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Abstract: Dimensionality reduction of high-dimensional data is often desirable, in particular where data analysis 
includes visualization – an ever more common scenario nowadays. Principal Component Analysis, and more 
recently Independent Component Analysis (ICA) are among the most common approaches. ICA may output 
components that are redundant. Interpretation of such groups of independent components may be achieved 
through application to tasks such as classification, regression, and visualization. One major problem is that 
grouping of independent components for high-dimensional time series is difficult. Our objective is to provide 
a comparative analysis using independent components for given grouping and prediction tasks related to high-
dimensional time series. Our contribution is that we have developed a novel semi-supervised procedure for 
classification. This also provides consistency to the overall ICA result. We have conducted a comparative 
performance analysis for classification and prediction tasks on time series. This research has a broader impact 
on all kinds of ICA applied in several domains, including bio-medical sensors (such as electroencephalogram), 
astronomy, financial time series, environment and remote sensing. 

1 INTRODUCTION 

Independent Component Analysis (ICA) and 
Principal Component Analysis (PCA) are powerful 
methods for separation of multiple components 
(sources) from mixed signals that are high 
dimensional. PCA can separate the mixtures into 
components that will be orthogonal to each other, but 
it may not lead to the true sources, such as audio. PCA 
is able to find directions of maximum variance. 
Independent Component Analysis can perform this 
separation better because it finds directions most 
aligned with the data. The independent components 
need not be orthogonal to each other, unlike principal 
components. Another benefit of ICA is that it 
considers the true statistical independence 
(independence of all higher moments), while PCA 
considers independence only up to second moments. 
Thus, in PCA we maximize variance while in ICA we 
maximize cumulants (kurtosis) or likelihood (or 
mutual information or entropy). Hence, the estimated 
sources are uncorrelated in PCA while they are 
statistically independent in ICA. However, the ICA 
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procedure includes pre-whitening (making the 
covariance as the identity matrix), which could be 
performed by PCA or other methods. Therefore, PCA 
and ICA are related to each other. Overall, with high-
dimensional data in which dimension reduction is 
desirable, ICA is potentially superior to Principal 
Component Analysis (PCA). This leads us to the 
possibility of better applications of ICA for analysis 
of high-dimensional data, such as classification, 
clustering, and prediction.  

ICA may output components that are redundant. 
For example, when we perform ICA with 100 
components on electro-encephalogram (EEG) data, 
just about a dozen components are recognizable by 
the trained human expert. Further, multiple runs of 
the ICA over the same input signals provide different 
estimates of components – the estimates are unstable. 
Resampling has been attempted (Meinecke et. al., 
2002) but is not effective in tackling instability 
(Chakrabarty and Levkowitz, 2019). Clustering of the 
independent components is important in this context. 
Interpretation of such groups of independent 
components may be achieved through application to 
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tasks, such as classification or regression 
(Chakrabarty and Levkowitz, 2019).   

The problem is that grouping independent 
components for high-dimensional time series is 
difficult. The objective is to provide a comparative 
analysis of grouping independent components for a 
given prediction and classification task with high-
dimensional time series.   

The contribution of this work is with respect to 
the classification task in which we have developed a 
novel semi-supervised procedure for classification. 
We demonstrate our results by using an array of the 
fourth cumulants. ICA has problems of inconsistency 
– when we perform ICA multiple times, we get 
different results. Our method performs ICA several 
times in order to provide consistency to the overall 
ICA result. 

We have posed the following research questions. 
1. Can ICA or PCA improve prediction performance 
over a baseline method, Auto Regressive Moving 
Average (ARMA), for some high-dimensional time 
series datasets? 
2. Can ICA perform better than PCA classifying 
some high-dimensional time series datasets?  

This paper is organized as follows. First, we 
present a very brief review of clustering methods and 
independent component analysis. Then, we mention 
the datasets used for this paper. We then present our 
algorithm and snippets of code to illustrate the 
implementation. We then discuss our comparative 
results, followed by our conclusions.  

2 BACKGROUND 

Classification and clustering are similar but not the 
same. The basic problem in clustering is: Given a set 
of data points, partition them into a set of groups that 
are as similar as possible (Aggarwal, 2014). 
Clustering is the art of finding groups in data 
(Kaufman & Rousseeuw, 2005). Clustering refers to 
grouping of data when the groups are unknown 
beforehand. In Classification, the groups (categories 
or classes) are known and there is a need to identify 
which group (category or class) each data belongs to 
(supervised learning). But in clustering, the groups 
are unravelled from the data (unsupervised learning). 
However, the same data may be tested for both 
classification and clustering: if we do not use the class 
information then it is clustering (otherwise 
classification).  

Classification and clustering are broad terms for 
several methods and approaches. The broad 
approaches to clustering are named as Partition 

clustering, Hierarchical clustering, Density-based 
clustering, Grid-based clustering, Graph clustering, 
Time series clustering, Semi-supervised clustering, 
Spectral clustering, and Manifold clustering. Further, 
different domains may have different methods of 
clustering – such as, Document clustering, Stream 
clustering, Multimedia data clustering, and High-
dimensional data clustering.  

Partition clustering relocates points from one 
partition to another. The advantage is that the quality 
of clustering can be improved with iterative 
optimization (Berkhin, 2006). Typically, the number 
of partitions is pre-defined. So, if three clusters are 
known and information on, say, customer data is 
available, the data point of each customer can be 
relocated to obtain an optimal quality of clusters (to 
be validated). The relocation of points is performed 
over many iterations.      

Hierarchical clustering recursively groups in a 
bottom-up (agglomerative) or top-town (divisive) 
manner. This does not require a user-defined number 
of clusters (Jain, Murty, & Flynn, 1999). So, each 
data point is grouped with a similar data point (based 
on a distance measure) and these smaller groups are 
grouped together to form larger groups recursively. 
From the top of this tree-like structure, one can see 
the required grouping at the desired level of grouping.    

Density-based clustering basically groups based 
on a threshold density of points (Ester, Kriegel, 
Sander, & Xu, 1996). So, the adjacent data points in 
a particular cluster may have distances less than the 
threshold.     

Grid-based clustering uses a grid for faster 
computation (Wang, Yang, & Muntz, 1997). 
Assuming that the data is uniform, it can be 
partitioned into a given number of cells, and the cells 
may be sorted according to their densities (this 
method overlaps with density-based method). Then, 
the partition centers can be identified. The challenge 
is to determine the grid.     

Graph clustering uses the connectedness within 
sub-graphs to group them (Schaeffer, 2007). Thus, for 
example, if customer data can be represented in the 
form of a connected graph, such as a social media 
network of online customers, one can find clusters of 
these online customers, for example college students 
and working professionals (each grouped based on 
connectedness).   

Time series clustering performs grouping of series 
having similar trends or similar shapes (Yi, et al., 
2000; Liao, 2005). For example, customer data may 
represent monthly sales of several products over 15 
years. Some product groups may have seasonality 
(e.g., selling more during winter) or may be selling 
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together having a long-run relationship. Time series 
of electro-encephalograms of the scalp of epilepsy 
patients may be grouped as those with seizure and 
those without.   

Semi-supervised clustering performs grouping by 
using information, such as labels for seeds 
(initializing), pairwise constraints, active learning, 
and user feedback (Chapelle, Scholkopf, & Zien, 
2006). For example, when clusters in customer data 
are sought, some prior information, such as initial 
identification of few clusters (labels) or expert 
feedback on identification of clusters for particular 
points, could help in the effort. 

Spectral clustering uses the spectrum 
(eigenvalues) of the similarity matrix of the data to 
perform dimensionality reduction before clustering in 
fewer dimensions (Filiponne, Camastra, Masulli, & 
Rovatta, 2008). Sometimes, the dimensions are so 
many that one can only deal with subspaces (subspace 
clustering) though subspaces may be different among 
themselves. Dimensionality reduction is a better idea. 
This could be done with particular matrix operations 
in the process of spectral clustering.      

Manifold clustering uses nonlinear 
dimensionality reduction (such as using Kernel 
Principal Component Analysis or Locally Linear 
Embedding) on the data before clustering in fewer 
dimensions (Roweis & Saul, 2000). Nonlinear 
dimensionality reduction manages the “curse of 
dimensionality” (data becomes increasingly sparse 
and creates new problems in high dimensions) to 
some extent.    

The above are broad approaches. An overlap of 
these approaches is possible, as shown in the case of 
grid clustering. Other generalizations of the types of 
clustering approaches are possible – such as, those 
based on whether the underlying data representation 
is feature-based (vector of features) or graph-based 
(similarity graph between data points). K-means is an 
example of a feature-based approach, while spectral 
clustering is an example of a graph-based approach. 

It is important to note that K-means is an 
optimization problem that cannot guarantee a global 
optimum solution. A major drawback of the K-means 
algorithm is that it is highly sensitive to the initial K-
means. One popular option for initialization is to use 
random values in the partitions; another option is to 
draw from some distribution (e.g., normal). 

There are many adaptations of the K-means 
algorithm, such as K-medians, K-medoids, Fuzzy C 
means, and K-modes. “Mean” has no meaning for 
categorical data. For example, the K-modes algorithm 
can work on categorical data. As compared with K-

means, K-modes uses modes (frequencies of 
mismatches or a matching metric). 

K-medoids is synonymous with Partitioning 
Around Medoids (PAM). Medoids are similar to 
means or centroids, but medoids will always be 
members of the data set. Medoids are commonly used 
when a mean or centroid cannot be defined, such as 
in graphs. This method starts from an initial set of 
medoids and iteratively replaces one of the medoids 
by one of the non-medoids if it improves the total 
distance of the resulting clustering. 

Using a generalization of K-means, one can use a 
model-based clustering method called the 
Expectation-Maximization (EM) algorithm 
(Dempster, Laird, & Rubin, 1977). EM finds clusters 
by determining a mixture of Gaussians that fit a given 
set of observations. The parameters can be initialized 
randomly or by using the output of K-means. It has 
two steps, the Expectation step, in which the expected 
value of log likelihood is calculated, and the 
Maximization step, in which parameters maximizing 
the expected value are calculated and fed into the 
Expectation step iteratively.  

Clustering algorithms can have variants that can 
be adapted to given circumstances / conditions. To 
this end, it is important to identify the underling 
nature of the data and to understand the underlying 
domain, particularly when it has high dimensions. 

High dimensionality brings in a special kind of 
challenge called the “curse of dimensionality” (a term 
coined by Ricard E. Bellman), in which the data 
becomes increasingly sparse, and presents various 
problems – such as, global optimization difficulty 
increases exponentially, similarity measures such as 
LP norm becomes less useful, and irrelevant attributes 
arise. There are two basic approaches in clustering 
high-dimensional data – projected clustering 
(Aggarwal, Procopiuc, Wolf, Yu, & Park, 1999) and 
subspace clustering (Agrawal, Gehrke, Gunopulos, & 
Raghavan, 1998). Projected clustering partitions the 
dataset in such a way that each point belongs to 
exactly one cluster by projecting on the attributes of 
the cluster. In subspace clustering a point may belong 
to more than one cluster (partial membership and 
overlaps are allowed). Subspace clustering finds all 
clusters in all subspaces. There are also hybrid 
approaches. It is important to note that there is no 
general solution to clustering on high dimensional 
data. So, some algorithms work on interesting 
subspaces, some try to build hierarchically, some try 
to optimize locally, and so on. Reducing dimensions 
is important for feature extraction and feature 
selection.  
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The concept of feature selection is slightly 
different from traditional feature extraction. In feature 
extraction, the features are projected onto a new space 
with lower dimensionality. Examples of feature 
extraction methods include Principal Component 
Analysis, Linear Discriminant Analysis, and Singular 
Value Decomposition. In feature selection, a small 
subset (variables) of features is selected that 
minimizes redundancy and maximizes relevance to 
the class label. Examples of feature selection methods 
include Information Gain, Relief, and Fischer Score. 
Feature extraction/selection is a very important step 
prior to tasks such as clustering or prediction. (Liu 
and Motoda, 2007; Liu and Yu, 2005; Chakrabarty, 
2018). 

Prediction is performed by regression methods 
and their variants. Regression is broadly of two types 
– linear regression and non-linear regression. Another 
way to see the variants of regression are: Logistic 
regression, Quantile regression, Ordinal regression, 
Poisson regression, Cox regression, Support vector 
regression, Partial least squares regression, Ridge 
regression, Lasso regression, ElasticNet, and 
Polynomial regression. It is also possible to perform 
prediction over components (PCA or ICA). 

ICA comprises of several related algorithms and 
methods. The key groups of algorithms can be 
classified as higher order statistics (HOS) or second 
order statistics (SOS). SOS is also known as time-
structure based. For sensor data, the main algorithms 
for ICA are FastICA (Hyvärinen and Oja, 1997), 
second order blind identification (SOBI) 
(Belouchrani et. al., 1997), extended information-
maximization (InfoMax) (Lee et. al., 1999), adaptive 
mixture of independent component analyzers 
(AMICA) (Palmer et. al., 2011), algorithm for 
multiple unknown signals extraction (AMUSE) 
(Tong et. Al., 1990), joint approximate 
diagonalization of eigen-matrices (JADE) (Cardoso 
and Souloumiac, 1993; Miettinen et. al., 2017), and 
temporal decorrelation separation (TDSEP) (Ziehe 
and Muller, 1998). 
Broadly, there may be several choices for the methods 
– based on objective, iterative procedure et cetera. 
Some of which are mentioned as follows. 
Objective: Cumulant based; Maximum likelihood 
based. 
Iterative procedure: Batch method; Adaptive method; 
Relative gradient.  
Extraction of components: Iterative/deflationary; 
Joint diagonalization/symmetric/simultaneous 
extraction. 
Non-stationarity: Quadratic and other methods. 
Pre-whitening: PCA; ZCA. 

Other algorithm variants: Subspace ICA; Bayesian 
approaches; Semi-blind approaches. 

Excellent reviews of ICA can be found in (Comon 
and Jutten, 2010) and (Shi, 2011). 

Clustering of independent components have been 
performed for the Icasso index (Himberg and Hyvärinen, 
2003). But this used hierarchical clustering (and 
Euclidean distance). While hierarchical clustering is 
visually appealing, this may not be the best choice in 
high dimensions because of difficulties in selection of 
merge or spilt points, no backtracking, no object 
swapping between clusters and poor time complexity 
(does not scale well). 

ICA has been performed for recovering missing 
signal data segments, stock market prediction, and 
financial time series. However, time series present 
their own challenges. For example, variables may be 
dependent on their own values in the previous period, 
called auto-regression. The mean and variance may 
change over time, called non-stationary. The baseline 
methods are the Auto-Regressive Moving Average 
(ARMA) and Auto-Regressive Integrated Moving 
Average (ARIMA). These may be univariate or 
multivariate. Multivariate ARMA/ARIMA models 
have not been explored in the context of ICA 
literature. 

3 METHODS  

3.1 Datasets 

As our enquiry involves dimension reduction, we 
would prefer a high-dimensional dataset that is 
openly available. For the classification task involving 
time series, we have used the Epilepsy Seizure 
Recognition dataset (archive.ics.uci.edu/ml/datasets/ 
Epileptic+Seizure+Recognition) from the open UCI 
Machine Learning Repository. For the prediction task 
with time series, the UCI Machine Learning 
Repository provides us the Istanbul Stock Exchange 
dataset (https://archive.ics.uci.edu/ml/datasets/ 
ISTANBUL+STOCK+EXCHANGE# ). 

The Epilepsy Seizure Recognition dataset has 
11,500 rows, each row containing 178 data points for 
1 second (columns) and the last column represents the 
label y {1,2,3,4,5}. All subjects falling in Classes 2, 
3, 4, and 5 are subjects who did not have an epileptic 
seizure. Only subjects in Class 1 have had an epileptic 
seizure. The dataset is unbalanced if we consider 
binary classification of seizure. There are 2,300 rows 
for seizure. We take 2,300 non-seizure rows from the 
already-shuffled dataset. So, our balanced dataset for 
binary classification is a 4,600 by 178 matrix.  
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The Istanbul Stock Exchange dataset is organized 
about working days in the Istanbul Stock Exchange. 
The attributes are stock exchange returns for the 
Istanbul stock exchange national 100 index, the 
Standard & Poor’s 500 return index, the Stock market 
return index of Germany, the Stock market return 
index of the UK, the Stock market return index of 
Japan, the Stock market return index of Brazil, the 
MSCI European index, and the MSCI emerging 
markets index. The dataset has 536 rows (time) and 
10 columns.  

We do not have generalization claims that would 
apply to all datasets. We have simply tested if we can 
improve prediction and classification performance on 
the given datasets and the potential of ICA; but we 
have developed a new algorithm. 

3.2 Methods 

For prediction, we performed the following. 

1. Baseline Auto Regression Moving Average 
(ARMA) 

2. Multivariate ARMA on PCA 
3. Multivariate ARMA on ICA 

For classification, we performed the following. 
1. PCA followed by k-means clustering 
2. ICA followed by k-means clustering 
3. ICA followed by Partitioning Around Medoids 

(PAM) clustering 
4. ICA followed by semi-supervised learning and 

classification (with our own algorithm).  

The clustering was validated through external 
means (Xiong and Li, 2014) – labels are available. So, 
for k-means and PAM, we used an unsupervised 
method for a classification task because labels were 
available.  

The programming environment was R. The 
important libraries used were fastica, stats, cluster, 
caret, marima, and their dependencies. Our source 
code and dataset will be made freely available for 
reproducibility. 

3.3 Novel Algorithm 

Our novel algorithmic procedure was in the 
classification task. It is as follows. 
1. Perform ICA n times for reduced dimension.  

If we take three independent components out of 
178 columns, the result is a 4,600 by 3 matrix for each 
ICA. The number of iterations of ICA, n, can be 
empirically estimated to get stable (asymptotic) 
results. We can choose 20; more is better.  

2. For each ICA, calculate the fourth cumulant of each 
independent component.  

So, we have 4,600 such values per ICA iteration. 
3. Find the maximum fourth cumulant over the 
iterations.  

So, this will be a vector of size 4,600.   
4. Partition the rows based on the maximum fourth 
cumulant by learning a threshold. Some other statistic 
could also be used. 

This can easily be performed by observing the 
change in accuracy or F1 (from confusion matrix) 
with a change in the single threshold parameter. 

The fourth cumulants are calculated as follows. 
cumulant_4 <- function(estimated) 
{ 
cum4 <- vector('numeric') 
 
for (i in 1:ncol(estimated)) 
{ 
TS <- estimated[,i]#time-series column-
wise 
cum4 <- c(cum4,(mean(TS^4)-
4*mean(TS)*mean(TS^3)-
(3*mean(TS^2)^2)+12*(mean(TS)^2)*mean(T
S^2)-6*mean(TS)^4)) 
} 
 
return(cum4) 
} 

In the above code, the name of the function is 
‘cumulant_4’ and it takes in a matrix, called 
‘estimated’, as its parameter. Inside the function, 
‘cum4’ is a numeric vector that is first initialized as 
blank. The ‘for’ loop runs from 1 to the number of 
columns in the matrix named ‘estimated’. ‘TS’ is the 
column-wise timeseries. Next, the statistical formula 
of fourth cumulant is calculated within the loop and 
returned after the loop.  

The application of the array of fourth cumulants 
to iterations of ICA is performed as follows. 
library(fastICA) 
 
iterations_ica <- 
as.integer(readline(prompt="Enter 
number of iterations of ICA: ")) #20 
 
number_components <- 
as.integer(readline(prompt="Enter 
number of ICA components: ")) #5 
 
c4 <- matrix(,nrow = iterations_ica, 
ncol = rowNumbers)#for fourth cumulants 
 
compICA <- matrix(, nrow = rowNumbers, 
ncol = number_components)  
 
for(itr in 1:iterations_ica) 
{ 
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res1 <- 
fastICA(RawData,number_components) 
 
compICA <- matrix(res1$S, nrow = 
rowNumbers, ncol = number_components) 
 
source("cumulant_4.R") 
c4[itr,] <- cumulant_4(t(compICA)) 
} 

The library fastICA in R is used – it has the 
fastICA function to perform ICA. We are performing 
ICA several times: this number is input in 
‘iterations_ica’, The number of ICA components is 
input in ‘number_components’. ‘c4’ is initialized as a 
matrix that holds the fourth cumulants over several 
iterations for all rows. ‘res1’ holds the results of ICA. 
‘compICA’ holds the sources (ICA components), 
which is returned by ‘res1$S’. Then our function, 
cumulant_4, is called, and its return value populates 
‘c4’ for each iteration in the ‘for’ loop.  

If, for example, we consider the threshold as 
0.000001 (though the threshold is learned), a simple 
way of classification based on the threshold is as 
follows, for illustration. The value ICA components 
may be negative because ICA does not consider sign. 
So, we use absolute values. As per our algorithm, we 
take the maximum of the fourth cumulants 
(‘cum4_20_max’). This is because we want to 
discover the most non-gaussian value. We compare 
this value with the threshold and perform the binary 
partition, populating the classes in ‘cum4_20_class’.  
cum4_20_max <- c() 
cum4_20_class <- c() 
 
for (i in 1:4600) 
{ 
cum4_20_max <- c(cum4_20_max, 
max(abs(cum4[i,]))) 
 
if(abs(cum4_20_max[i]) > 0.000001){ 
cum4_20_class <- c(cum4_20_class,1) 
} 
else 
{ 
cum4_20_class <- c(cum4_20_class,2) 
} 
} 

4 RESULTS  

The results for prediction of one step are given in 
Table 1. 

Observe that in high-dimensional data, such as 
ours, baseline ARMA has been outperformed by 
component-based methods in one-step prediction. 

When working with components, ICA performed 
better than PCA in prediction. However, we are 
careful not to generalize our claims about prediction 
for all kinds of datasets; it may not be true for low-
dimensional datasets or highly sparse datasets. 

Table 1: One-step prediction. 

 Mean Square Error 
Baseline ARMA 0.0001056352 
Multivariate ARMA on PCA 0.0001067322 
Multivariate ARMA on ICA 0.0000965637 

 

The results for prediction of ten steps are given at 
in Table 2. 

Table 2: Ten-step prediction. 

 Mean Square Error 
Baseline ARMA 0.0008024023 
ARMA on PCA  0.0008043217 
ARMA on ICA 0.0007754946 

 

The Confusion Matrix revealed the classification 
performance given in Table 3. 

Table 3: Classification performance. 

 
Overall 

Accuracy 
F1 score 

PCA followed by 
kmeans 

0.3692469 0.3542 

ICA followed by 
kmeans 

0.4170153 0.4294 

ICA followed by PAM 0.6188982 0.7641 

ICA followed by our 
algorithm 

0.8019526 0.8901 

  

PCA may not have performed well in 
classification because the data is time series (has a 
temporal dimension). ICA performed better than PCA 
in classification, following the theory that ICA finds 
true statistical independence rather than working on 
covariance only as in PCA.  

PAM finds the medoids, the series that actually 
exist, rather than means that are not actual 
observations. Another benefit is that it is not affected 
by extremes. This method performed better than k-
means in classification. 

Importantly, our semi-supervised method works 
the best among these options for classification 
because we are able to tune (a single parameter) based 
on the value of the fourth cumulant. Theoretically this 
is sound because ICA works on this principle too. In 
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real life, the ‘labels’ in the dataset for classification 
were provided by medical experts who may have 
applied some threshold in their mind while 
partitioning the data. Therefore, learning this 
threshold and basing it in line with theory is a good 
idea. Hence, it is reasoned that our algorithm 
performed well in classification. 

5 CONCLUSIONS 

High-dimensional data require dimensional reduction 
techniques for which PCA is usually considered 
suitable. ICA has not been much used for time series 
data. If we are required to perform classification tasks 
on high-dimensional data, we would need to perform 
dimensional reduction first. We found evidence that 
ICA can indeed provide better classification than 
PCA. One of our contributions is that we have found 
that a careful choice of the clustering algorithm (PAM 
instead of k-means) also leads to better performance. 
Our most important contribution is that we have 
developed a new algorithm that works on semi-
supervised learning. We have applied it on multiple 
ICAs for more stable results. The new algorithm has 
provided the best classification performance. The 
limitation of this work is that we do not generalize to 
all kinds of datasets. Datasets that are in low 
dimensions and have many columns that are highly 
sparse may not yield good results using ICA. On the 
overall, this work provides an additional method that 
uses ICA, and may work very well on high-
dimensional datasets. Future work may explore many 
more types of datasets for possible generalization, 
though our work provides good indications of better 
performance in higher dimensions. Dimension 
reduction is very important to visualization of high-
dimensional data, so it is possible that future work 
may consider using similar approach to improve 
visualization.  
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