
A New Algorithm using Independent Components for Classification
and Prediction of High Dimensional Data

Subhajit Chakrabarty1 a and Haim Levkowitz2
Louisiana State University Shreveport, LA, U.S.A.
University of Massachusetts Lowell, MA, U.S.A.

Keywords: High Dimension, Independent Component Analysis, Principal Component Analysis, Clustering,
Classification, Dimension Reduction, Stability.

Abstract: Dimensionality reduction of high-dimensional data is often desirable, in particular where data analysis
includes visualization – an ever more common scenario nowadays. Principal Component Analysis, and more
recently Independent Component Analysis (ICA) are among the most common approaches. ICA may output
components that are redundant. Interpretation of such groups of independent components may be achieved
through application to tasks such as classification, regression, and visualization. One major problem is that
grouping of independent components for high-dimensional time series is difficult. Our objective is to provide
a comparative analysis using independent components for given grouping and prediction tasks related to high-
dimensional time series. Our contribution is that we have developed a novel semi-supervised procedure for
classification. This also provides consistency to the overall ICA result. We have conducted a comparative
performance analysis for classification and prediction tasks on time series. This research has a broader impact
on all kinds of ICA applied in several domains, including bio-medical sensors (such as electroencephalogram),
astronomy, financial time series, environment and remote sensing.

1 INTRODUCTION

Independent Component Analysis (ICA) and
Principal Component Analysis (PCA) are powerful
methods for separation of multiple components
(sources) from mixed signals that are high
dimensional. PCA can separate the mixtures into
components that will be orthogonal to each other, but
it may not lead to the true sources, such as audio. PCA
is able to find directions of maximum variance.
Independent Component Analysis can perform this
separation better because it finds directions most
aligned with the data. The independent components
need not be orthogonal to each other, unlike principal
components. Another benefit of ICA is that it
considers the true statistical independence
(independence of all higher moments), while PCA
considers independence only up to second moments.
Thus, in PCA we maximize variance while in ICA we
maximize cumulants (kurtosis) or likelihood (or
mutual information or entropy). Hence, the estimated
sources are uncorrelated in PCA while they are
statistically independent in ICA. However, the ICA

a https://orcid.org/0000-0003-0818-3190

procedure includes pre-whitening (making the
covariance as the identity matrix), which could be
performed by PCA or other methods. Therefore, PCA
and ICA are related to each other. Overall, with high-
dimensional data in which dimension reduction is
desirable, ICA is potentially superior to Principal
Component Analysis (PCA). This leads us to the
possibility of better applications of ICA for analysis
of high-dimensional data, such as classification,
clustering, and prediction.

ICA may output components that are redundant.
For example, when we perform ICA with 100
components on electro-encephalogram (EEG) data,
just about a dozen components are recognizable by
the trained human expert. Further, multiple runs of
the ICA over the same input signals provide different
estimates of components – the estimates are unstable.
Resampling has been attempted (Meinecke et. al.,
2002) but is not effective in tackling instability
(Chakrabarty and Levkowitz, 2019). Clustering of the
independent components is important in this context.
Interpretation of such groups of independent
components may be achieved through application to

Chakrabarty, S. and Levkowitz, H.
A New Algorithm using Independent Components for Classification and Prediction of High Dimensional Data.
DOI: 10.5220/0009148602650272
In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020) - Volume 3: IVAPP, pages
265-272
ISBN: 978-989-758-402-2; ISSN: 2184-4321
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

265

tasks, such as classification or regression
(Chakrabarty and Levkowitz, 2019).

The problem is that grouping independent
components for high-dimensional time series is
difficult. The objective is to provide a comparative
analysis of grouping independent components for a
given prediction and classification task with high-
dimensional time series.

The contribution of this work is with respect to
the classification task in which we have developed a
novel semi-supervised procedure for classification.
We demonstrate our results by using an array of the
fourth cumulants. ICA has problems of inconsistency
– when we perform ICA multiple times, we get
different results. Our method performs ICA several
times in order to provide consistency to the overall
ICA result.

We have posed the following research questions.
1. Can ICA or PCA improve prediction performance
over a baseline method, Auto Regressive Moving
Average (ARMA), for some high-dimensional time
series datasets?
2. Can ICA perform better than PCA classifying
some high-dimensional time series datasets?

This paper is organized as follows. First, we
present a very brief review of clustering methods and
independent component analysis. Then, we mention
the datasets used for this paper. We then present our
algorithm and snippets of code to illustrate the
implementation. We then discuss our comparative
results, followed by our conclusions.

2 BACKGROUND

Classification and clustering are similar but not the
same. The basic problem in clustering is: Given a set
of data points, partition them into a set of groups that
are as similar as possible (Aggarwal, 2014).
Clustering is the art of finding groups in data
(Kaufman & Rousseeuw, 2005). Clustering refers to
grouping of data when the groups are unknown
beforehand. In Classification, the groups (categories
or classes) are known and there is a need to identify
which group (category or class) each data belongs to
(supervised learning). But in clustering, the groups
are unravelled from the data (unsupervised learning).
However, the same data may be tested for both
classification and clustering: if we do not use the class
information then it is clustering (otherwise
classification).

Classification and clustering are broad terms for
several methods and approaches. The broad
approaches to clustering are named as Partition

clustering, Hierarchical clustering, Density-based
clustering, Grid-based clustering, Graph clustering,
Time series clustering, Semi-supervised clustering,
Spectral clustering, and Manifold clustering. Further,
different domains may have different methods of
clustering – such as, Document clustering, Stream
clustering, Multimedia data clustering, and High-
dimensional data clustering.

Partition clustering relocates points from one
partition to another. The advantage is that the quality
of clustering can be improved with iterative
optimization (Berkhin, 2006). Typically, the number
of partitions is pre-defined. So, if three clusters are
known and information on, say, customer data is
available, the data point of each customer can be
relocated to obtain an optimal quality of clusters (to
be validated). The relocation of points is performed
over many iterations.

Hierarchical clustering recursively groups in a
bottom-up (agglomerative) or top-town (divisive)
manner. This does not require a user-defined number
of clusters (Jain, Murty, & Flynn, 1999). So, each
data point is grouped with a similar data point (based
on a distance measure) and these smaller groups are
grouped together to form larger groups recursively.
From the top of this tree-like structure, one can see
the required grouping at the desired level of grouping.

Density-based clustering basically groups based
on a threshold density of points (Ester, Kriegel,
Sander, & Xu, 1996). So, the adjacent data points in
a particular cluster may have distances less than the
threshold.

Grid-based clustering uses a grid for faster
computation (Wang, Yang, & Muntz, 1997).
Assuming that the data is uniform, it can be
partitioned into a given number of cells, and the cells
may be sorted according to their densities (this
method overlaps with density-based method). Then,
the partition centers can be identified. The challenge
is to determine the grid.

Graph clustering uses the connectedness within
sub-graphs to group them (Schaeffer, 2007). Thus, for
example, if customer data can be represented in the
form of a connected graph, such as a social media
network of online customers, one can find clusters of
these online customers, for example college students
and working professionals (each grouped based on
connectedness).

Time series clustering performs grouping of series
having similar trends or similar shapes (Yi, et al.,
2000; Liao, 2005). For example, customer data may
represent monthly sales of several products over 15
years. Some product groups may have seasonality
(e.g., selling more during winter) or may be selling

IVAPP 2020 - 11th International Conference on Information Visualization Theory and Applications

266

together having a long-run relationship. Time series
of electro-encephalograms of the scalp of epilepsy
patients may be grouped as those with seizure and
those without.

Semi-supervised clustering performs grouping by
using information, such as labels for seeds
(initializing), pairwise constraints, active learning,
and user feedback (Chapelle, Scholkopf, & Zien,
2006). For example, when clusters in customer data
are sought, some prior information, such as initial
identification of few clusters (labels) or expert
feedback on identification of clusters for particular
points, could help in the effort.

Spectral clustering uses the spectrum
(eigenvalues) of the similarity matrix of the data to
perform dimensionality reduction before clustering in
fewer dimensions (Filiponne, Camastra, Masulli, &
Rovatta, 2008). Sometimes, the dimensions are so
many that one can only deal with subspaces (subspace
clustering) though subspaces may be different among
themselves. Dimensionality reduction is a better idea.
This could be done with particular matrix operations
in the process of spectral clustering.

Manifold clustering uses nonlinear
dimensionality reduction (such as using Kernel
Principal Component Analysis or Locally Linear
Embedding) on the data before clustering in fewer
dimensions (Roweis & Saul, 2000). Nonlinear
dimensionality reduction manages the “curse of
dimensionality” (data becomes increasingly sparse
and creates new problems in high dimensions) to
some extent.

The above are broad approaches. An overlap of
these approaches is possible, as shown in the case of
grid clustering. Other generalizations of the types of
clustering approaches are possible – such as, those
based on whether the underlying data representation
is feature-based (vector of features) or graph-based
(similarity graph between data points). K-means is an
example of a feature-based approach, while spectral
clustering is an example of a graph-based approach.

It is important to note that K-means is an
optimization problem that cannot guarantee a global
optimum solution. A major drawback of the K-means
algorithm is that it is highly sensitive to the initial K-
means. One popular option for initialization is to use
random values in the partitions; another option is to
draw from some distribution (e.g., normal).

There are many adaptations of the K-means
algorithm, such as K-medians, K-medoids, Fuzzy C
means, and K-modes. “Mean” has no meaning for
categorical data. For example, the K-modes algorithm
can work on categorical data. As compared with K-

means, K-modes uses modes (frequencies of
mismatches or a matching metric).

K-medoids is synonymous with Partitioning
Around Medoids (PAM). Medoids are similar to
means or centroids, but medoids will always be
members of the data set. Medoids are commonly used
when a mean or centroid cannot be defined, such as
in graphs. This method starts from an initial set of
medoids and iteratively replaces one of the medoids
by one of the non-medoids if it improves the total
distance of the resulting clustering.

Using a generalization of K-means, one can use a
model-based clustering method called the
Expectation-Maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977). EM finds clusters
by determining a mixture of Gaussians that fit a given
set of observations. The parameters can be initialized
randomly or by using the output of K-means. It has
two steps, the Expectation step, in which the expected
value of log likelihood is calculated, and the
Maximization step, in which parameters maximizing
the expected value are calculated and fed into the
Expectation step iteratively.

Clustering algorithms can have variants that can
be adapted to given circumstances / conditions. To
this end, it is important to identify the underling
nature of the data and to understand the underlying
domain, particularly when it has high dimensions.

High dimensionality brings in a special kind of
challenge called the “curse of dimensionality” (a term
coined by Ricard E. Bellman), in which the data
becomes increasingly sparse, and presents various
problems – such as, global optimization difficulty
increases exponentially, similarity measures such as
LP norm becomes less useful, and irrelevant attributes
arise. There are two basic approaches in clustering
high-dimensional data – projected clustering
(Aggarwal, Procopiuc, Wolf, Yu, & Park, 1999) and
subspace clustering (Agrawal, Gehrke, Gunopulos, &
Raghavan, 1998). Projected clustering partitions the
dataset in such a way that each point belongs to
exactly one cluster by projecting on the attributes of
the cluster. In subspace clustering a point may belong
to more than one cluster (partial membership and
overlaps are allowed). Subspace clustering finds all
clusters in all subspaces. There are also hybrid
approaches. It is important to note that there is no
general solution to clustering on high dimensional
data. So, some algorithms work on interesting
subspaces, some try to build hierarchically, some try
to optimize locally, and so on. Reducing dimensions
is important for feature extraction and feature
selection.

A New Algorithm using Independent Components for Classification and Prediction of High Dimensional Data

267

The concept of feature selection is slightly
different from traditional feature extraction. In feature
extraction, the features are projected onto a new space
with lower dimensionality. Examples of feature
extraction methods include Principal Component
Analysis, Linear Discriminant Analysis, and Singular
Value Decomposition. In feature selection, a small
subset (variables) of features is selected that
minimizes redundancy and maximizes relevance to
the class label. Examples of feature selection methods
include Information Gain, Relief, and Fischer Score.
Feature extraction/selection is a very important step
prior to tasks such as clustering or prediction. (Liu
and Motoda, 2007; Liu and Yu, 2005; Chakrabarty,
2018).

Prediction is performed by regression methods
and their variants. Regression is broadly of two types
– linear regression and non-linear regression. Another
way to see the variants of regression are: Logistic
regression, Quantile regression, Ordinal regression,
Poisson regression, Cox regression, Support vector
regression, Partial least squares regression, Ridge
regression, Lasso regression, ElasticNet, and
Polynomial regression. It is also possible to perform
prediction over components (PCA or ICA).

ICA comprises of several related algorithms and
methods. The key groups of algorithms can be
classified as higher order statistics (HOS) or second
order statistics (SOS). SOS is also known as time-
structure based. For sensor data, the main algorithms
for ICA are FastICA (Hyvärinen and Oja, 1997),
second order blind identification (SOBI)
(Belouchrani et. al., 1997), extended information-
maximization (InfoMax) (Lee et. al., 1999), adaptive
mixture of independent component analyzers
(AMICA) (Palmer et. al., 2011), algorithm for
multiple unknown signals extraction (AMUSE)
(Tong et. Al., 1990), joint approximate
diagonalization of eigen-matrices (JADE) (Cardoso
and Souloumiac, 1993; Miettinen et. al., 2017), and
temporal decorrelation separation (TDSEP) (Ziehe
and Muller, 1998).
Broadly, there may be several choices for the methods
– based on objective, iterative procedure et cetera.
Some of which are mentioned as follows.
Objective: Cumulant based; Maximum likelihood
based.
Iterative procedure: Batch method; Adaptive method;
Relative gradient.
Extraction of components: Iterative/deflationary;
Joint diagonalization/symmetric/simultaneous
extraction.
Non-stationarity: Quadratic and other methods.
Pre-whitening: PCA; ZCA.

Other algorithm variants: Subspace ICA; Bayesian
approaches; Semi-blind approaches.

Excellent reviews of ICA can be found in (Comon
and Jutten, 2010) and (Shi, 2011).

Clustering of independent components have been
performed for the Icasso index (Himberg and Hyvärinen,
2003). But this used hierarchical clustering (and
Euclidean distance). While hierarchical clustering is
visually appealing, this may not be the best choice in
high dimensions because of difficulties in selection of
merge or spilt points, no backtracking, no object
swapping between clusters and poor time complexity
(does not scale well).

ICA has been performed for recovering missing
signal data segments, stock market prediction, and
financial time series. However, time series present
their own challenges. For example, variables may be
dependent on their own values in the previous period,
called auto-regression. The mean and variance may
change over time, called non-stationary. The baseline
methods are the Auto-Regressive Moving Average
(ARMA) and Auto-Regressive Integrated Moving
Average (ARIMA). These may be univariate or
multivariate. Multivariate ARMA/ARIMA models
have not been explored in the context of ICA
literature.

3 METHODS

3.1 Datasets

As our enquiry involves dimension reduction, we
would prefer a high-dimensional dataset that is
openly available. For the classification task involving
time series, we have used the Epilepsy Seizure
Recognition dataset (archive.ics.uci.edu/ml/datasets/
Epileptic+Seizure+Recognition) from the open UCI
Machine Learning Repository. For the prediction task
with time series, the UCI Machine Learning
Repository provides us the Istanbul Stock Exchange
dataset (https://archive.ics.uci.edu/ml/datasets/
ISTANBUL+STOCK+EXCHANGE#).

The Epilepsy Seizure Recognition dataset has
11,500 rows, each row containing 178 data points for
1 second (columns) and the last column represents the
label y {1,2,3,4,5}. All subjects falling in Classes 2,
3, 4, and 5 are subjects who did not have an epileptic
seizure. Only subjects in Class 1 have had an epileptic
seizure. The dataset is unbalanced if we consider
binary classification of seizure. There are 2,300 rows
for seizure. We take 2,300 non-seizure rows from the
already-shuffled dataset. So, our balanced dataset for
binary classification is a 4,600 by 178 matrix.

IVAPP 2020 - 11th International Conference on Information Visualization Theory and Applications

268

The Istanbul Stock Exchange dataset is organized
about working days in the Istanbul Stock Exchange.
The attributes are stock exchange returns for the
Istanbul stock exchange national 100 index, the
Standard & Poor’s 500 return index, the Stock market
return index of Germany, the Stock market return
index of the UK, the Stock market return index of
Japan, the Stock market return index of Brazil, the
MSCI European index, and the MSCI emerging
markets index. The dataset has 536 rows (time) and
10 columns.

We do not have generalization claims that would
apply to all datasets. We have simply tested if we can
improve prediction and classification performance on
the given datasets and the potential of ICA; but we
have developed a new algorithm.

3.2 Methods

For prediction, we performed the following.

1. Baseline Auto Regression Moving Average
(ARMA)

2. Multivariate ARMA on PCA
3. Multivariate ARMA on ICA

For classification, we performed the following.
1. PCA followed by k-means clustering
2. ICA followed by k-means clustering
3. ICA followed by Partitioning Around Medoids

(PAM) clustering
4. ICA followed by semi-supervised learning and

classification (with our own algorithm).

The clustering was validated through external
means (Xiong and Li, 2014) – labels are available. So,
for k-means and PAM, we used an unsupervised
method for a classification task because labels were
available.

The programming environment was R. The
important libraries used were fastica, stats, cluster,
caret, marima, and their dependencies. Our source
code and dataset will be made freely available for
reproducibility.

3.3 Novel Algorithm

Our novel algorithmic procedure was in the
classification task. It is as follows.
1. Perform ICA n times for reduced dimension.

If we take three independent components out of
178 columns, the result is a 4,600 by 3 matrix for each
ICA. The number of iterations of ICA, n, can be
empirically estimated to get stable (asymptotic)
results. We can choose 20; more is better.

2. For each ICA, calculate the fourth cumulant of each
independent component.

So, we have 4,600 such values per ICA iteration.
3. Find the maximum fourth cumulant over the
iterations.

So, this will be a vector of size 4,600.
4. Partition the rows based on the maximum fourth
cumulant by learning a threshold. Some other statistic
could also be used.

This can easily be performed by observing the
change in accuracy or F1 (from confusion matrix)
with a change in the single threshold parameter.

The fourth cumulants are calculated as follows.
cumulant_4 <- function(estimated)
{
cum4 <- vector('numeric')

for (i in 1:ncol(estimated))
{
TS <- estimated[,i]#time-series column-
wise
cum4 <- c(cum4,(mean(TS^4)-
4*mean(TS)*mean(TS^3)-
(3*mean(TS^2)^2)+12*(mean(TS)^2)*mean(T
S^2)-6*mean(TS)^4))
}

return(cum4)
}

In the above code, the name of the function is
‘cumulant_4’ and it takes in a matrix, called
‘estimated’, as its parameter. Inside the function,
‘cum4’ is a numeric vector that is first initialized as
blank. The ‘for’ loop runs from 1 to the number of
columns in the matrix named ‘estimated’. ‘TS’ is the
column-wise timeseries. Next, the statistical formula
of fourth cumulant is calculated within the loop and
returned after the loop.

The application of the array of fourth cumulants
to iterations of ICA is performed as follows.
library(fastICA)

iterations_ica <-
as.integer(readline(prompt="Enter
number of iterations of ICA: ")) #20

number_components <-
as.integer(readline(prompt="Enter
number of ICA components: ")) #5

c4 <- matrix(,nrow = iterations_ica,
ncol = rowNumbers)#for fourth cumulants

compICA <- matrix(, nrow = rowNumbers,
ncol = number_components)

for(itr in 1:iterations_ica)
{

A New Algorithm using Independent Components for Classification and Prediction of High Dimensional Data

269

res1 <-
fastICA(RawData,number_components)

compICA <- matrix(res1$S, nrow =
rowNumbers, ncol = number_components)

source("cumulant_4.R")
c4[itr,] <- cumulant_4(t(compICA))
}

The library fastICA in R is used – it has the
fastICA function to perform ICA. We are performing
ICA several times: this number is input in
‘iterations_ica’, The number of ICA components is
input in ‘number_components’. ‘c4’ is initialized as a
matrix that holds the fourth cumulants over several
iterations for all rows. ‘res1’ holds the results of ICA.
‘compICA’ holds the sources (ICA components),
which is returned by ‘res1$S’. Then our function,
cumulant_4, is called, and its return value populates
‘c4’ for each iteration in the ‘for’ loop.

If, for example, we consider the threshold as
0.000001 (though the threshold is learned), a simple
way of classification based on the threshold is as
follows, for illustration. The value ICA components
may be negative because ICA does not consider sign.
So, we use absolute values. As per our algorithm, we
take the maximum of the fourth cumulants
(‘cum4_20_max’). This is because we want to
discover the most non-gaussian value. We compare
this value with the threshold and perform the binary
partition, populating the classes in ‘cum4_20_class’.
cum4_20_max <- c()
cum4_20_class <- c()

for (i in 1:4600)
{
cum4_20_max <- c(cum4_20_max,
max(abs(cum4[i,])))

if(abs(cum4_20_max[i]) > 0.000001){
cum4_20_class <- c(cum4_20_class,1)
}
else
{
cum4_20_class <- c(cum4_20_class,2)
}
}

4 RESULTS

The results for prediction of one step are given in
Table 1.

Observe that in high-dimensional data, such as
ours, baseline ARMA has been outperformed by
component-based methods in one-step prediction.

When working with components, ICA performed
better than PCA in prediction. However, we are
careful not to generalize our claims about prediction
for all kinds of datasets; it may not be true for low-
dimensional datasets or highly sparse datasets.

Table 1: One-step prediction.

 Mean Square Error
Baseline ARMA 0.0001056352
Multivariate ARMA on PCA 0.0001067322
Multivariate ARMA on ICA 0.0000965637

The results for prediction of ten steps are given at
in Table 2.

Table 2: Ten-step prediction.

 Mean Square Error
Baseline ARMA 0.0008024023
ARMA on PCA 0.0008043217
ARMA on ICA 0.0007754946

The Confusion Matrix revealed the classification
performance given in Table 3.

Table 3: Classification performance.

Overall

Accuracy
F1 score

PCA followed by
kmeans

0.3692469 0.3542

ICA followed by
kmeans

0.4170153 0.4294

ICA followed by PAM 0.6188982 0.7641

ICA followed by our
algorithm

0.8019526 0.8901

PCA may not have performed well in
classification because the data is time series (has a
temporal dimension). ICA performed better than PCA
in classification, following the theory that ICA finds
true statistical independence rather than working on
covariance only as in PCA.

PAM finds the medoids, the series that actually
exist, rather than means that are not actual
observations. Another benefit is that it is not affected
by extremes. This method performed better than k-
means in classification.

Importantly, our semi-supervised method works
the best among these options for classification
because we are able to tune (a single parameter) based
on the value of the fourth cumulant. Theoretically this
is sound because ICA works on this principle too. In

IVAPP 2020 - 11th International Conference on Information Visualization Theory and Applications

270

real life, the ‘labels’ in the dataset for classification
were provided by medical experts who may have
applied some threshold in their mind while
partitioning the data. Therefore, learning this
threshold and basing it in line with theory is a good
idea. Hence, it is reasoned that our algorithm
performed well in classification.

5 CONCLUSIONS

High-dimensional data require dimensional reduction
techniques for which PCA is usually considered
suitable. ICA has not been much used for time series
data. If we are required to perform classification tasks
on high-dimensional data, we would need to perform
dimensional reduction first. We found evidence that
ICA can indeed provide better classification than
PCA. One of our contributions is that we have found
that a careful choice of the clustering algorithm (PAM
instead of k-means) also leads to better performance.
Our most important contribution is that we have
developed a new algorithm that works on semi-
supervised learning. We have applied it on multiple
ICAs for more stable results. The new algorithm has
provided the best classification performance. The
limitation of this work is that we do not generalize to
all kinds of datasets. Datasets that are in low
dimensions and have many columns that are highly
sparse may not yield good results using ICA. On the
overall, this work provides an additional method that
uses ICA, and may work very well on high-
dimensional datasets. Future work may explore many
more types of datasets for possible generalization,
though our work provides good indications of better
performance in higher dimensions. Dimension
reduction is very important to visualization of high-
dimensional data, so it is possible that future work
may consider using similar approach to improve
visualization.

REFERENCES

Aggarwal, C. C., 2014. An Introduction to Cluster Analysis.
In C. C. Aggarwal, & C. K. Reddy, Data Clustering:
Algorithms and Applications (pp. 1- 27). Boca Raton,
FL: CRC Press.

Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., Yu, P. S.,
& Park, J. S., 1999. Fast Algorithms for Projected
Clustering. Proceedings of ACM International
Conference on Management of Data (SIGMOD), (pp.
61-72). Philadelphia, PA.

Aggarwal, C., Han, J., Wang, J., & Yu, P., 2003. A
Framework for Clustering Evolving Data Streams.
VLDB Conference.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P.,
1998. Automatic Subspace Clustering of High
Dimensional Data. Proceedings of ACM International
Conference on Management of Data (SIGMOD), (pp.
94-105). Seattle, WA.

Alelyani, S., Tang, J., & Liu, H., 2014. Feature Selection
for Clustering: A Review. In C. C. Aggarwal, & C. K.
Reddy, Data Clustering - Algorithms and Applications
(pp. 29-60). Boca Raton, FL: CRC Press.

Belouchrani, A., et al., 1997. A Blind Source Separation
Technique Using Second-Order Statistics. IEEE
Transactions on Signal Processing, vol. 45, no. 2, pp.
434–44, doi:10.1109/78.554307.

Berkhin, P., 2006. A Survey of Clustering Data Mining
Techniques. In J. Kogan, C. Nicholas, & M. Teoulle,
Grouping Multidimensional Data (pp. 27-71). Berlin
Heidelberg: Springer.

Cardoso, J.-F. & Souloumiac, A., 1993. Blind beamforming
for non Gaussian signals. IEE Proceedings-F, 140,
362–370.

Chakrabarty, S. & Levkowitz, H., 2019. Denoising and
stability using Independent Component Analysis in
high dimensions – visual inspection still required. in
23rd International Conference Information
Visualisation, Paris, 2019.

Chakrabarty, S. & Levkowitz, H., 2019. A New Index for
Measuring Inconsistencies in Independent Component
Analysis Using Multi-sensor Data. In: Luo Y. (eds)
Cooperative Design, Visualization, and Engineering.
CDVE 2019. Lecture Notes in Computer Science, vol
11792. Springer, Cham.

Chakrabarty, S., 2018. Clustering Methods in Business
Intelligence. in Global Business Intelligence, J. M.
Munoz, Ed., New York, Routledge, pp. 37-50.

Chapelle, O., Scholkopf, B., & Zien, A., 2006. Semi-
Supervised Learning. MIT Press.

Comon, P. & Jutten, C., 2010. Handbook of Blind Source
Separation, Burlington, MA: Academic Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B., 1977.
Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society,
39(1), 1-38.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X., 1996. A
Density-based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. ACM KDD
Conference, (pp. 226-231).

Filiponne, M., Camastra, F., Masulli, F., & Rovatta, S.
2008. A Survey of Kernel and Spectral Methods for
Clustering. Pattern Recognition, 41(1), 176-190.

Himberg, J. & Hyvärinen, A., 2003. Icasso: software for
investigating the reliability of ICA estimates by
clustering and visualization. in In Proc. 2003 IEEE
Workshop on Neural Networks for Signal Processing
(NNSP2003), Toulouse, France.

Hyvärinen, A. & Oja, E., 1997. A Fast Fixed-Point
Algorithm for Independent Component Analysis.
Neural Computation, vol. 9, pp. 1483-1492.

A New Algorithm using Independent Components for Classification and Prediction of High Dimensional Data

271

Hyvärinen, A. & Oja, E., 2000. Independent Component
Analysis: Algorithms and Applications. Neural
Networks, vol. 13, no. 4-5, pp. 411-430.

Jain, A. K., Murty, M. N., & Flynn, P. J., 1999. Data
Clustering: A Review. ACM Computing Surveys
(CSUR), 31(3), 264-323.

Kaufman, L., & Rousseeuw, P. J., 2005. Finding Groups in
Data - An Introduction to Cluster Analysis. Hboken,
New Jersey: John Wiley & Sons, Inc.

Lee, T. W., Girolami, V. and Sejnowski, T. J., 1999.
Independent Component Analysis Using an Extended
Infomax Algorithm for Mixed Sub-Gaussian and
Super-Gaussian Sources. Neural Computation, vol. 11,
no. 2, pp. 417-441.

Liao, T., 2005. Clustering of Time Series Data - A Survey.
Pattern Recognition, 38(11), 1857-1874.

Liu, H., & Motoda, H., 2007. Computational Methods of
Feature Selection. Boca Raton, FL: CRC Press.

Liu, H., & Yu, L., 2005. Towards integrating feature
selection algorithms for classification and clustering.
Knowledge and Data Engineering, IEEE Transactions
on, 17(4), 502.

MacQueen, J. B., 1967. Some Methods for classification
and Analysis of Multivariate Observations. J. B.
MacQueen: "Some Methods for classification and
Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability (pp. 281-297).
Berkeley: University of California Press.

Meinecke, F., Ziehe, A., Kawanabe, M. and Müller, K.-R.,
2002. A Resampling Approach to Estimate the Stability
of One-Dimensional or Multidimensional Independent
Components. IEEE Transactions on Biomedical
Engineering, vol. 49, no. 12.

Miettinen, J., Nordhausen, K. and Taskinen, S., 2017. Blind
Source Separation Based on Joint Diagonalization in R:
The Packages JADE and BSSasymp. Journal of
Statistical Software, vol. 76, pp. 1-31.

Palmer, J. A., Kreutz-delgado, K. and Makeig, S., 2011.
AMICA: An Adaptive Mixture of Independent
Component Analyzers with Shared Components.
[Online]. Available:
https://sccn.ucsd.edu/~jason/amica_a.pdf.

Roweis, S. T., & Saul, L. K., 2000. Nonlinear
Dimensionality Reduction by Locally Linear
Embedding. Science, 290(5500), 2323-2326.

Schaeffer, S., 2007. Graph Clustering. Computer Science
Review, 1(1), 27-64.

Shi, X., 2011. Blind Signal Processing, Shanghai: Springer
Jiao Tong University Press.

Tong, L., Soon, V., Huang, Y. and Liu, R., 1990. AMUSE:
a new blind identification algorithm. in IEEE
International Symposium on Circuits and Systems.

Wang, F., & Sun, J., 2012. Distance Metric Learning in
Data Mining. SDM Conference (Tutorial).

Wang, W., Yang, J., & Muntz, R., 1997. Sting: A Statistical
Information Grid Approach to Spatial Data Mining.
VLDB Conference.

Xiong, H., & Li, Z., 2014. Clustering Validation Measures.
In C. C. Aggarwal, & C. K. Reddy, Data Clustering -

Algorithms and Applications (pp. 571-605). Boca
Raton, FL: CRC Press.

Yi, B. K., Sidiropoulos, N. D., Johnson, T., Jagadish, H.,
Faloutsos, C., & Biliris, A., 2000. Online Data Mining
for Co-evolving Time Sequences. ICDE Conference.

Ziehe, A. & Muller, K.-R., 1998. TDSEP - an e�cient
algorithm for blind separation using time structure. in
International Conference on Artificial Neural Networks,
ICANN98, Skovde, Sweden.

IVAPP 2020 - 11th International Conference on Information Visualization Theory and Applications

272

