and Wikipedia knowledge), and (iii) integration of 
additional task features including priorities as well as 
budget and time constraints. 
REFERENCES 
Aggarwal, C. C. (2015). Data mining: the textbook. 
Springer. 
Alkhraisat, H. (2016). Issue Tracking System based on 
Ontology and Semantic Similarity 
Computation. International Journal of Advanced 
Computer Science and Applications, 7(11), 248-251. 
Arias, M., Saavedra, R., Marques, M. R., Munoz-Gama, J., 
& Sepúlveda, M. (2018). Human resource allocation in 
business process management and process mining: A 
systematic mapping study. Management 
Decision, 56(2), 376-405. 
Azzini, A., Galimberti, A., Marrara, S., & Ratti, E. (2018). 
A classifier to identify soft skills in a researcher textual 
description.  In International Conference on the 
Applications of Evolutionary Computation (pp.  538-
546). Springer, Cham. 
Bassett, M. (2000). Assigning projects to optimize the 
utilization of employees' time and expertise. Computers 
& Chemical Engineering, 24(2-7), 1013-1021. 
Burkard, R. E., Dell'Amico, M., & Martello, S. 
(2009). Assignment problems. Philadelphia. 
Cattrysse, D. G., & Van Wassenhove, L. N. (1992). A 
survey of algorithms for the generalized assignment 
problem.  European journal of operational research, 
60(3), 260-272. 
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). 
Bert: Pre-training of deep bidirectional transformers for 
language understanding. arXiv preprint 
arXiv:1810.04805. 
Dunning, I., Huchette, J. and Lubin, M. (2017). Jump: A 
modeling language for mathematical optimization. 
SIAM Review, 59(2), pp. 295-320 
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., 
Giannotti, F., & Pedreschi, D. (2019). A survey of 
methods for explaining black box models. ACM 
computing surveys (CSUR), 51(5), 93. 
Heyn, V., & Paschke, A. (2013). Semantic Jira-Semantic 
Expert Finder in the Bug Tracking Tool Jira. arXiv 
preprint arXiv:1312.5150. 
Hill, J., Thomas, L. C., & Allen, D. E. (2000). Experts' 
estimates of task durations in software development 
projects. International journal of project management, 
18(1), 13-21. 
Hong-Bing, X., Hou-Jun, W., & Chun-Guang, L. (2002). A 
hybrid algorithm for the assignment problem. In 
Proceedings of the International Conference on 
Machine Learning and Cybernetics (Vol. 2, pp. 881-
884). ACM. 
Hopfield, J. J., & Tank, D. W. (1985). “Neural” 
computation of decisions in optimization problems. 
Biological cybernetics, 52(3), 141-152. 
Kanakaris, N., Karacapilidis, N., & Lazanas, A. (2019). On 
the Advancement of Project Management through a 
Flexible Integration of Machine Learning and 
Operations Research Tools. In Proceedings of the 8
th
 
International Conference on Operations Research and 
Enterprise Systems. (pp. 362-369). SciTePress 
Publications. 
Kanakaris, N., Karacapilidis, N., Kournetas, G., & Lazanas, 
A. (2020). Combining Machine Learning and 
Operations Research Methods to Advance the Project 
Management Practice. In International Conference on 
Operations Research and Enterprise Systems (pp. 135-
155). Springer, Cham. 
Karacapilidis, N., Malefaki, S., & Charissiadis, A. (2017). 
A novel framework for augmenting the quality of 
explanations in recommender systems. Intelligent 
Decision Technologies, 11(2), (pp. 187-197). 
Kelemenis, A., & Askounis, D. (2010). A new TOPSIS-
based multi-criteria approach to personnel selection. 
Expert systems with applications, 37(7), 4999-5008. 
Liu, Y., Zhao, S. L., Du, X. K., & Li, S. Q. (2005). 
Optimization of resource allocation in construction 
using genetic algorithms. In 2005 International 
Conference on Machine Learning and Cybernetics 
(Vol. 6, pp. 3428-3432). IEEE. 
McDonald, D. W., & Ackerman, M. S. (2000). Expertise 
recommender: a flexible recommendation system and 
architecture.  In Proceedings of the 2000 ACM 
conference on Computer supported cooperative 
work (pp. 231-240). ACM. 
Mooney, R. J., & Roy, L. (2000). Content-based book 
recommending using learning for text categorization. In 
Proceedings of the fifth ACM conference on Digital 
libraries (pp. 195-204). ACM. 
Nikolentzos, G., Meladianos, P., Rousseau, F., Stavrakas, 
Y., & Vazirgiannis, M. (2017). Shortest-path graph 
kernels for document similarity. In Proceedings of the 
2017 Conference on Empirical Methods in Natural 
Language Processing (pp. 1890-1900). 
Rehurek, R., & Sojka, P. (2010). Software framework for 
topic modelling with large corpora. In Proceedings of 
the LREC 2010 Workshop on New Challenges for NLP 
Frameworks. 
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why 
should i trust you?: Explaining the predictions of any 
classifier. In Proceedings of the 22nd ACM SIGKDD 
international conference on knowledge discovery and 
data mining (pp. 1135-1144). ACM. 
Singh, V. (2017). Replace or Retrieve Keywords In 
Documents at Scale. arXiv preprint arXiv:1711.00046. 
Sullivan, C. A., Zimmer, M. J., & Richards, R. F. (1988). 
Employment Discrimination (pp. 266-n). Boston: Little, 
Brown. 
Wang, J. B., Wang, J., Wu, Y., Wang, J. Y., Zhu, H., Lin, 
M., & Wang, J. (2018). A machine learning framework 
for resource allocation assisted by cloud computing. 
IEEE Network, 32(2), 144-151. 
Wowczko, I. (2015). Skills and vacancy analysis with data 
mining techniques. In Informatics (Vol. 2, No. 4, pp. 
31-49). Multidisciplinary Digital Publishing Institute.