
A Meta Model for a Comprehensive Description of Network Protocols
Improving Security Tests

Steffen Pfrang1 a, David Meier1 b, Andreas Fleig1 and Jürgen Beyerer1,2

1Fraunhofer IOSB, Karlsruhe, Germany
2Vision and Fusion Laboratory, Institute for Anthropomatics, Department of Informatics,

Karlsruhe Institute of Technology, Germany

Keywords: Meta Model, Network Protocols, Packet Structure, Protocol Behavior, Security Testing, Industrial Automa-
tion, IACS.

Abstract: Modern industrial automation and control systems (IACS) are highly interconnected via Ethernet. Performing
security tests to detect possible vulnerabilities in IACS is one of the measures requested by the IEC 62443
series of standards in order to improve their security. However, security testing tools and frameworks which
exceed the power of random fuzzing require precise network protocol definitions. Unfortunately, those def-
initions vary greatly from tool to tool. Additionally, their creation and maintenance is time-consuming and
error-prone. In consequence, especially common IACS protocols like Profinet IO or OPC UA are seldom to
never implemented. To overcome this issue, this work proposes and implements an approach of a generic
meta model for a comprehensive description of arbitrary network protocols. An important use case of this
meta model is the export of network protocol definitions for different testing tools.

1 INTRODUCTION

Security tests on IACS gain an increasing signifi-
cance the more industrial devices get interconnected
via Ethernet. Emerging concepts like Industrial In-
ternet of Things (IIoT) and Industrie 4.0 are strong
drivers for new connections of IACS even to the Inter-
net. Security tests aim at detecting vulnerabilities in
the network protocol implementations or in the design
of the devices which might stop production processes
or even harm humans. Once detected, manufactur-
ers and integrators of IACS are enabled to patch their
systems and close the respective security gaps.

Security tests are conducted utilizing specialized
tools and frameworks. Their purposes range from
protocol analysis to fuzzing to stress tests with a very
high transmission rate. Except simple fuzzing tests
with random data as payload, the tools depend on
precise network protocol definitions. Unfortunately,
these definitions vary greatly from tool to tool. This
leads to the situation that especially common IACS
protocols like Profinet IO (PNIO) or OPC UA are sel-
dom to never implemented in these tools.

a https://orcid.org/0000-0001-7768-7259
b https://orcid.org/0000-0003-0660-8087

To solve this problem, this work proposes a
generic and universal meta model for a comprehen-
sive description of arbitrary network protocols. The
general idea of this meta model is that network pro-
tocols can be specified in a standardized way as an
instance of the meta model. Then, exporters allow for
creating network protocol definitions specific to the
respective testing tools. Moreover, the meta model
enables several other valuable applications in the do-
main of security analysis.

The main contributions of this paper are
• a use case analysis of a meta model for network

protocols,
• a requirement analysis for such a meta model,
• the design of the meta model, and
• the evaluation of the meta model by conducting a

security test on real IACS devices.
The rest of the document is organized as follows: In
section 2, background information on network proto-
col design, industrial automation protocols and secu-
rity testing is given. A broad use case analysis is made
in section 3, the section closes with the formulation of
requirements which the developed meta model has to
fulfill. The meta model design is presented in sec-
tion 4. Its implementation is evaluated in section 5 by

Pfrang, S., Meier, D., Fleig, A. and Beyerer, J.
A Meta Model for a Comprehensive Description of Network Protocols Improving Security Tests.
DOI: 10.5220/0009150206710682
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 671-682
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

671



combining several use cases with a real industrial pro-
tocol and common industrial devices in a security test.
The paper finally concludes with section 6 including
possible future work.

2 NETWORK-BASED
COMMUNICATION AND
SECURITY TESTING

This sections motivates the need for a meta model de-
scribing network protocols comprehensively. It starts
with industrial automation protocols and moves on to
the design of common network protocols. Then, secu-
rity testing as a means to analyze security properties
is introduced briefly, next a reference protocol and fi-
nally the deducted implications.

2.1 Industrial Automation Protocols

Modern industrial facilities are based on highly
automated processes that are controlled by IACS.
Widespread network protocols in this area are PNIO
and OPC UA.

The PNIO communication suite is used to enable
real-time Ethernet-based communication in industrial
networks, for example between programmable logic
controllers (PLC) and sensors or actuators. It con-
sists of several sub-protocols. The PNIO protocol de-
sign is described in Technical Specifications. They are
published as IEC standard and formatted as PDF doc-
uments with several hundreds of pages (IEC, 2019a)
and (IEC, 2019b). Meanings of options and state tran-
sitions are depicted in tables and diagrams.

The OPC UA protocol stack is designed for
machine-to-machine communication. It features dif-
ferent communication architectures like server/client
and publish/subscribe. OPC UA is also published as
IEC standard in 15 parts as PDF documents. The
mapping how data and information are transferred be-
tween OPC UA Servers and Clients is specified in part
6 (OPC Foundation, 2017). In addition to tables and
diagrams, the information model and type definitions
are supplied as XML schema definitions.

2.2 Protocol Design

Network communication protocols are defined by two
main properties: Packet structure descriptions and the
protocol behavior.

The packet description defines the structure of the
individual protocol data units (PDUs) – also referred
to as messages – that are transmitted over the network.

PDUs can be further dissected into data fields. Every
field consists of data coded in a certain way and can
influence the meaning of other fields, the PDU and
the overall protocol state. Packet structure descrip-
tions vary from simple structures and protocols with
only a single packet type to more complex protocols
with different kinds of PDUs and packet fields that
influence the structure of every individual PDU.

The protocol behavior describes the communica-
tion flow of a protocol. This includes the connection
initiation, data flow, control messages, as well as the
connection closing. Besides stateful protocols, there
exist also stateless protocols which do not hold any
information about previous messages.

In most cases, PDUs transmitted over a network
not only consist of a single protocol but are consist-
ing of multiple parts, each representing a protocol.
This layering approach is formalized, for example, in
the ISO/OSI-model (ISO, 1994) or the Internet pro-
tocol (IP) stack (Braden, 1989). The PNIO stack
aligned to the IP stack is shown in Figure 1. Proto-
cols in shaded boxes are defined in the PNIO standard,
non-shaded boxes represent protocols that are used by
PNIO. While the configuration and management pro-
tocol (CM) is based on IP and UDP, the real-time pro-
tocol (RT) is based directly on Ethernet. The discov-
ery and configuration protocol (DCP) is also based on
Ethernet and is used to discover and configure PNIO-
compliant devices in a sub-network. DCP enables,
for example, to find all available devices using a DCP
Identify Request.

Each layer can have various ties to upper or lower
layers. For example, the type field in the Ethernet
packet determines the protocol used as its payload.
While IP uses the type 0x0800, DCP and CM use
0x8892 and LLDP uses 0x88CC.

Rec IO Al

Ethernet

ARP LLDP DCP

RT

IP

UDP

DCE/RPC

CMApplication

Transport

Internet

Link

Figure 1: The PNIO stack aligned to the IP stack.

When interpreting the binary data transmitted by a
PDU, it can be dissected into its different protocol
parts. Each part consists of a header, containing pro-
tocol and payload information, and the payload itself.
Some protocols, like Ethernet, also have a footer fol-
lowing the payload that can contain, for example, er-

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

672



ror detection data. The payload can be the PDU of
another protocol, consisting again of header and pay-
load, and so on.

Internet protocols like IP or UDP are described in
so-called Requests for Comments (RFC) or Internet
Standards and published by the Internet Engineering
Task Force (IETF). The format of those documents
is specified in (Flanagan and Ginoza, 2014). It con-
sists of plain text or XML pages; packet structures and
state diagrams are formatted as ASCII art.

2.3 Security Testing

Security testing aims at detecting vulnerabilities
which can be exploited by attackers. In case of IACS
connected to networks, flaws in network protocols are
a main gateway for attacks. Part 4-1 (IEC, 2018) of
the IEC 62443 standard consequentially requires in-
dustrial product suppliers to conduct different kinds
of security tests during the life-cycle of their devices.
Generally, security considerations should be part of
every network protocol design process. Nevertheless,
the results need to be verified. Also the security prop-
erties of existing protocols actively used need to be
assessed and validated.

According to (Felderer et al., 2016), security test-
ing can be classified in four categories: Model-based
security testing (MBST), code-based testing and
static analysis (CBTSA), penetration testing and dy-
namic analysis (PTDA) and security regression test-
ing (SRT). The application to network protocol anal-
ysis will be presented in the following. While MBST
techniques analyzes the specification, CBTSA and
PTDA analyze implementations of a network proto-
col. SRT is related to both areas.

MBST. Deals with the analysis of the protocol spec-
ification. It presumes the existence of architectural
and functional models of the network protocol. As al-
ready depicted, most protocols are specified in plain
text, diagrams and tables. If a protocol is modeled
manually, there is no guarantee of completeness and
correctness. So in the strict sense, results of this
method are only valid for the particular model, not
the original specification.

CBTSA. Focuses on the source code of a protocol
implementation. Manual or automated code reviews
are common means, the latter is called static code
analysis. These approaches are defined as white-box
security testing techniques.

PTDA. Is a black-box approach. Testing is per-
formed in practice by using a live system running

the protocol implementation. There is no need to
have insights into the implementation, only messages
transferred via Ethernet are regarded. PTDA includes
manual penetration testing, automated scanning for
known vulnerabilities, dynamic analysis of data sani-
tization, and fuzzing.

A widespread tool for a manual network packet
analysis is Wireshark1. Wireshark dissects network
packets in its layers and fields. Additionally, for some
protocols like TCP it provides a basic state analysis
which aggregates several packets to a session. Wire-
shark uses packet definitions that are programmed in
C.

Network packet crafting can be performed us-
ing Scapy2, an interactive packet manipulation pro-
gram. It supports both packet definitions and a state
model. Scapy, as well as its packet definitions, is pro-
grammed in Python. Besides a manual usage, Scapy
can be used as a library in Python scripts. Indus-
trial security testing or exploit frameworks like ISF3

or ISuTest (Pfrang et al., 2017) employ Scapy packet
definitions.

Fuzzing can be used to automatically test net-
work protocol implementations. The effectiveness of
fuzzing can be improved if the network protocol def-
inition is available to the fuzzing tool. Then, fuzzing
tools like ISuTest purposefully change values in the
PDU fields, including creating invalid combinations
of values (Pfrang et al., 2018).

High loads of network traffic can lead to denial of
service. Packet generators can be used to test which
loads are acceptable for a device and how it reacts to
overload. There are several different types of packet
generators available. Their maximal load ranges from
slower ones with Scapy definitions to faster ones with
native network interface support, or even hardware-
based generators. Ostinato4 is a packet generator and
network traffic generator which can be extended by
packet definitions. Unimplemented protocols can be
added to Ostinato as userscripts. They are imple-
mented in QtScript.

SRT. Is intended to ensure that changes that are
made to a system do not decrease its security. In re-
gard to network protocols, this could happen if a spec-
ification is, for example, extended by new options or
features. Then both the specification and implementa-
tion should be subject to a new security test. In order
to minimize the effort needed for these tests, auto-
mated testing would be most beneficial.

1https://www.wireshark.org/
2https://scapy.net/
3https://github.com/dark-lbp/isf
4https://ostinato.org/

A Meta Model for a Comprehensive Description of Network Protocols Improving Security Tests

673



2.4 Example Network Protocol

The Example Network Protocol (ENP) is an artificial
network-based communication protocol. It was in-
troduced in (Pfrang et al., 2019b), motivated by the
need of a reference protocol targeting tool developers
to design, implement and test their tools against. The
authors examined common Internet protocols as well
as specific industrial automation protocols like PNIO
and OPC UA. They developed the ENP to contain ev-
ery observed peculiarity with the idea in mind that
a tool that is able to handle the ENP is able to han-
dle every imaginable network protocol (Pfrang et al.,
2019a).

During their analysis, the authors developed a
packet field categorization which is based on the
fields’ lengths and parsing rules. Both can be either
fixed or variable; the variability can depend or be de-
fined by several different causes. Additionally, sev-
eral protocol state related requirements were defined.
Examples are triggers for and effects of state changes.

2.5 Conclusion

Network protocol specifications are rarely described
in a machine-readable way. Security testing ap-
proaches, like model-based testing, essentially need
complete network protocol models. Fuzzing gets
more powerful if packet definitions are used instead
of random data as payload. But also tools for man-
ual security research, like Wireshark or Scapy, de-
pend on the existence of protocol definitions. Unfor-
tunately, most of the tools use different formats for
their definitions – they cannot be easily interchanged.
Especially in the industrial domain, protocols are sel-
dom to never implemented in every tool. As security
testing is essential for discovering vulnerabilities be-
fore attackers can exploit them, this work proposes a
meta model for a comprehensive description of net-
work protocols.

3 USE CASE ANALYSIS

A meta model for network protocols offers various
kinds of use cases. The ones that are considered
within this paper are depicted in Figure 2. A special
focus is laid on the clarification how these use cases
can help to improve security tests.

The big box represents the meta model. Inside the
meta model, there are different model instances which
represent different network protocols. For each of the
protocols, the model instances contain both packet de-
scriptions and protocol behavior. At the bottom left

Meta Model

Model Instances

External Tools Real Devices

pcap

Import Export CompareTest

Specify

Security
Testing

Visualize

Detect
Inconsistencies

Verify

Simulate

TCP PNIO-
DCP

…
Validate

Figure 2: Use cases of the meta model.

side, external tools like Wireshark or Scapy are de-
picted. Each of those tools use different formats for
their own protocol descriptions which are not compat-
ible. At the bottom right side, real devices communi-
cating over a network with the specific protocols are
displayed. Recorded network traffic can be stored as
a packet capture (pcap). Italic terms in red ovals with
arrows represent use cases that are being described
in the following two subsections. The section closes
with the formulation of requirements which have to
be fulfilled by the meta model design.

3.1 Basic Use Cases

Basic use cases deal with network protocols as an in-
stance of the meta model. They are about the specifi-
cation and the refinement of the protocol instance.

Specification of Network Protocols (Specify). In
protocol engineering, network protocols can be spec-
ified as an instance of the meta model. Their defi-
nitions include both packet descriptions and protocol
behavior. The knowledge of data types and depen-
dencies between different packet fields lays the foun-
dation for targeted security tests. The specifications
are readable for machines as well as for humans. This
allows for the use of different kinds of tools which
supports the development process. In addition to the
creation of new protocols, existing protocols can be
specified formally.

Import of Existing Definitions (Import). Existing
network protocol definitions from other tools can be

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

674



imported as an instance of the meta model. A com-
plete and fully automated import of both packet def-
initions and state models is desirable but not realistic
in every case. But any help of an at least partially
automated import could improve the situation of se-
curity researchers.

Visualization of State Machines (Visualize). Def-
initions of stateful network protocols comprise a state
model as a vital part. This state model does not only
describe the states and transitions, but also explains
the protocols processes. A machine-readable protocol
instance allows for the automatic generation of those
charts which improves the clarity of even complex
state models. This can simplify the process for se-
curity researchers to understand the protocol in depth.

Detection of Protocol Inconsistencies (Detect In-
consistencies). Both existing and network protocols
in development can be underspecified. There could
exist mistakes like in the message definitions, or non-
reachable states in the state machine. The machine-
readability of a meta model instance of the given
network protocol allows for automatic inconsistency
checks. Once detected, those protocol implementa-
tions can be corrected which might close security is-
sues. Besides that, security tests can be focused on
discovered inconsistencies which might detect vulner-
abilities.

Verification of Protocol Properties (Verify). Var-
ious kinds of complex protocol analyses and verifi-
cation methods can be employed to an instance of a
meta model. The machine-readability allows for a
fully-automated processing. This could help to prove
certain properties of network protocols like security
features.

Export in Various Formats (Export). Instances of
the meta model can be exported in network protocol
definitions for different tools. Like in the case of the
import of protocol definitions, a fully automated ex-
port is desirable. In practice, even an only partially
automated export could facilitate the use of tools with
the specific network protocol. The export feature is
one of the most valuable parts for security testers
since it enables the usage of arbitrary testing tools.

3.2 Advanced Use Cases

Advanced use cases make use of one or more basic
use cases and add further functionality.

Conversion of Protocol Definitions. A combina-
tion of the import and export use case is the con-
version of protocol definitions from one tool to an-
other. It is not depicted explicitly in Figure 2. A com-
mon case is that a protocol definition exists only in
Wireshark, but a security tester needs to craft network
packets for example with Scapy.

Validation of External Protocol Definitions (Vali-
date). Given a reference specification of a network
protocol as instance of the meta model. Then protocol
implementations from external tools can be imported
and compared to the reference. This allows for the
validation of external implementations.

Comparison with Recorded Traffic (Compare).
A network protocol is defined as a protocol instance
of the meta model. The network traffic of real
implementations using this specific protocol can be
recorded as packet capture. Then it is possible to
check both the packet definitions and the protocol be-
havior. This feature can be used in two directions:
Either one assumes the real implementation to be cor-
rect, then the meta model instance can be adapted.
Or the protocol implementation of a device has to be
changed. Additionally, security testers can verify a
specific testing process and identify if a discovered
anomaly is caused by the testing tool itself.

Support of Protocol Prototyping (Test). A proto-
col instance which fully describes a certain protocol
allows for using a simulator. The simulator can send
and receive network packets and additionally execute
the state model. This enables fast prototyping of pro-
tocols.

Security Testing. Security research can profit from
different features of the meta model. This ranges from
the verification of protocols inside the meta model to
tests of real devices applying external tools. An exam-
ple is the setup in the evaluation: Several IACS will
be tested with the external network packet generator
Ostinato. Ostinato does not support the industrial net-
work protocol by default, but the meta model enables
it.

3.3 Meta Model Requirements

Based on the needs for the realization of the use
cases presented above, the following requirements
have been established and grouped into three require-
ment types: General meta model requirements, mes-
sage specification requirements and state model re-
quirements.

A Meta Model for a Comprehensive Description of Network Protocols Improving Security Tests

675



General Meta Model Requirements (GR). De-
scribe universal requirements for the meta model de-
sign.

GR-1 Universal Applicability: Similar to an RFC,
the meta model has to be capable of specifying arbi-
trary network protocols. It has to be possible to create
a detailed model instance for any conceivable network
protocol.

GR-2 Modularity: The meta model should follow
a modular design to decrease its complexity and in-
crease its adaptivity. This applies for both tools like
an importer or an exporter, and parts of message or
behavior definitions that different protocols have in
common.

GR-3 Extensibility: Both the meta model itself
and the protocol definitions, which are described as
instances of the meta model, need to be easily exten-
sible.

GR-4 Machine-Readability: Instances of the meta
model need to be in a machine-readable format to en-
able automated and tool-supported usage.

GR-5 Human-Readability: Additionally, in-
stances of the meta model have to be human-readable.
This allows for an easy handling of meta model in-
stances even without using complex tools.

Message Specification Requirements (MR). Rep-
resent the specific needs for implementing arbitrary
network protocol messages as instances of the meta
model.

MR-1 Message Type Specification: A network
protocol may consist of different messages. Every
message needs a unique message name, a message
type indicator and a list of contained fields.

MR-2 Field Specification: A message can con-
tain multiple fields. Every field needs a unique field
name and can be either atomic or compound. The
length specification is either fixed or variable. In the
latter case, the length value always has to be speci-
fied within an external field, within the field itself or
within a separate request. The parsing rule specifi-
cation is either fixed or variable. A variable parsing
rule has to be specified or named either within an ex-
ternal field, the field itself or by a separate request.
Both the variable length specifications and the vari-
able parsing rule specifications may be based on quite
complex rules. The meta model has to be able to spec-
ify arbitrary and Turing-complete length and parsing
rules.

MR-3 Underlying Protocols: To be able to realize
today’s protocol stacks, it has to be possible to ref-
erence the underlying protocol. On the one side, the
meta model must be able to specify a certain under-
lying protocol. On the other side, it also has to be

possible to reference certain details within this under-
lying protocol.

State Model Requirements (SR). Describe re-
quirements which are derived from the necessity of
being able to implement the protocol behavior of ar-
bitrary network protocols.

SR-1 State Specification: For each possible state
of the protocol, there has to be a corresponding state
in the state model.

SR-2 Transition Specification: Every possible
change of the protocol state has to be specified by a
corresponding transition in the state model.

SR-3 Transition Trigger: Each of those transi-
tions has to have exactly one of the following trig-
gers: (a) A certain message or the content of a certain
field within a message, (b) a temporal condition like
a timeout or a timed event, or (c) an action within the
protocol execution which triggers a certain transition.

SR-4 Arbitrary Actions: The state model has to
allow the execution of arbitrary, Turing-complete ac-
tions, including special constructs like conditional ac-
tions or loops.

SR-5 Roles: It has to be possible to specify differ-
ent roles. The most common examples of such roles
are client and server. Depending on the current role,
the states and transitions may differ.

SR-6 Data Model: The state model has to offer
some kind of data model which allows to access data
objects or data structures. This is meant to be used
to maintain all kinds of local and global information
related to messages and states.

SR-7 Message Specification References: It has to
be possible to reference parts of the message spec-
ifications of the corresponding meta model instance
from inside the state model. For example, one of
those actions may depend on some specific details of
the message specifications.

SR-8 State Model References: It has to be pos-
sible to reference other model instances for arbitrary
actions. It is particularly important to be able to ac-
cess the underlying protocol since the protocol may
depend on certain details of it.

4 META MODEL DESIGN

The meta model design comprises three parts as de-
picted in Figure 3: The meta model specification,
meta model instances and the meta model framework.
The specification deals with the concepts of how a
network protocol can be described comprehensively
as an instance of the meta model. Meta model in-
stances are actual implementations of network pro-

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

676



tocols. The framework design contains the software
components which allow users to interact with the
meta model instances.

M
et

a 
M

o
d

el
S

p
ec

if
ic

a
ti

o
n Message

Specifications

State Model

Model
Extensions

references

instance of

TCP

M
et

a 
M

o
d

el
In

st
an

ce
s PNIO-DCP

ToolsCore

Plug-insM
e

ta
 M

o
d

el
F

ra
m

ew
o

rk

use

create, use, …

Users

Figure 3: Meta model design overview.

4.1 Meta Model Specification

The meta model specification consists of three con-
ceptual parts: Message specifications, a state model
and model extensions. While the first two parts fol-
low an XML-based approach, the latter makes use of a
Turing-complete programming language. A network
protocol like TCP would need to be specified by creat-
ing instances of these three parts. This separation into
different parts demands that the consistency within a
meta model instance is ensured.

Message Specification. The basic idea for the spec-
ification of messages is to define an instance of a cer-
tain message as an XML document. That way, every
message can be represented by a corresponding XML
document. Figure 4 depicts an Identify all request of
DCP in its XML representation.

To specify the format and characteristics of
those XML documents, an XML schema is created.
The most powerful XML schema language is XML
Schema Definition (XSD) (W3C, 2012). It com-
bines both an assertion-based and a grammar-based

1 <DCP>
2 <DCPHeader>
3 <ServiceId>5</ServiceId>
4 <ServiceType>
5 <ServiceTypeFlag>0</ServiceTypeFlag>
6 <ServiceTypeType>00</ServiceTypeType>
7 </ServiceType>
8 <Xid>3256714648</Xid>
9 <ResponseDelayFactor>0

</ResponseDelayFactor>
10 <DCPDataLength>4</DCPDataLength>
11 </DCPHeader>
12 <IdentifyAllReqPDU>
13 <AllSelectorBlock>
14 <Option>ff</Option>
15 <SubOption>ff</SubOption>
16 <DCPBlockLength>0000</DCPBlockLength>
17 </AllSelectorBlock>
18 </IdentifyAllReqPDU>
19 </DCP>

Figure 4: The DCP Identify all request denoted as XML
document.

approach. There exist different external tools which
allow for checking XML documents against an XSD
schema.

Figure 5 shows excerpts of the corresponding
XSD schema. Within the schema definition, messages
and their fields employ grammar-based XSD rules.
For example, line 2 defines that there has to be ex-
actly one DCPHeader. The header has a field Servi-
ceId (line 4) which is restricted (line 6) to a Byte. If
the ServiceId is 5, the message has to be interpreted
as IDENTIFY request (line 10).

More complex rules like dependencies between
fields, however, make use of assertions. An example
for an assertion determining the type of the PDU is
printed in line 12ff. Applying XPath selectors, values
of message fields are evaluated against a fixed value.
Such rules have to be written for each PDU type.

If the needs exceed the capability of XSD asser-
tions, like in the case of a hash calculation, external
assertions will be used. They are marked as annota-
tions and employ model extensions.

State Model. The state model is realized as stat-
echart XML (SCXML) (W3C, 2015). SCXML is a
simple, standardized way to specify all kinds of state
models in XML documents. The meta model design
employs Harel statecharts (Harel, 1987) which are
slightly more powerful than classic finite state ma-
chines. For example, they easily allow the specifi-
cation of sub-states or concurrent tasks. This even
allows the specification of complex protocols.

Figure 6 illustrates excerpts of the statechart def-
initions of the ENP. The name of the protocol in-

A Meta Model for a Comprehensive Description of Network Protocols Improving Security Tests

677



1 <xs:schema [...]
2 <xs:element name="DCPHeader" minOccurs="1"

maxOccurs="1">
3 [...]
4 <xs:element name="ServiceId"

minOccurs="1" maxOccurs="1">
5 <xs:simpleType>
6 <xs:restriction

base="xs:unsignedByte">
7 [...]
8 <xs:enumeration value="5">
9 <xs:annotation>

10 <xs:documentation>IDENTIFY
</xs:documentation>

11 [...]
12 <xs:assert test="if (

DCPHeader/ServiceId = 5 and
DCPHeader/ServiceType/ServiceTypeFlag =
0 and

DCPHeader/ServiceType/ServiceTypeType =
’00’)

13 then (IdentifyAllReqPDU)
14 else true()">

Figure 5: Extracts of the corresponding DCP XSD.

1 <scxml [...] name="enp"
initial="connecting">

2 <state id="connecting">
3 <transition type="external" event=

"conn_ok" target="connected"/>
4 <transition type="external" event=

"error_occ" target="error_occ"/>
5 <transition type="internal" event=

"state_act">
6 <assign location="res" expr="fkt_connect

((’localhost’, 1337))"/>
7 <if cond="res == -1">
8 <raise event="error_occ"/>
9 </if>

10 </transition>
11 </state>

Figure 6: Extract of the state model of the ENP.

stance is enp, its initial state is connecting (line 1).
In this state, three transitions are defined. In case of a
conn ok event, the transition to the state connected is
triggered. If an error occurs, the target state error occ
will be aimed.

Harel statecharts execute actions – like Moore ma-
chines – within states. For that reason, actions have to
be described in an internal event. This internal event
(line 5) will be triggered once the state is reached and
executes a function call. In case of an error (line 7),
the external event defined in line 4 will be triggered.

Model Extensions. There are two different types of
model extensions. The first one serves the re-usability
of common types within the message specifications
and the state model.

The second one is used whenever needed func-
tionality exceed the features of XSD and SCXML.
These features are implemented in JavaScript, a
Turing-complete programming language, which is the
standard in SCXML. However, the complexity of
these extensions prevents automatic processing by
conversion tools and, thus, should only be used when
unavoidable.

4.2 Meta Model Framework

The meta model framework is structured in three con-
ceptual parts: The core, tools and plug-ins.

The core is the central component of the frame-
work. On the one hand, it represents the interface be-
tween the tools and meta model instances. It offers
high-level functionality, like checking the validity of a
model instance via an application programming inter-
face (API). An example for a tool is the pcap checker,
which interprets network messages from a pcap and
compares both packets and protocol behavior with a
given model instance. Tools are the only interface be-
tween a user and the meta model.

On the other hand, the core interfaces with plug-
ins. These plug-ins enable the framework to import
and export protocol definitions to and from a meta
model instance. A plug-in contains code to both in-
terpret and write one specific protocol definition lan-
guage. It is independent from a specific meta model
instance.

5 EVALUATION

The evaluation of the meta model consists of three
parts. The first part combines four use cases from the
specification of a well-known network protocol to the
analysis of a security test targeting real IACS. Those
use cases were selected because the implementation
of meta model tools was focused on the ones from
which security testing benefits most. The second part
examines if the meta model provides the needed func-
tionality to specify arbitrary network protocols. The
third part compares the meta model with related ap-
proaches. Finally, the section closes with a discussion
of the results.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

678



5.1 Use Case Evaluation

The use case evaluation consists of four steps which
are depicted in Figure 7. It applies the use cases Spec-
ify, Export, Security Testing and Compare. Security
testing is conducted with the packet generator Osti-
nato. Targets for the security test were two embedded
PLCs and two PNIO gateways for analog and digital
signals.

Meta Model

External Tools Real Devices

pcap

Import CompareTest

TCP…

Specify

Security
Testing

Visualize

PNIO-
DCP

Model Instances

Export

1

2

3

4

Detect
Inconsistencies

Verify

Simulate

Validate

Figure 7: The use-case-based evaluation plan.

In step 1, the DCP protocol will be analyzed manually
from the PNIO standard document and implemented
as an instance of the meta model. DCP is a stateless
protocol which means only a packet description is re-
quired. Excerpts of the resulting XML schema are
depicted in figure 5 in the design section.

The second step will export the network packet
definitions for Ostinato. This workflow is depicted in
Figure 8. It starts with a user interaction (A) and runs
the Exporter tool with the name of the meta model
instance and the format that shall be created. The ex-
porter then accesses the DCP model instance via the
API of the Core (B). Making use of the export rules of
the Ostinato plug-in (C), the corresponding Ostinato
userscript is written to a file. Note that the generic ex-
porter tool is able to export any model instance into
any target file format for which export rules exist.

In step 3, a security test with Ostinato will be con-
ducted on a test bed of IACS. The packet generator
Ostinato is configured with the packet definitions of
DCP as a userscript. Then, the devices to be tested
are configured as targets of the test. Further settings
concern the number of packets to be generated and the

Meta Model Instance

ToolsCore

Plug-ins

M
et

a 
M

o
d

el
 F

ra
m

ew
o

rk

Users

Exporter

Ostinato
Export Rules

Ostinato Userscript

dcp.proto

DCP

B

C

A

Figure 8: The workflow for exporting protocol definitions.

number of packets to be sent per second. In this case,
none of the attacked IACS crashed – those devices are
not vulnerable to a high load of DCP messages.

Step 4 concludes the evaluation with a proof of
the correctness of the DCP model instance, the ex-
porter tool and the Ostinato export plug-in. Taking a
pcap of the security test as input, both a manual anal-
ysis with Wireshark and an automated analysis with
the pcap-checker tool were conducted. The analysis
with Wireshark showed that the network packets gen-
erated by Ostinato could be dissected as valid DCP
messages without any error. Additionally, the devices
answered the DCP identify request with a DCP iden-
tify response. This shows that the messages were pro-
cessed correctly by the PNIO devices.

Finally, the pcap-checker tool was employed. It
showed that the generated DCP messages were cor-
rect DCP messages according to the meta model in-
stance of DCP.

5.2 Requirement Evaluation

The goal of the meta model is that it allows for a com-
prehensive modeling of every network protocol, re-
gardless of its complexity. The evaluation of this goal
can be reduced to the implementation of the ENP as a
meta model instance.

Based on the requirement analysis, the satisfac-
tion of both the message specification (MR) and state
model requirements (SR) is also shown through the
ENP instance.

Regarding the satisfaction of the general meta
model requirements, universal applicability (GR-1)
has been shown by both the implementation of the ar-
tificial ENP and the real DCP protocol, with the latter
having been used for a security test. The modular-

A Meta Model for a Comprehensive Description of Network Protocols Improving Security Tests

679



ity (GR-2) is ensured by the design of plug-ins and
tools as well as in common types for protocol defi-
nitions. The extensibility (GR-3) in respect to new
protocol definitions is guaranteed by the design of
meta model instances. The extensibility in relation
to the meta model is ensured by the separation of the
meta model specification and framework. Finally, the
readability of meta model instances by both machines
(GR-4) and humans (GR-5) is offered by the usage of
XML as the description language.

5.3 Comparative Evaluation

There exist different other approaches which target
only parts of the meta model’s features. Some of them
are only usable for packet definitions, others target
solely the specification of a protocol’s state model. In
the following, six approaches are presented and com-
pared to the meta model. The reasons for not being
used within the meta model design get motivated.

YANG. YANG (M. Bjorklund, 2010) (Bjorklund,
2016) is a data modeling language. It was developed
to model configuration and state data for the network
management protocol NETCONF (R. Enns, 2006).
While YANG itself only describes data models, JSON
or XML can be used to describe data instances. To
describe data models, YANG supports XPath 1.0 ex-
pressions.

The specification of simple fields with fixed length
and fixed parsing rules – like a simple integer field –
is easily possible using YANG’s primitive data types.
But the specification of fields with variable lengths or
parsing rules is much more complex. Especially be-
cause it is not possible to define real custom types in
YANG, but only to derive custom types from the pre-
defined ones. So even the specification of simple type
definitions are much more complex compared to the
presented XML-based approach of the meta model.
This especially contradicts the requirement of human-
readability (GR-5), and also increases complexity for
the automated processing of the meta model (GR-4).

PacketTypes. The authors of PacketTypes (Mc-
Cann and Chandra, 2000) introduced a type system
similar to type systems in programming languages
like C. It is particularly designed to specify messages
of network protocols.

In PacketTypes, there are no primitive data types,
but only one generic data type called bit. Thus, con-
tent restrictions of any kind have to be specified using
the where-clause of PacketTypes. That way, an 8 bit
integer field can be specified using the two clauses

field#value >= 0 and field#value < 256. Unfortu-
nately, the authors only discuss some basic examples
like this. Therefore, it would be necessary to heavily
extend this approach to be able to specify arbitrary re-
strictions or dependencies between fields as required.

Protocol Buffers. Google released Protocol
Buffers (protobuf) in 2008 aiming at a simple mech-
anism for serializing structured data. Its protocol
compiler is written in C++, but is able to output
source code in currently ten different programming
languages (Google, 2008). Protobuf defines its own
syntax to define messages and types in .proto-files.
They are mainly based on messages and fields and
can include options for the compiler.

Protobuf does not provide any possibility to model
the state of a network protocol, missing all State
Model Requirements (SR) of the Meta Model. The
protobuf compiler also produces its own binary for-
mat of the serialized data, meaning it cannot be used
to output arbitrary binary network data. This would
be needed to create or dissect real communication
data.

Formal Description Techniques (FDT). Standard-
ized by organizations like ISO and CCITT, FDTs are
are developed since the 1970s. They aim at speci-
fying formally a whole system’s features, functional-
ity and behavior. Major examples for FDTs are Es-
telle (Extended Finite State Machine Language), Lo-
tos (Language Of Temporal Ordering Specification)
and SDL (Specification and Description Language).
They are broadly described and compared in (Turner
et al., 1993).

Since FDTs focus on specifying systems’ behav-
ior, messages and specialized data types are less de-
veloped. But the main reason for not using FDTs
within the meta model is the absence of current im-
plementations and tools.

Model Checking. Regarding the state model of net-
work protocols, there are multiple approaches like
(Musuvathi et al., 2004), aiming to specify network
protocols for model checking purposes. The basic
idea is to perform automated tests on those models,
utilizing formal verification methods. This requires
to create a formal model of the network protocol.

While the very structural and mathematical repre-
sentation of models like this is necessary to perform
those formal verifications, they also make the mod-
els quite complex and especially less human-readable.
Additionally, while such a representation is perfectly
suitable to perform automated checking, it is much
more complex to interpret those models. Therefore,

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

680



similar to YANG, both the human-readability (GR-
5) and the automated processing (GR-4) of the meta
model is much more complex with such models com-
pared to the XML-based approach of the meta model.

Object-oriented Petri Nets. For the specification
of the protocols state model, Petri nets are a con-
ceivable alternative for the Harel statecharts used in
the meta model. In general, Petri nets are especially
suitable for the specification of more complex pro-
cedures such as parallel actions. Compared to clas-
sic state machines, they are more powerful. On the
contrary, Petri net based representations are gener-
ally more complex. Additionally, it is possible to ex-
tend Petri nets by object-oriented aspects. This allows
the easy specification of network protocol messages
within the specification of the state model. So this ap-
proach allows a combined model for both parts of the
protocol specification.

For the description of such object-oriented Petri
nets (OPNs), there exist multiple different ap-
proaches. Two examples for available languages are
LOOPN (Lakos and Keen, 1991) and the more ad-
vanced version LOOPN++ (Lakos and Keen, 1994).
Unfortunately, many of the object-oriented aspects of
OPNs like polymorphism or dynamic binding do not
offer a great advantage for the specification of net-
work protocols, but introduce additional complexity
to the model. Thus, in many cases, a representation
using finite state machines is much simpler, and there-
fore both easier to read for humans (GR-5) and easier
to process automatically (GR-4).

5.4 Discussion

In combination, all three parts of the evaluation have
shown that the meta model is powerful enough to
specify arbitrary network protocols. Particularly, it
has been shown that the meta model enabled an exist-
ing security testing tool to test a protocol which was
not implemented before. That is a very valuable fea-
ture in the industrial domain because many domain-
specific network protocols are seldom to never imple-
mented in widespread tools. Additionally, the design
of the meta model framework allows for exporting ev-
ery model instance for a given testing tool, requiring
only a single plug-in.

As the meta model is a new approach, the imple-
mentation currently supports only one industrial com-
munication protocol and one security testing tool. But
through the design of the meta model, new protocols
and tool support can be easily added.

The evaluation showed that export features need
little to no manual work in order to create runnable

protocol specifications. Import features tend to be
more complicated because external code has to be in-
terpreted. Nevertheless, even a small support in defin-
ing PDU field types is better than having to start from
scratch.

Finally, it turned out that machine-readability is
necessary, but not sufficient for a protocol instance of
the meta model. Different assertions, rules and, op-
tionally, model extensions have to be combined man-
ually. This can be a time-consuming and error-prone
task. Particularly, automatic completeness and cor-
rectness checks are complicated since there is not yet
a defined order and usage of the constraints. For ex-
ample, the occurrence 1 of the field X can be en-
sured with the rule minOccurs=1 and maxOccurs=1
or an assertion which checks if the number of fields X
equals 1. The same applies to the model extensions in
JavaScript. Since the chosen programming language
has to be Turing-complete by design, it is challeng-
ing to determine which functionality a method imple-
ments.

6 CONCLUSION AND FUTURE
WORK

This work proposed a generic and universal meta
model for a comprehensive description of arbitrary
network protocols. A special focus was laid on se-
curity testing for the industrial domain since IACS
testing suffers most from missing network protocol
definitions.

A broad use case analysis led to the formulation of
requirements for such a network protocol meta model.
Since no known approach proved to be sufficient, a
new solution was designed. It is based on well-known
XML specifications which allow for the reuse of ex-
isting tools and tool chains.

During the evaluation, a special reference proto-
col (ENP) was implemented using the meta model, as
well as a typical industrial network protocol (DCP).
As a result, a testing tool which did not support this
specific protocol before was enabled to test embedded
IACS. This clearly showed the possible benefits of the
meta model.

There are many more use cases in the domain of
security testing which can profit from additional pro-
tocol specifications. Examples are the verification of
protocol properties or the support of protocol proto-
typing. Beyond that, other domains, like intrusion de-
tection, could benefit from protocol definitions, espe-
cially in the industrial domain.

Future work includes the implementation of ad-
ditional export rules in order to supply more testing

A Meta Model for a Comprehensive Description of Network Protocols Improving Security Tests

681



tools. Also more protocols will have to be imple-
mented as instances of the meta model. The pool of
available network protocols could be increased with
import functionality from other tools. Furthermore,
new tools like a visual editor for network protocols
would facilitate working with the meta model.

The most important task is indeed the design of
an abstraction layer for the constraints regarding field
types and dependencies between fields. These con-
straints are defined by multiple assertions, rules, and
optionally by model extensions. This abstraction
layer could be applied as specific comments or anno-
tations within the different XML documents of a meta
model instance. It combines a set of assertions and
rules, and supplies the upper layer with a semantic de-
scription of its functionality. For example, it ensures
that field X is an integer and has to be interpreted as
length of field Y. Meta model tools could implement
this abstraction layer and help to improve the com-
pleteness and correctness of meta model instances.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Min-
istry of Education and Research within the framework
of the project KASTEL SKI in the Competence Center
for Applied Security Technology (KASTEL).

REFERENCES

Bjorklund, M. (2016). The YANG 1.1 Data Modeling Lan-
guage. RFC 7950.

Braden, R. (1989). Requirements for Internet Hosts - Com-
munication Layers. RFC 1122.

Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu,
R., and Pretschner, A. (2016). Security testing: A sur-
vey. In Advances in Computers, volume 101, pages
1–51. Elsevier.

Flanagan, H. and Ginoza, S. (2014). RFC Style Guide. RFC
7322.

Google (2008). Protocol buffers. https://developers.google.
com/protocol-buffers/. Online; accessed 2020-01-06.

Harel, D. (1987). Statecharts: a visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231 – 274.

IEC (2018). Security for industrial automation and con-
trol systems - Part 4-1: Secure product development
lifecycle requirements. International Electrotechnical
Commission (IEC), Geneva, Switzerland.

IEC (2019a). Industrial communication networks - Fieldbus
specifications - Part 5-10: Application layer service
definition - Type 10 elements. IEC 61158-5-10:2019.

IEC (2019b). Industrial communication networks - Field-
bus specifications - Part 6-10: Application layer pro-

tocol specification - Type 10 elements. IEC 61158-6-
10:2019.

ISO (1994). ISO/IEC 7498-1:1994 - Information technol-
ogy – Open Systems Interconnection – Basic Refer-
ence Model: The Basic Model. International Orga-
nization for Standardization (ISO), Geneva, Switzer-
land.

Lakos, C. A. and Keen, C. D. (1991). Modelling layered
protocols in loopn. In Proceedings of the Fourth In-
ternational Workshop on Petri Nets and Performance
Models PNPM91, pages 106–115.

Lakos, C. A. and Keen, C. D. (1994). LOOPN++: A new
language for object-oriented Petri nets. Department
of Computer Science, University of Tasmania.

M. Bjorklund, E. (2010). YANG - A Data Modeling Lan-
guage for the Network Configuration Protocol (NET-
CONF). RFC 6020.

McCann, P. J. and Chandra, S. (2000). Packet types:
abstract specification of network protocol messages.
ACM SIGCOMM Computer Communication Review,
30(4):321–333.

Musuvathi, M., Engler, D. R., et al. (2004). Model check-
ing large network protocol implementations. In NSDI,
volume 4, pages 12–12.

OPC Foundation (2017). OPC Unified Architecture Speci-
fication Part 6: Mappings. OPC Foundation, version
1.04 edition.

Pfrang, S., Giraud, M., Borcherding, A., and Meier, D.
(2019a). Example network protocol. https://github.
com/stepfr/ExampleNetworkProtocol. [Online; ac-
cessed 2019-11-03].

Pfrang, S., Giraud, M., Borcherding, A., Meier, D., and
Beyerer, J. (2019b). Design of an example network
protocol for security tests targeting industrial automa-
tion systems. In Proceedings of the 5th International
Conference on Information Systems Security and Pri-
vacy - Volume 1: ForSE, pages 727–738. INSTICC,
SciTePress.

Pfrang, S., Meier, D., Friedrich, M., and Beyerer, J. (2018).
Advancing protocol fuzzing for industrial automation
and control systems. In Proceedings of the 4th Inter-
national Conference on Information Systems Security
and Privacy - Volume 1: ForSE,, pages 570–580. IN-
STICC, SciTePress.

Pfrang, S., Meier, D., and Kautz, V. (2017). Towards a mod-
ular security testing framework for industrial automa-
tion and control systems: Isutest. In Proceedings of
the 22nd IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2017.

R. Enns, E. (2006). NETCONF Configuration Protocol.
RFC 4741.

Turner, K. J. et al. (1993). Using formal description tech-
niques: an introduction to Estelle, LOTOS and SDL,
volume 154. Wiley New York.

W3C (2012). Xml schema definition. [Online; accessed
2019-11-17].

W3C (2015). State chart xml. [Online; accessed 2019-11-
17].

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

682


