4 DISCUSSION AND 
CONCLUSIONS  

The paper describes investigation testing possibility 
of the indirect AP measurement by means of HRV 
features. For such task a pilot study was performed on 
50 student-volunteers. The study consisted of 
simultaneous record of ECG signals and 
measurements of AP. In the following, HRV time-
series were derived from ECG signals by software 
application. A list of 64 HRV was tested. 

Proposed modification of previously used 
approach of genetic programming (V. Kublanov et 
al., 2017). Previously the approach was used for the 
classification task in task of arterial hypertension 
express-diagnosing. In the paper the approach was 
modified to be applied in the regression task. 

Preliminary results have shown that the error of 
AP prediction using only features of HRV can be 
relatively high. At the same time, when we add 
“calibration” data to the HRV features it is possible 
to predict change of the AP with relatively low error. 

Even though the results, presented in the paper, 
are relatively low, they show that there is a certain 
relation between HRV features and AP data. It is 
worthy to point out that no additional data was used 
in current study. In particular, no data on gender, 
anthropomorphic features, age was used. In addition, 
features of raw ECG signals (morphology, features of 
P-QRS-T complex) were also not yet tested. Addition 
of such features might improve the results in the 
proposed approach. 

Among the possible future works directions are 
application of deep neural networks (Belo et al., 
2017) in the task which proved to effective in the 
biomedical signals synthesis. 
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