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Abstract: Quantifying health effects resulting from environmental exposures is a complex task. Underestimation of 
exposure-outcome associations may occur due to factors such as data quality, jointly distributed spectra of 
possible effects, and uncertainty about exposure levels. Parametric methods are commonly used in population 
health research because parameter estimates, rather than predictive accuracy, are useful for informing 
regulatory policies. This project considers complementary approaches for capturing population-level 
exposure-outcome associations: multiple linear regression and canonical correlation analysis (CCA). We 
apply these methods for the task of characterizing relationships between air quality and cause-specific 
mortality. We first create a national air pollution exposures-mortality outcomes data set by integrating United 
States Environmental Protection Agency (EPA) annual summary county-level air quality measurements for 
the period 1980-2014 with age-adjusted gender- and cause-specific county mortality rates from the same time 
period published by the Institute for Health Metrics and Evaluation (IHME). Code for data integration is made 
publicly available. We examine our model parameter estimates together with air quality-mortality rate 
associations, revealing statistically significant correlations between air quality variations and variations in 
cause-specific mortality which are particularly apparent when CCA is applied to our population health data 
set.  

1 INTRODUCTION 

A significant challenge in assessing the impact of 
environmental factors on health outcomes is that 
many health outcomes are not deterministic and have 
multiple contributing risk factors related not only to 
the exposures being studied, but also to other 
unrelated and unmeasured factors (Vineis & Kriebel, 
2006). In this work, we investigate this phenomenon 
with regards to the potential impact of air pollution 
exposures on mortality rates. The task of estimating 
the potential contributions of air quality to varying 
mortality causes is challenging because over time and 
space, not all individuals will have the same 
underlying risk for different causes of death or the 
same susceptibility to the effects of an exposure such 
as air pollution.                                                             

For example, risk of death from respiratory or 
cardiovascular disease may be influenced not only by 
the quality of the air in a particular location, but also 
by an individual’s long-term health, which is 
impacted by factors such as activity level, blood 

pressure, and diet, as well as by short-term health 
events such as respiratory infections, among other 
considerations (Vineis et al., 2006; Cromar, Gladson, 
& Ewart, 2019). 

Additionally, we may also find that multiple 
interrelated outcomes can occur from a similar 
mechanism. An example of this would be the 
occurrence of a heart attack or stroke as a 
manifestation of vascular disease, or in the 
occurrence of a fatal cardiac event due to respiratory 
stress. As we will demonstrate in the analyses 
presented in this paper, these complex, non-
deterministic, and overlapping relationships between 
our predictor and outcome variable sets have the 
potential to present as more strongly correlated latent 
relationships with air pollution variability through the 
covariance of different mortality rates, rather than in 
the form of parametric effect estimates, as can be 
obtained using linear regression models which predict 
single mortality rates from air quality measures.  
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1.1 Motivation 

The United States Clean Air Act §7401 et seq. (1970) 
is a federal law that was first passed in 1970 and 
amended in 1977 and 1990. The Clean Air Act 
requires the United States Environmental Protection 
Agency (EPA) to set National Ambient Air Quality 
Standards (NAAQS) for six air pollutants termed 
“criteria air pollutants”: ground-level ozone, 
particulate matter, carbon monoxide, lead, sulfur 
dioxide, and nitrogen dioxide. Air pollution exposure 
has been linked in numerous studies with increased 
risk for adverse health events, including cardiac events 
and strokes (Di, Wang, Zanobetti, et al., 2017; Shah, 
Lee, McAllister, et al. 2015; Han, Lim, Yorifuji, & 
Hong, 2018; Peng, Xiao, Gao, et al., 2019; India State-
Level Disease Burden Initiative Air Pollution 
Collaborators, 2019; Wang, Zhao, Liou, et al., 2019).  
In addition, negative health impacts have been found 
to be associated with air pollution exposure even at 
levels below current United States federal regulatory 
limits. For example, in one study of a Medicare 
beneficiary population, increased all-cause mortality 
was found to be associated with higher levels of small-
diameter particulate and ozone air pollution exposure 
that were within federal exposure limits (Di et al., 
2017). 

Since air pollution exposure may impact morbidity 
and mortality risk across multiple organ systems, it 
becomes challenging to evaluate and quantify the 
effects of air pollution exposure on population health, 
since each possible outcome has other unique risk 
factors and rates of occurrence apart from the effects 
of air pollution exposure. Nonetheless, such dose-
response and predictive models are necessary for 
evaluating and informing policies that regulate and 
update air pollution exposure limits. One approach for 
modelling cause and effect relationships is the use of 
multiple linear regression, which estimates a response 
quantity from a set of predictor variables (James, 
Witten, Hastie & Tibshirani, 2014). When assessing 
the impacts of different environmental exposures on 
multiple health target outcomes with the use of 
regression models, however, we may underestimate 
associations between environmental factors and 
multiple interrelated outcomes by examining each 
individually, rather than considering the total variation 
in the outcomes of interest relative to exposure 
variables.  

1.2 Proposed Approach 

Illustrating this point, in this paper we first examine 
relationships among interrelated air pollution 

exposure measures and cause-specific mortality rates 
as single rates, using multiple linear regression. We 
then explore the relationship between variations in air 
quality and variations in health outcomes by applying 
Canonical Correlation Analysis (CCA), which finds 
combinations of predictor and outcome set elements 
which are maximally correlated with each other, 
thereby permitting quantification and hypothesis 
testing about the presence of latent intercorrelations 
accounting for covariations across and between 
variable sets (Hotelling, 1936; Gonzalez, Dejean, 
Martin & Baccini, 2008). CCA is performed in this 
study by taking year and air quality measures as 
elements of one intercorrelated variable set and 
mortality rates for male and female all-cause, 
cardiovascular, respiratory, and infectious disease 
mortality as elements of a second intercorrelated 
variable set.  

Application of CCA to these matched data sets 
then produces independent, linear combinations of set 
variables which are maximally correlated in sequential 
independent projection spaces. These independent 
correlated projections of the data are termed canonical 
dimensions, and the existence of a statistically 
significant correlation within a given canonical 
dimension may be interpreted as there being a latent, 
unmeasured (canonical) factor accounting for the 
observed covariation relationship between the two sets 
of variables. Using the approaches of linear regression 
and CCA together gives us complementary 
perspectives on our phenomena of interest: from linear 
regression, the proportion of variation in each 
mortality rate explained by a multiple linear regression 
model using year and air quality measures as 
predictors, and from CCA, the degree to which 
county-specific variations in cause-specific mortality 
may be associated with air quality variations. 

1.3 Key Contributions 

 We create and publicly release a novel national 
county-level air pollution exposure - mortality 
outcome data set which integrates EPA air quality 
measurements with county-level mortality data from 
the Institute for Health Metrics and Evaluation 
(IHME). Our approach uses federal county identifiers, 
permitting easy integration with other geographically 
coded data sets.   
 We quantify nationwide associations between 
cause-specific mortality rates and air quality measures 
in the United States over a 34-year time period. 
 We compare the performance of CCA and 
regression for characterizing statistical relationships 
among our data attributes, showing that variations in 
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air quality have a strong and statistically significant 
correlation with mortality rate variations. 
 Our findings have important public health 
implications: we find associations between lower air 
quality and increased rates of specific mortality causes 
even within United States regulatory limits for air 
quality.  
 We highlight further applications of our approach 
for other questions in environmental epidemiology 
and public health research. 

2 RELATED WORK 

Regression models are commonly used to examine 
associations between air pollution of different types 
and specific health outcomes (Di et al., 2017; Shah et 
al. 2015; Han et al., 2018; Peng et al., 2019; India 
State-Level Disease Burden Initiative Air Pollution 
Collaborators, 2019; Wang et al., 2019). Findings 
reported in such studies commonly include estimates 
of excess mortality resulting from air pollution 
exposures of different types and levels, as well as 
parametric estimates of the contributions of specific 
types of air pollution to different outcomes. To date, 
numerous studies have reported impacts of air quality 
on multiple health outcomes. A challenge for these 
studies, however, is that since there exists evidence 
that air pollution exposure adversely effects multiple 
interdependent organ systems, any single health 
outcome will be insufficient for fully quantifying the 
impact of air pollution exposure on the overall health 
of a study population. 

CCA thus has the potential to add to the insights 
provided by these previous studies as a result of its 
being specifically suited for the situation where we 
have multiple intercorrelated exposure measures and 
multiple interrelated health effects (Hotelling, 1936; 
Gonzalez et al., 2008). A further strength of applying 
CCA for questions in population-level epidemiology 
is that rather than assuming independence of 
predictors or applying domain knowledge to engineer 
interaction terms (as is commonly done in regression 
analysis), unmeasured phenomena which impact 
multiple variables and create intercorrelations may be 
uncovered in the model as statistically significant 
high-magnitude cross-set correlations between 
projections of the data sets in the canonical 
dimensions (Hotelling, 1936; Gonzalez et al., 2008).  

Canonical correlation analysis (CCA) was first 
described by Hotelling in 1936. CCA is used to 
examine latent (canonical) relationships between 
multi-dimensional vectors X = (x1, x2, …xn) and Y = 
(y1,y2, …yn) which have non-zero Pearson 

correlations (ρ) among variables such that ρ(xi, xj), 
ρ(yq, yr), ρ(xk, yp) are non-zero for some variables. 
Existence of such non-zero intercorrelations implies 
that linear combinations of variables in the two sets 
may be predictable by or predictive of the others. CCA 
seeks to find linear combinations of X and Y with 
maximal correlations with each other. In effect, these 
linear combinations may be used to examine and 
characterize possible latent relationships between 
multidimensional X and Y domains, with correlations 
between X and Y sets in the canonical dimensions 
taken to represent latent factors accounting for 
correlated set covariations (Hotelling, 1936; Gonzalez 
et al., 2008).  

In recent years, CCA has found further extensions 
in kernel (Rudzicz, 2010) and deep (Andrew, Arora, 
Bilmes & Livescu, 2013) CCA methods. In kernel 
CCA, data sets are projected into high-dimensional 
kernel space before CCA is performed, with the use of 
a kernel permitting non-linear representations of the 
data sets being correlated. Challenges in kernel and 
deep CCA, however, include appropriate kernel 
selection, difficulty when trying to interpret projection 
relationships, and avoiding overfitting. As kernel and 
deep CCA methods are further developed, future work 
focusing on interpretability of canonical projections 
may find use in epidemiology applications, as 
demonstrated here for linear CCA, which relies upon 
the interpretability of the canonical coefficients to 
validate our interpretations of the results of an 
analysis. 

3 METHODS AND PROCEDURES 

3.1 Data Sources 

Data sources for this study were selected to provide 
county-level information on air pollution exposure 
and cause-specific mortality linked by a shared key, 
which in this case are the United States county 
identifier and the year of data collection.  
Air Quality Data: AirData (United States 
Environmental Protection Agency [EPA]) is a website 
maintained by the EPA that provides public access to 
air quality measurements collected at more than 4,000 
outdoor monitors across the United States, Puerto 
Rico, and the United States Virgin Islands. AirData 
has available for download annual and daily summary 
data tables containing measurements of overall 
summary measures of ambient air quality, regulated 
pollutants, particulates, meteorological conditions 
(wind, temperature, pressure, barometric pressure, and 
RH/dewpoint), toxics, ozone precursors, and lead 
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measurements. For this analysis, we downloaded the 
‘Annual Summary’ tables.  
Mortality Data: United States county-level age-
standardized respiratory mortality rates for the years 
1980-2014 are available through the IHME (Institute 
for Health Metrics and Evaluation [IHME]). The 
IHME produced estimates for United States county-
level mortality rates for 21 causes of death including 
chronic respiratory diseases for the period 1980-2014 
(IHME). This aggregated data set is available through 
the Global Health Data Exchange. Age-standardized 
mortality rates for male, female, and combined 
genders are reported as the number of deaths per 
100,000 people in the population. These estimates 
were generated using death records from the National 
Center for Health Statistics (NCHS); population 
counts from the U.S. Census Bureau, NCHS, and the 
Human Mortality Database; and the cause list from the 
Global Burden of Disease Study (GBD). 

3.2 Analysis and Methodology 

Data Preprocessing and Integration: Data pre-
processing and table joins were implemented in 
Python, version 3.6, yielding a single .csv file 
containing 31,019 data rows uniquely identified by 
county location and year and for which mortality rate 
and air quality measurement information was 
available. From the EPA data, we extract the 
following measures for each county and year: median 
annual Air Quality Index (AQI) (AQI is summary 
measurement of air quality, with scores ranging from 
0-500); maximum annual AQI; the proportion of 
recorded days on which AQI fell into each of the 
following categories: Good (0-50), Moderate (51-
100), Unhealthy for Sensitive Groups (101-150), 
Unhealthy (151-200), Very Unhealthy (201-300), and 
Hazardous (301-500); and the proportion of days on 
which the AQI was attributed to one of the following 
pollutants: Carbon Monoxide (CO), Nitrogen Dioxide 
(NO2), Ozone, Particulate Matter (PM10), and Sulfur 
Dioxide (SO2). 

In our analyses, we use this set of air quality 
features to understand and predict eight annual, 
county-specific mortality targets extracted from the 
IHME data set:  male and female age-adjusted 
mortality rates for the following causes: All (ALL), 
Respiratory disorders (RESP), Cardiovascular 
diseases (CVD), and Lower respiratory and other 
common infectious diseases (INF). These causes of 
mortality were selected for inclusion based on 
previous studies linking air pollution exposure with 
systemic inflammation and adverse effects on the 
cardiovascular and respiratory systems (Di, Wang, 

Zanobetti, et al., 2017; Shah, Lee, McAllister, et al. 
2015; Han, Lim, Yorifuji, & Hong 2018; Peng, Xiao, 
Gao et al., 2019; India State-Level Disease Burden 
Initiative Air Pollution Collaborators, 2019; Wang, 
Zhao, Liou et al., 2019). We included all data rows for 
which both air quality and mortality values were 
available. Our complete data analysis and code can be 
found here (https://github.com/erinteeple/CCA_air). 
Exploratory Data Analysis: To explore simple 
pairwise linear relationships between the attributes in 
our dataset, we present Pearson correlations. Figure 1 
demonstrates the existence of linear correlations 
among and between air quality measures and mortality 
rates. Given these multiple intercorrelations between 
and within sets (Figure 1), we see that CCA is 
appropriate for our analysis. We have intercorrelated 
measures of air pollution exposures, intercorrelated 
mortality rate measures, and cross-correlations 
between elements of the two sets. Initial data 
exploration also included characterizing temporal 
trends in the mortality and air quality variables. Figure 
2 shows generally linear trends for mean mortality by 
cause and year and substantial variations in rates 
within years for different locations. Mean mortality by 
cause was observed to differ for males and females, 
thus we chose to keep these rates separated in our 
analyses (Figure 2). With respect to our air pollution 
exposure measurements, several important 
considerations need to be taken into account. First, 
some subgroups of variables could not be used 
together in regression models due to frank violations 
of assumptions of predictor independence. To address 
these issues, first, the proportions of days in each of 
the AQI rating categories were combined into a single 
measure, which is the proportion of days on which the 
AQI was in the good or moderate air quality 
categories. Intuitively and as can be seen in Figure 1, 
 

 

Figure 1: Pearson correlations for mortality rates and air 
quality exposure measures. 
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Figure 2: Box plots showing variations in age-standardized 
mortality rates per 100,000 persons for time period 1980-
2014 by gender and cause: M: male; F: female; ALL:  all 
causes; RESP: respiratory; CVD:  cardiovascular; INF: 
infectious disease. 

median AQI, maximum  AQI, and proportion  of days 
on which AQI was good or moderate are interrelated 
and therefore cannot be used together, thus, separate 
linear regression models were generated for each of 
these AQI summary measures and compared. An 
additional consideration regarding the formatting of 
the air quality summary data is that the proportions of 
specific pollutants reflect only the proportion of the 
days on which the maximal AQI is attributed to a 
maximal type of air pollution – this means that (1) air 
pollutants present at other levels are not captured by 
this measure and so we have no measure of co-
exposures and (2) the magnitude of exposure to a 
given pollutant is not captured by this proportion, only 
that the pollutant was at a level accounting for the 
recorded AQI. We therefore chose to include 
interaction terms between AQI summary measures 
and pollutant proportion terms in our multiple linear 
regression models in order to assess the scaled 
contributions of different pollutants. Multiple linear 
regression and CCA were performed in R and Python 
(Gonzalez et al., 2008; Pedregosa et al., 2011). 

Multiple Linear Regression Analysis: Multiple 
linear regression is a multivariate statistical method in 
which we examine linear correlations between a 
dependent variable and one or more independent 
variables (James et al., 2014). Multiple linear 
regression analysis produces statistical outputs 
including coefficient estimates for each predictor, 
which estimate the magnitude and direction of that 
predictor’s contribution to the dependent variable 
value in the model and confidence intervals for each 
coefficient, which indicate a probability-based range 
of values for these coefficients. The ability of a 
multiple linear regression model to explain variation 
in the dependent variable using the independent 
variables may be also be quantified using the adjusted 
R-squared value for the regression. The adjusted R-
squared value may be interpreted as quantifying the 
proportion of variation in the dependent variable 
explained by the independent variables in the linear 
regression model. 
Canonical Correlation Analysis: As an analysis 
method, the formulation of CCA is as follows for a 
data matrix M comprised of attribute sets X and Y, for 
which   and ݍ  measurements are available, 
respectively, for each of N observations. 

ܯ ൌ ሾ X | Y ሿ ൜
X ∶ N ∗ 	
Y ∶ N ∗ (1) ݍ	

CCA then seeks independent, linear combinations 
of the X and Y set variables ܷ  and ܸ which 
maximize ܿݎݎሺܷ, ܸሻ: 

ܷ ൌ ܽ ܺ ൌܽ



ୀଵ

ܺ (2)

ܸ ൌ ܾ ܻ ൌܾ



ୀଵ

ܻ (3)

,ሺܷݎݎܿ ܸሻ ൌ
,ሺܷݒܿ ܸሻ

ඥݎܽݒሺܷሻ	ݎܽݒሺܷሻ
	 (4)

Given that environmental exposures rarely occur 
in isolation and may have effects on multiple organ 
systems at varying rates (Vineis et al., 2006), CCA 
then is suited for such applications in the study of 
relationships between environmental factors and 
population health outcomes, particularly, as is 
commonly the case, where baseline rates for these 
outcomes are expected to vary with time and spatial 
location and where the true rates are not themselves 
known. In this study, we compare linear regression 
with CCA, where mortality rates stratified by cause 
and gender serve as a multidimensional intercorrelated 
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response vector set to be cross correlated with 
intercorrelated pollution exposure measures to 
determine if this approach uncovers correlated 
covariance between these variable sets. We compare 
the results of our analysis with the proportion of 
variance in the individual mortality rates explained 
using multiple linear regression. In addition, in CCA 
we also examine the weight vectors assigned for the 
attributes in the two variable sets relative to their 
contributions to each sequential canonical projection. 

The interpretation of the variable weights in CCA 
differs notably from parametric estimates in multiple 
linear regression in that for a multiple linear regression 
model, a coefficient would be taken to represent the 
linear contribution of a variable to a specific 
dependent/target value in the regression model. In 
contrast, the variable weights assigned in CCA apply 
in sequential canonical dimensions. These weights are 
taken to reflect the importance and relative direction of 
each set element’s contribution to each dimension-
specific correlation relationship. Examination of these 
canonical weightings provides insight into the relative  
contribution of each variable in the sets relative to the 
latent relationship captured by the correlated 
projection, and these weightings are most informative 
when examined relative to weightings of the variables 
in the other set. These correlated projections produced 
by the set variable weightings may then be interpreted 
as reflecting the influence of potential latent factors 
captured in each of the canonical projections of the 
paired data sets. 

4 RESULTS 

4.1 Multiple Linear Regression 

Table 1 presents adjusted R-squared values for 
regression models predicting annual mortality i) from 
year only and ii) from year plus air quality measures, 
including interaction terms between proportions of 
days on which the leading pollutant was of a specific 
type. Using the general linear test (Kutner, Nachstein, 
Neter & Li, 2004) to compare these models, we 
observe that significantly greater proportions of 
variation for all mortality rates are explained by linear 
regression models including year along with air quality 
measures, consistent with research reporting diverse 
multi-system health impacts (Table 1). Confidence 
intervals for the air quality measure coefficients are 
presented in Table 2. Of note, the coefficient intervals 
for some air pollution variables include 0 (no effect), 
and some coefficient estimates are negative. For 
example, surprisingly, ozone has a negative coefficient  

Table 1: Mortality rate prediction. 

 

Table 2: Linear model coefficient estimates. 

 

interval for female respiratory mortality, but this 
should be interpreted in the context of overall 
population-level trends in female respiratory mortality 
(Figure 2, F-RESP), as well as consideration of the 
other variables in the regression. 

It is also worth noting that proportion of variation 
explained by the multiple linear regression models is 
more suitable in this case for comparing models than 
is mean-squared error, as we conduct these analyses 
without knowing what variability exists in our targets 
due to causes other than air quality and our target rates 
are expected to differ in their distributions. 
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4.2 Canonical Correlation Analysis 

The results of canonical correlation analysis applied to 
our data set are presented in Table 3. By CCA, in the 
first canonical dimension, we observe a correlation of 
0.91 between the set of mortality rates and the set of 
air quality variables which is found to be statistically 
significantly different from 0 (null hypothesis for 
testing). As can be seen in Table 3, in this first 
canonical dimension, we observe positive weights 
assigned to multiple adverse air quality measures, 
positive weights assigned to mortality rates of multiple 
causes, and a negative weight (protective effect) 
assigned to the proportion of days on which the AQI 
was rated as good or moderate.  

These CCA results quantify a strong linear 
correlation between air quality variations and 
mortality rate covariations due to a latent factor, which 
in this case we propose may be the biological 
relationship between air pollution exposure and its 
effects on human body system health and functions. 
While in the linear regression model, we aimed to 
estimate parametric contributions of measures of air 
quality on the mortality rates of interest, by utilizing 
CCA, we expand our concept of linear association to 
capture the effects of the environmental exposure on 
paired set covariation.      

Table 3: CCA coefficient estimates. 

 

5 DISCUSSION 

We find in this analysis a strong and statistically 
significant first-dimension canonical correlation 
between variations in air pollution exposure and 
variations in cause-specific mortality in the United 
States during the years 1980-2014. These results  

 

Figure 3: Air Quality and Mortality Variable Set 
Correlations in the first three canonical dimensions. Note 
the high linear correlation (0.91) in the first canonical 
dimension, which also stratifies data by year (color).    

complement our findings in linear regression analysis, 
where we observe statistically significantly better 
model fit in our models which include air quality 
measures compared to a model which predicts 
mortality rates from year alone.  
Interestingly, We Observe These Relationships 
between Air Pollution Exposures and Mortality of 
Different Causes even at Air Pollution Levels that 
are Subject to United States Federal Regulatory 
Limits. In the case of air pollution, there exists other 
research linking airborne exposures with health 
outcomes of different types (Di et al., 2017; Shah et al. 
2015; Han et al., 2018; Peng et al., 2019; India State-
Level Disease Burden Initiative Air Pollution 
Collaborators, 2019; Wang et al., 2019).   The results 
of this analysis demonstrate the utility of CCA 
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alongside regression for examination of the possible 
effects of environmental exposures on health outcome 
distributions, which in the absence of knowledge of 
the intrinsic rates of these effects allows for the 
quantification of a stronger association and 
identification of possible harm to human health.  
Implications for Future Population-level Outcome-
Exposure Analysis: This success of CCA for 
specifically capturing the relationships between 
exposure and outcome covariations has further 
applications for approaching problems where a link 
between environmental factors and possible health 
effects is only hypothesized. CCA has other useful 
potential applications in such investigations which 
seek to determine the relative contributions of 
environmental factors or other proposed risk factors to 
shifts in distributions of multi-class outcomes, for 
example variations in rates of cancers of different 
kinds relative to different complex background 
exposure levels.  

An advantage of this approach is that we do not 
require a priori knowledge of outcome distributions or 
background risk levels. As evidenced particularly by 
the strong and significant correlation in the first 
canonical dimension in our CCA analysis, we see that 
CCA quantifies a link between covariations in the data 
sets, and the interpretation of this link can be 
considered against the relative weights assigned to 
each of the set elements in the canonical projections 
(Hotelling, 1936; Gonzalez et al., 2008). Given that 
environmental exposures rarely occur in isolation and 
may have effects on multiple organ systems, CCA is 
therefore uniquely suited for applications where we 
aim to explore whether covariation relationships 
between multi-dimensional environmental factors and 
interrelated population health outcomes are present.  

Future work advancing CCA applications in 
environmental epidemiology may take into 
consideration not only the formulation of maximally 
correlated projections beyond those produced through 
linear CCA methods but also preservation of 
interpretability of the latent weightings, in order to 
permit assessment and characterization of latent factor 
relationships in kernel and deep CCA formulations or 
the identification of locations which map to similar 
positions within the latent projections as regions of 
interest for further study. 

6 CONCLUSIONS 

In this work, we explore the potential of CCA for 
population-level environmental epidemiology by 
demonstrating its use for understanding the impact of 

air pollution on mortality. Our analysis demonstrates 
the complementarity of CCA for use alongside 
traditional multiple linear regression approaches and 
the promise of this method for extension to 
investigating other hypothesized exposure outcome 
data set relationships. 
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