
Affine Transformation from Fundamental Matrix and Two Directions

Nghia Le Minh a and Levente Hajder b

Department of Algorithms and Their Applications, Eötvös Loránd University,
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Abstract: Researchers have recently shown that affine transformations between corresponding patches of two images
can be applied for 3D reconstruction, including the reconstruction of surface normals. However, the accurate
estimation of affine transformations between image patches is very challenging. This paper mainly proposes
a novel method to estimate affine transformations from two directions if epipolar geometry of the image pair
is known. A reconstruction pipeline is also proposed here in short. As side effects, two proofs are also given.
The first one is to determine the relationship between affine transformations and the fundamental matrix, the
second one shows how optimal surface normal estimation can be obtained via the roots of a cubic polynomial.
A visual debugger is also proposed to validate the estimated surface normals in real images.

1 INTRODUCTION

Stereo vision has been intensively researched for
many decades in computer vision (Hartley and Zisser-
man, 2003). Classical approaches assume that there
are point correspondences in two images, and then the
3D geometry of the scene and the camera parameters
can be reconstructed. However, it is preferred if the
cameras are calibrated, i.e. the case when the intrin-
sic camera parameters are estimated e.g. by the well-
known chessboard-based method of Zhang (Zhang,
2000).

Recently, researchers have started to process the
affine transformations between corresponding image
patches, not only the corresponding point locations.
A local affine transformation represents the warp be-
tween the infinitely close area around the correspond-
ing point pairs. It can be applied for homography
estimation (Barath et al., 2016), surface normal re-
construction (Köser and Koch, 2008; Barath et al.,
2015); recovery of epipoles (Bentolila and Francos,
2014), camera pose estimation (Köser, 2009) as well
as structure-from-motion pipelines (Raposo and Bar-
reto, 2016; Hajder and Eichhardt, 2017).

The input of these algorithms are local affine
transformations. There are many implementations
for detecting the local affinities (Mikolajczyk et al.,
2005). Maybe the most effective ones are affine-
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covariant feature detectors such as Affine-SIFT
(Morel and Yu, 2009) or Hessian-Affine (Mikolajczyk
and Schmid, 2002).

The goal of this paper is to show that local
affine transformations can be estimated from direc-
tions around point correspondences. The proposed al-
gorithm is theoretically based on the work of Barath
et al. (Barath et al., 2017). They showed that a fun-
damental matrix gives two constraints for an affine
transformation. Their result is exactly the same as
the one published in the work of Raposo and Bar-
reto (Raposo and Barreto, 2016), however, their proof
has geometric meaning. It is demonstrated here that
the other two degrees of freedom (DoF) can be deter-
mined by two corresponding directions of the images.
Contribution. The main theoretical contribution of
the paper is four-fold: (i) First, the proof of (Barath
et al., 2017) is reformulated for the sake of easier un-
derstanding. (ii) Then it is shown that an affine trans-
formation can be estimated from two corresponding
directions in the images if the fundamental matrix of
the stereo setup is known. A linear method is intro-
duced here. (iii) It is shown that the surface normal
can be estimated if the intrinsic camera parameters are
known. Barath et al. (Barath et al., 2015) showed that
the optimal solution can be given via a quartic poly-
nomial, we correct it here and prove that that poly-
nomial is cubic. (iv) It is also demonstrated in the
experiments that affine transformations can be calcu-
lated from optical flow, and these transformations can
be inserted into the reconstruction pipeline.
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2 AFFINE TRANSFORMATIONS
AND EPIPOLAR GEOMETRY

Given two patches, the centers are p1 and p2, the
affine transformation between the shapes is

A =

[
a1 a2
a3 a4

]
. (1)

The epipolar geometry is represented by the fun-
damental matrix F. As it is well-known in computer
vision, it can be estimated from at least seven point
correspondences (Zhang, 1998).

The stereo problem is visualized in Fig. 1. The
corresponding epipolar lines are as follows:

l2 = F
[

p1
1

]
,

l1 = FT
[

p2
1

]
.

The line normals, i.e. the perpendicular direction
of the lines, are computed as

n1 =
l̂1√
ˆlT1 l̂1

=

F̃T

[
p2
1

]
∥∥∥∥∥F̃T

[
p2
1

]∥∥∥∥∥
2

,

n2 =
l̂2√
ˆlT2 l̂2

=

F̂

[
p1
1

]
∥∥∥∥∥F̂

[
p1
1

]∥∥∥∥∥
2

.

where l̂ denotes the first two coordinates of line
parameters, represented by vector x, matrices F̃ and
F̂ consist of the first (left) two columns and (top) two
rows of the fundamental matrix F, respectively.

Points p1 and p2 lie on l1, and l2, respectively.
Therefore, lT1 p1 = 0 and lT2 p2 = 0.

If another point q1 = p1 + εn1 is taken in the first
image, where n1 is the normal vector of line l1, then
the corresponding epipolar line in the other image is

l′2 = F
[

p1
1

]
+F

[
εn1
0

]
.

The distance d of the original point p2 and l′2 is

d =

[
p2
1

]T

l′2√
l̂2
′T ˆl2′

,

where l̂′2 is the first two coordinates of line parameters
l′2. Thus

l̂′2 = F̂
([

p1
1

]
+

[
εn1
0

])
.

The denominator is as follows:√
l̂2
′T ˆl2′ =

∥∥∥∥F̂
([

p1
1

]
+

[
εn1
0

])∥∥∥∥
2
.

After elementary modifications, the formula for
distance d can be written as follows:

d =

[
p2
1

]T (
F
[

p1
1

]
+F

[
εn1
0

])
∥∥∥∥F̂
([

p1
1

]
+

[
εn1
0

])∥∥∥∥
2

=

ε

[
p2
1

]T

F
[

n1
0

]
∥∥∥∥F̂
([

p1
1

]
+

[
εn1
0

])∥∥∥∥
2

,

since
[

p2
1

]T

F
[

p1
1

]
= 0. Therefore,

d = ε

[
p2
1

]T

F̃n1∥∥∥∥F̂
([

p1
1

]
+

[
εn1
0

])∥∥∥∥
2

.

The scale of the problem can be calculated by
moving the points to infinitely close to the original
position p1. Then,

s = lim
ε→0

d
ε
= lim

ε→0

[
p2
1

]T

F̃n1∥∥∥∥F̂
([

p1
1

]
+

[
εn1
0

])∥∥∥∥
2

=

[
p2
1

]T

F̃
F̃T
[

p2
]

∥∥∥∥∥F̃T

[
p2
1

]∥∥∥∥∥
2∥∥∥∥F̂

[
p1
1

]∥∥∥∥
2

=

[
p2
1

]T

F̃F̃T
[

p2
1

]
∥∥∥∥F̃T

[
p2
1

]∥∥∥∥
2

∥∥∥∥F̂
[

p1
1

]∥∥∥∥
2

=

∥∥∥∥F̃T
[

p2
1

]∥∥∥∥2

2∥∥∥∥F̃T

[
p2
1

]∥∥∥∥
2

∥∥∥∥F̂
[

p1
1

]∥∥∥∥
2

=

∥∥∥∥F̃T
[

p2
1

]∥∥∥∥
2∥∥∥∥F̂

[
p1
1

]∥∥∥∥
2

.

An affinity transforms the normal of an epipolar
line as AT n2 = sn1, where s is the scale. This scale
can be eliminated by forcing the directions to be unit
size.
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Figure 1: Basic stereo problem for scale estimation. Corresponding point pairs are (p1,p2) and (q1,q2); corresponding lines
denoted by (l1, l2) and (l′1, l

′
2). The scale to be calculated is given by the ratio d/ε.

If the scale is substituted, and the length of the
normals of epipolar lines are forced to be one, the fol-
lowing equation is obtained:

AT
F̂
[

p1
1

]
∥∥∥∥F̂
[

p1
1

]∥∥∥∥
2

=

∥∥∥∥F̃T
[

p2
1

]∥∥∥∥
2∥∥∥∥F̂

[
p1
1

]∥∥∥∥
2

F̃T
[

p2
1

]
∥∥∥∥F̃T

[
p2
1

]∥∥∥∥
2

.

The final formula that connects fundamental ma-
trix, point locations and affine correspondences is as
follows

ATF̂
[

p1
1

]
=−F̃T

[
p2
1

]
. (2)

The minus sign comes from the fact that the cross
product matrix is a skew-symmetric one and the de-
terminant of the camera matrices have the same sign1.
This formula states that a 2D vector equation can be
written for a valid affine transformation if the epipo-
lar geometry, represented by the fundamental matrix,
is known.

3 ESTIMATION OF AN AFFINE
TRANSFORMATION IF
EPIPOLAR GEOMETRY IS
KNOWN

The goal of this section is to show how an affinity
can be estimated for a stereo correspondence if the

1In other words, both image coordinate systems are left
or right handed.

locations and two corresponding directions are given
in the images. The locations in the images are de-
noted by p1 =

[
u1 v1

]T and p2 =
[

u2 v2
]T ,

while the directions by d1i =
[

u1i v1i
]T and d2i =[

u2i v2i
]T

, i∈ {1,2}. The affine transformation is
written by a 2×2 matrix as it is defined in Equation 1.

3.1 Estimation of an Affine
Transformation

The relationship between point locations, affine trans-
formation, and the fundamental matrix is given in
Eq. 2. Substituting the coordinates, the following for-
mula is obtained:

AT F̃

 u1
v1
1

=−F̂T

 u2
v2
1


As the multiplication of the fundamental matrix

and point locations gives the epipolar line in the sec-
ond image, and the transpose of the fundamental ma-
trix and second point location yield the correspond-
ing epipolar line in the first image, the vector-equation
can be rewritten as

AT
[

l2u
l2v

]
=−

[
l1u
l1v

]
,

where the normals of the epipolar lines are the vectors
n1 = [l1u l1v]

T and n2 = [l2u l2v]
T .

If the elements of the affine transformations are
substituted, the following linear system of equations
is given: [

a1 a3
a2 a4

][
l2u
l2v

]
=−

[
l1u
l1v

]
. (3)
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Now the connection between the known directions
is written in conjunction with the affine parameters.
The directions are correctly transformed by the affine
matrix, however, the lengths of the vectors are not
known. This fact can be formulated as

A
[

u11
v11

]
= α1

[
u21
v21

]
,

A
[

u12
v12

]
= α2

[
u22
v22

]
,

where α1 and α2 are the unknown lengths.
It can be straightforwardly rewritten by substitut-

ing the elements of the affine transformations as

[
a1 a2
a3 a4

][
u11
v11

]
= α1

[
u21
v21

]
,[

a1 a2
a3 a4

][
u12
v12

]
= α2

[
u22
v22

]
. (4)

The final problem can be formed by merging
Equations 3 and 4. The problem is a six-dimensional
linear one, it is written in Equation 5. The solution
is trivially obtained by multiplying the right vector by
the inverse of the coefficient matrix from the left.

3.2 Affine Transformation from Optical
Flow

The affine transformations can be estimated by other
techniques, e.g. using an affine-invariant matcher (Yu
and Morel, 2011). However, from our experience, the
quality of those are not satisfactory, because the esti-
mated transformations are highly contaminated.

We have tried another way: the affine transforma-
tions are estimated if the optical flow between the im-
ages is available. The estimation problem is an in-
homogeneous linear one as it is discussed in the ap-
pendix. Therefore, the estimation is very fast, the
pseudo-inverse of a matrix, corresponding to a 6D
problem, has to be computed.
Problem Statement. An optical flow is given, thus
the relative offset for each camera pixels are known
as [

x′i
y′i

]
=

[
xi
yi

]
+

[
∆xi
∆yi

]
,

where the vector [xi yi]
T and [x′i y′i]

T denote the
pixel coordinates in the first and second images, re-
spectively. The flow itself is represented by the offset
vectors [∆xi ∆yi]

T .
The task is to estimate the affine transformation

around the given point location x0 = [x0,y0] .’Around’

means that the neighbouring pixels has to be consid-
ered. they are selected in a disk with radius R, where
R is a parameter of the algorithm.
Proposed Solution. The affine transformation repre-
sents the relations between corresponding neighbour-
ing points as

[
x′i
y′i

]
=

[
a1 a2 a5
a3 a4 a6

] xi
yi
1

 .
Thus,

[
x′i
y′i

]
=

[
a1 a2
a3 a4

][
xi
yi

]
+

[
a5
a6

]
.

In other form:

[
xi yi 1 0 0 0
0 0 0 xi yi 1

]


a1
a2
a5
a3
a4
a6

=

[
x′i
y′i

]
.

Left matrix is denoted by Ci. then

Ci
[

a1 a2 a5 a3 a4 a6
]T

= x′i.

If we have N different locations, the problem is over-
determined:


C1
C2
...

CN




a1
a2
a5
a3
a4
a6

=


x′1
x′2
...

x′N


It should be considered for all pixels that fulfill

the constraint (x0−xi)
T (x0−xi)< R2. The problem

is linear:

C
[

a1 a2 a5 a3 a4 a6
]T

= x′,

where C = [CT
1 . . .C

T
N]

T and x = [xT
1 . . .x

T
N]

T . The op-
timal solution for the affine parameters are estimated
as follows:

[
a1 a2 a5 a3 a4 a6

]T
=
(
CTC

)−1 CT x′.

Remark that optical flow for at least three loca-
tions is required. With more than three points the
problem is over-determined.
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l2u 0 l2v 0 0 0
0 l2u 0 l2v 0 0

u11 v11 0 0 −u21 0
0 0 u11 v11 −v21 0

u12 v12 0 0 0 −u22
0 0 u12 v12 0 −v22




a1
a2
a3
a4
α1
α2

=


−l1u
−l1v

0
0
0
0

 (5)

4 OPTIMAL SURFACE NORMAL
ESTIMATION

In this section, we prove that the polynomial, defined
in (Barath et al., 2015) is cubic and not quartic.

If we restrict the estimating normal into the form
n = [x,y,1− x− y]T (i.e the sum of coordinates is 1),
then the roots of the mentioned polynomial are the
possible values of x.

The notations come from the original paper2. Un-
fortunately, the full proof cannot be repeated here due
to the page limit of the submission.

The coefficients for the polynomials are deter-
mined by the point locations in the stereo image pair
and the related affine transformation.

The initial facts for our proof is that the following
rules can be formed:

Ω
1
k = Ψ

2
k = 0, Ω

2
k =−Ψ

1
k ,

as it is written in page 21 of the paper (Barath
et al., 2015).

Then the coefficients for the quadratic curves are
as follows3:

A2 =
4

∑
k=1

ΩkΩ
2
k , B1 =

4

∑
k=1

ΨkΨ
1
k

C1 =
4

∑
k=1

(Ω1
kΨk +Ψ

1
kΩk) =

4

∑
k=1

Ψ
1
kΩk

C2 =
4

∑
k=1

(Ω2
kΨk +Ψ

2
kΩk) =

4

∑
k=1

Ω
2
kΨk

Coefficient for x4, i.e. the highest one of the poly-
nomial, is as follows:

A2
2B1−A2C1C2 = A2(A2B1−C1C2)

= A2(
4

∑
k=1

ΩkΩ
2
k

4

∑
k=1

ΨkΨ
1
k−

4

∑
k=1

Ψ
1
kΩk

4

∑
k=1

Ω
2
kΨk)

2The proof described here cannot be understood without
reading the original paper. The related part is found in the
appendix of the paper (Barath et al., 2015), however, Sec-
tion 2, i.e. geometric background, has to be read as well.

3Not all coefficients are listed, only the ones that are
required to understand the proof.

= A2(
4

∑
i=1

4

∑
j=1

ΩiΩ
2
i Ψ jΨ

1
j −

4

∑
i=1

4

∑
j=1

Ψ
1
i ΩiΩ

2
jΨ j)

= A2(
4

∑
i=1

4

∑
j=1

ΩiΩ
2
i Ψ jΨ

1
j −

4

∑
i=1

4

∑
j=1

Ψ
1
i ΩiΩ

2
jΨ j)

=A2(
4

∑
i=1

4

∑
j=1

Ωi(−Ψ
1
i )Ψ j(−Ω

2
j)−

4

∑
i=1

4

∑
j=1

Ψ
1
i ΩiΩ

2
jΨ j)

= A2(
4

∑
i=1

4

∑
j=1

ΩiΨ
1
i Ψ jΩ

2
j −

4

∑
i=1

4

∑
j=1

Ψ
1
i ΩiΩ

2
jΨ j) = 0

Thus, the highest coefficient vanishes, therefore
the degree of the polynomial is three, in other words,
the polynomial is cubic. .

5 RECONSTRUCTION PIPELINE

This section overviews the components of our recon-
struction pieline.

In the first stage, point correspondences are de-
tected using ASIFT (Yu and Morel, 2011). Then the
fundamental matrix is estimated by the eight-point
method (Hartley, 1995). As the cameras are pre-
calibrated, essential matrix can also be retrieved from
fundamental matrix and intrinsic camera parameters.

In order to estimate affine transformations, two
corresponding directions have to be found. First, Line
Segment Detector (von Gioi et al., 2012) and Line Bi-
nary Descriptor (Zhang and Koch, 2013) are applied
to the image patches centered around feature points
so that at least two segment pairs are matched. The
directions are obtained through the normalized direc-
tion vector of those segments. Then affinities are es-
timated from the fundamental matrix and two direc-
tions as discussed in Section 3.

With the feature point locations and the recovered
camera pose 4, one can compute a sparse 3D recon-
struction. This step is carried out by applying Hartley-
Sturm triangulation (Hartley and Sturm, 1997). Fi-
nally, optimal surface normals can be estimated from

4Camera extrinsic parameters, i.e. the relative pose, can
be obtained by decomposing the essential matrix (Hartley
and Zisserman, 2003)
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affine transformations by the proposed modification,
overviewed in Section 4, of the method of Barath et
al (Barath et al., 2015).

6 EXPERIMENTS

For testing, we concentrate mainly on real-world case
as the main goal of our work is to insert the surface
normal estimation into a 3D reconstruction pipeline.

6.1 Synthetic Test

Synthetic test was only constructed in order to vali-
date that the formula, given in Eq. 5, is correct. For
this purpose, a simple synthetic testing environment
was implemented in Octave 5. Camera parameters as
well as the scene geometry, i.e. a sphere in our en-
vironment, was randomly generated, point locations
were given by projecting the points into the camera
image. Ground-truth affine transformations were gen-
erating via the tangent planes of the sphere. The affine
parameters can be determined by derivating the ho-
mographies, related to the tangent planes, at the corre-
sponding point locations as it is discussed in the paper
of Barath et al. (Barath et al., 2015) in detail.
Conclusion of Synthetic Test. It was successfully
validated that Equation 5 is correct, the GT affine
transformations were always exactly retrieved.

6.2 Visual Debugger

We have developed a tool in order to run the re-
construction pipeline and visualize the computed sur-
face normals. We call this tool as Visual Debug-
ger. The point correspondences as well as the di-
rections are manually selected in order to avoid de-
tection errors. The fundamental matrix is automat-
ically estimated by the eight-point method (Hartley,
1995). Robustification is implemented using the stan-
dard RANSAC (Fischler and Bolles, 1981) scheme.

A few results by the Visual Debugger are seen
in Figure 2. We have tested our method on the
KITTI (Geiger et al., 2012) and Malaga (Blanco et al.,
2014) datasets.

6.3 Surface Normals

A fully automatic testing procedure were also carried
out using the whole reconstruction pipeline. An ex-
ample with the visualized normal vectors is pictured

5Octave is an open-source MATLAB-clone. See
http://www.octave.org.

Figure 2: Results on real sequences. Each row consists of
a stereo image pair. The manually selected directions are
colored by red and blue. The estimated surface normals are
visualized by white. Best viewed in color.

in Figure 3. The normals are differently colored: the
absolute values of the coordinates of the normals are
considered; if the largest absolute coordinate of a vec-
tor is x, y, and z, then yellow, white, and red color is
used for drawing it, respectively.

6.4 Surface Normal Reconstruction
from Optical Flow

Although the focus of this paper is to show that
affine transformations can be estimated from two cor-
responding directions and the fundamental matrix,
we demonstrated here that there are other ways to
efficiently estimate the affine transformations. In
Sec. 3.2, it is overviewed how an transformation can
be retrieved at a given location if the optical flow be-
tween the images is given. The surface normals can be
estimated by the optimal method, proposed in Sec 4.
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Figure 3: Estimated surface normals visualized in an image of one of the KITTI (Geiger et al., 2012) sequences. Yellow,
white and red coordinates are used for horizontal, vertical and perpendicular, to the image plane, directions. Best viewed in
color.

Figure 4: Estimated surface normals visualized in images
generated by simulator LG-SVL (LG-, 2019). Yellow,
white and red coordinates are used for horizontal, vertical
and perpendicular, to the image plane, directions. Affine
transformations are computed from optical flow. Best
viewed in color..

The image sequences were generated by the LG-
SVL Simulator (LG-, 2019). The optical flows were
computed by the pre-trained deep network HD3 (Yin
et al., 2019). Resulting images are visualized in Fig-
ure 4, the estimated surface normals are drawn. Al-
though affine transformations can be estimated for
each pixel location, a regular sparse grid is applied
for sampling due to easier interpretation.

7 CONCLUSIONS AND FUTURE
WORK

In this position paper, we have presented a novel re-
construction pipeline in order to compute the surface
normals of a 3D scene. It has been shown that an
affine transformation can be estimated from a point
and two line (direction) correspondences if the funda-
mental matrix is known. The surface normals them-
selves can be estimated via the roots of cubic polyno-
mials.
Future Work. This paper concentrates on the theo-
retic aspects of the problem. More quantitative and
qualitative tests are required in order to validate the
practical applicability of the proposed reconstruction
pipeline.

The four DoF of affine transformations means that
the knowledge of epipolar geometry and two direc-
tions are enough to estimate a local affine transfor-
mation. However, there are degenerate cases when
a direction and the fundamental matrix represent the
same information for the estimation. These degener-
ate cases have also to be found and discussed. This is
missing in the current form of the paper.
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