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Localizing the visitors of an outdoor natural site can be advantageous to study their behavior as well as to

provide them information on where they are and what to visit in the site. Despite GPS can generally be used
to perform outdoor localization, we show that this kind of signal is not always accurate enough in real-case
scenarios. On the contrary, localization based on egocentric images can be more accurate but it generally
results in more expensive computation. In this paper, we investigate how fusing image- and GPS-based pre-
dictions can allow to achieve efficient and accurate localization of the visitors of a natural site. Specifically, we
compare different fusion techniques, including a modality attention approach which is shown to provide the
best performances. Results point out that the proposed technique achieve promising results, allowing to obtain
the performances of very deep models (e.g., DenseNet) with a less expensive architecture (e.g., SqueezeNet)
which employ a memory footprint of about 3M B and an inference speed of about 25ms.

1 INTRODUCTION

Smart wearable and mobile devices equipped with a
camera and a display offer a convenient platform to
improve the fruition of indoor cultural sites such as
art galleries and museums (Cucchiara and Del Bimbo,
2014; Seidenari et al., 2017), outdoor urban places
such as cities (Alkhafaji et al., 2019; Alletto et al.,
2016), as well as outdoor natural environments such
as parks and gardens (Milotta et al., 2019a; Milotta
et al., 2019b). Notably, smart glasses allow to ex-
plore the cultural site and receive additional infor-
mation and services through augmented reality in a
“hands-free” fashion. At the same time, such devices
allow to effortlessly collect visual information about
the behavior of the user which, if properly analyzed,
can provide value to the site manager (Farinella et al.,
2019). In particular, the continuous localization of
the camera wearers allows to provide the visitors with
a “where am I” service, which can be useful to help
them navigate the site and provide additional informa-
tion on the current area or alternative routes to visit.
At the same time, a “where are they” service can be
provided to the site manager to help locate all visitors
to understand which areas are the most visited and
where people tend to spend more time.

*These authors are co-first authors.
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Figure 1: In the considered scenario, users are localized in
a natural site using both egocentric images and GPS data.
The natural site is divided into non-overlapping areas and
localization is addressed as a classification problem.

Most previous works focused on recognizing
scene context (Battiato et al., 2008) and on localizing
the visitors in indoor scenarios (Giuliano et al., 2014;
Ragusa et al., 2019; Farinella et al., 2019), whereas
the localization of users in outdoor natural sites has
been relatively less investigated (Milotta et al., 2019a;
Milotta et al., 2019b). While GPS can be generally
exploited for localization in outdoor contexts, previ-
ous works (Milotta et al., 2019a; Milotta et al., 2019b)
have shown that this is not always the case due to
the limited accuracy of consumer GPS receivers, es-
pecially in natural scenarios in which the sky might
be covered by trees. In particular, in (Milotta et al.,
2019a) it has been shown that localizing the visitors
from egocentric images is much more accurate than
using GPS. The work of (Milotta et al., 2019b) further
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investigated how combining a shallow Convolutional
Neural Network (CNN) for image-based localization
with a simple decision tree to process GPS data can
allow to obtain a good localization accuracy at a low
computational cost, which is a key factor when the
system has to be deployed in the embedded settings
imposed by wearable devices.

In this paper, we consider the problem of localiz-
ing the visitors of natural sites from egocentric images
and GPS. As proposed in previous investigations (Ra-
gusa et al., 2019; Milotta et al., 2019a; Milotta et al.,
2019b), in the considered scenario, the natural site
is divided into non-overlapping areas and localiza-
tion is addressed as a classification problem (see Fig-
ure 1). To carry out the investigation, we rely on the
dataset proposed in (Milotta et al., 2019a). Similarly
to (Milotta et al., 2019a; Milotta et al., 2019b) we
consider a multi-modal architecture which processes
images and GPS data using specialized branches.
While (Milotta et al., 2019a; Milotta et al., 2019b)
rely on late fusion to combine the predictions of the
different branches, we show that better results can be
achieved introducing a “modality attention” (Furnari
and Farinella, 2019) module, which uses intermedi-
ate representations from the two branches to compute
fusion weights. This allows the overall architecture
to “vote” for which modality is more to be trusted on
a sample-by-sample basis. We validate the proposed
approach by comparing it with the results reported
in (Milotta et al., 2019a; Milotta et al., 2019b), as well
as with several multi-modal fusion approaches based
on weighted late fusion, and “learned” late fusion.

The reminder of the paper is organized as follow-
ing. The related works are discussed in Section 2. The
compared localization approaches are detailed in Sec-
tion 3. Experimental settings and results are given in
Section 4. Section 5 concludes the paper.

2 RELATED WORKS

Previous works have investigated the use of computer
vision in natural environments. Kumar et al. (Kumar
et al., 2012) proposed a system which allows to iden-
tify 184 species of trees from pictures acquired using
a mobile application. Wegner et al. (Wegner et al.,
2016) introduced a framework for the recognition
of trees which leverages data collected from Google
street view. Horn et al. (Horn et al., 2017) proposed
the iNat2007 dataset, which contains images of about
8,000 different species of plants collected in natural
environments. Joly et al. (Joly et al., 2017) introduced
the LifeCLEF dataset to address the investigation of
different tasks, including identification of birds based
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on audio, recognition of plants from images, vision-
based monitoring of organisms living in seas, and rec-
ommendation of species based on location. Milotta et
al. (Milotta et al., 2019a; Milotta et al., 2019b) intro-
duced a dataset of egocentric videos paired with GPS
measurements collected by different visitors in a nat-
ural site. A subset of video frames has been labeled
to specify the area of the natural site in which the vis-
itor was located during the acquisition. In particu-
lar, labels are provided at different granularity levels,
including high-level contexts and fine-grained sub-
contexts. Localization has been hence addressed as a
classification problem. The authors also investigated
localization from images and GPS using standard late
fusion techniques, showing how accurate localization
can be obtained at a low computational budget using
a shallow CNN processing images and a decision tree
processing GPS.

Our work builds on the investigation previously
proposed by Milotta et al. (Milotta et al., 2019a;
Milotta et al., 2019b). In particular, we show that the
use of a modality attention mechanism (Furnari and
Farinella, 2019) can improve localization accuracy
based on images and GPS. The proposed approach is
compared both computationally and in terms of accu-
racy with respect to the baselines proposed in (Milotta
et al., 2019a; Milotta et al., 2019b), which are outper-
formed.

3 METHODS

In this Section, we present the methods to address
the localization problem which have been compared
in this study. All considered approaches are classi-
fiers over m possible classes C = 1,...,m which take
as input either a pair of GPS coordinates x = (x,y)
collected using a GPS receiver, an egocentric image
I, or a pair (x,I) consisting in a sensed GPS loca-
tion x and an egocentric image I collected at the same
time. It is worth noting that, as it will be clear from
the experiments, the sensed GPS location tend to be
noisy. Hence, the task of learning a classifier f(x)
from GPS data is not trivial. Indeed, we will show that
different methods based on GPS have different per-
formance. We will hence consider two main classes
of methods: 1) single-modal approaches, which per-
form localization by inferring the current class from
either the GPS location (f(x) — § € C) or the egocen-
tric image (f(I) — § € C), 2) multi-modal approaches,
which infer the area in which the visitor is currently
located by processing both GPS locations and images
(f(x,I) — $ € C). The following sections discuss the
details of the methods considered for the two families
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Figure 2: Multilayer Perceptron architecture used to local-
ize the visitors based on GPS data.

of approaches.

3.1 Single-modal Localization based on
GPS Data or Egocentric Images

GPS: We used a multilayer perceptron which takes
a pair of GPS coordinates as input to infer in which
area the user is located. Specifically, the multilayer
perceptron is composed of five fully connected lay-
ers: one input layer, three hidden layers and one out-
put layer. All layers have the same activation function
(Relu) and each layer doubles the dimensionality of
the received input. The network has been trained for
30 epochs using the cross-entropy loss fuction. Batch
size has been set to 8, momentum to 0.9 and the learn-
ing rate to 0.001. The architecture is sketched in Fig-
ure 2.

Egocentric Images: We considered different CNN
architectures: ResNet (He et al., 2016), DenseNet
(Huang et al., 2017) and SqueezeNet (Iandola et al.,
2016). We also considered a shallow variant of
SqueezeNet obtained by truncating the network to the
first 6 layer as proposed in (Milotta et al., 2019b).
We refer to this architecture as SqueezeNet-6. In all
cases, we consider the models pre-trained on Ima-
geNet (Deng et al., 2009). Each network is fine-tuned
to predict the area in which the visitor is currently
located from an input egocentric image. The hyper-
parameters were set in the same way as the multi-
layer discussed in previous paragraph, only the batch
size was changed to 3. To assess the effect of fus-
ing two networks operating on the same modality, as
compared to multi-modal fusion, we also consider an
architecture which combines the two approaches as
depicted in Figure 3. The two vectors have a size
of 32 and represent the probability distribution over
the classes of the two networks. This two vectors are
concatenated and given as input of a multilayer per-
ceptron.
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Figure 3: Combined CNNs Architecture.

3.2 Multi-modal Localization
Exploiting Images and GPS

We propose to perform multi-modal localization by
processing both images and GPS using a “modal-
ity attention” approach similar to the one proposed
in (Furnari and Farinella, 2019). This approach is
compared with respect to two baseline fusion meth-
ods: “weighted late fusion” and “learned late fusion”.
All these approaches assume that two modality-
specific branches are available. The “image branch”
fim takes as input an egocentric image / and out-
puts the conditional probability distribution p(c|l) =
fim(I). The “GPS branch” fsps takes as input the
GPS coordinates x and outputs the conditional prob-
ability distribution p(c|x) = feps(x). In all our ex-
periments, fi, is implemented as a CNN and fgps
is implemented as a multilayer perceptron. The dif-
ferent fusion approaches considered for comparisons
seek ways to fuse the two probability distributions, to
obtain a multi-modal prediction p(c|I,x).

Weighted Late Fusion: This approach computes
the multi-modal prediction p(c|l,x) by computing a
weighted average between the modality specific pre-
dictions:

p(cll,x) = Afim(I) + (1 —X) feps(x) €))

where A € [0,1] is a fusion parameter which regu-
lates the trade-off between image-based predictions
and GPS-based predictions. In our experiments, the
two branches are trained independently (we have used
the model described in previous section) on their re-
spective modalities and the A parameter is later tuned
with a grid search on the training set. Figure 4 illus-
trates the weighted late fusion architecture. It should
be noted that this fusion technique is a very standard
approach, as investigated in (Milotta et al., 2019a;
Milotta et al., 2019b).

Learned Late Fusion: The weighted late fusion ap-
proach might be limited by the fact that modality-
specifc predictions are aggregated with a simple lin-
ear combination. To allow the model to learn better
ways to combine the predictions, we explore “learned
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Figure 4: Weighted Late Fusion Architecture.
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Figure 5: Learned Late Fusion Architecture.

late fusion” approach in which the outputs of the two
branches are concatenated and fed to a fusion network
ftusion Which directly outputs the multi-modal predic-
tion: p(CIL X) = ffusion (ﬁmg (I)>fGPS(X))~ We imple'
ment the fusion network as a multilayer perceptron
with three fully connected layers. Figure 5 illustrates
the learned late fusion architecture.

Modality Attention: While the learned late fusion
approach can in principle learn how to best combine
the modality-specific predictions, we observe that it
is more exposed to over-fitting, due to the highly in-
creased number of parameters. On the contrary, the
simple weighted late fusion approach keeps a very
simple late fusion scheme but imposes the fusion
weights to be fixed at inference time. Inspired by
recent work (Furnari and Farinella, 2019), we con-
sider a modality attention mechanism which com-
putes the late fusion weights on a sample-by-sample
basis. This allows for more flexibility as the model
can learn to assign different weights to the different
modalities depending on the input samples. To obtain
the final prediction, we first consider some intermedi-
ate representations computed by the modality-specific
branches fi,, and fgps. We will refer to those as
&img(I) and 0gps(x). These representations are con-
catenated and fed to a Modality Attention (MATT)
network fyarr, which outputs two scores s; and
§2: 81,82 = fMATT ((])img(l),(])cps(x)). The scores are
hence normalized using the Softmax function to ob-
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Figure 6: Modality Attention Architecture.

tain suitable late fusion weights which sum to 1:
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The computed weights are hence used to perform late
fusion as follows:

plc|l,x) =wi - fimg(I) +w2 - feps(X) 3)

In our experiments, we extract the internal represen-
tations of the two branches just before the final clas-
sification layers to obtain ;e (/) and ¢gps(x). The
modality attention network fyarr is implemented as
a multilayer perceptron with three fully connected
layers which each of them halves its input. To
maximize performance, we first train each modality-
specific branch independently. Then, we initialize
Jmarr randomly and fine-tune the whole architecture
by applying the cross-entropy loss to the final output
p(c|l,x). Tt should be noted that this loss is differ-
entiable with respect to the parameters of both fi,,
fors and fyarr. The network has been trained for 15
epochs, the batch size has been set to 3, momentum
to 0.9 and the learning rate to 0.001.

3.3 State of the Art Approaches

We also consider the approaches investigated
in (Milotta et al., 2019a; Milotta et al., 2019b) for
comparison. These consist in the fusion of different
CNN architectures, including SqueezeNet (Iandola
et al., 2016), AlexNet (Krizhevsky et al., 2012) and
VGG (Simonyan and Zisserman, 2015), with differ-
ent classifiers based on GPS, including a K-Nearest
Neighbor (KNN), a Decision Classification Tree
(DCT) and a Support Vector Machine (SVM). All
these approaches perform fusion using a standard late
fusion approach similar in spirit to the “weighted late
fusion” method considered in this paper. We compare
with respect to these approaches by reporting the
accuracy values declared by the authors in (Milotta
et al., 2019a; Milotta et al., 2019Db).
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Figure 7: Topology of the natural site. The space is com-
posed by 9 context (coloured in red). For the area number
5 the botanic expert have defined 9 subcontext (coloured in
blue). The 17 context area are obtained substituting the 9
subcontext to the context numbers.

4 EXPERIMENTAL RESULTS

4.1 Dataset

For our experiments, we considered the dataset intro-
duced in (Milotta et al., 2019a). This dataset com-
prises about 6 hours of egocentric videos collected
by different visitors while exploring the natural site
of the Botanical Garden of the University of Catania.
Specifically, the authors released 63,581 images sam-
pled from the videos. To allow evaluation by cross-
validation, the set of data has been partitioned into
three folds. Each image is associated to a GPS posi-
tion retrieved with a smartphone and labeled accord-
ing to the area in which the visitor was located at the
time of acquisition. The labels are provided according
to three different levels of localization granularity:

e 9 Contexts: the area of the site has been divided
into 9 different contexts, relevant for the behav-
ioral analysis of the visitors to understand for in-
stance which plants they have seen and which ar-
eas they have spent more time into;

e 9O Subcontexts: the area of context 5, one of the
9 original contexts, has been further divided into
9 subcontexts. These provide a more fine-grained
understanding of where the user has spent more
time in context 5, which is the most characteristic
part of the garden. Note that this classification
task requires a much more accurate localization;

e 17 Contexts: this is a mixed set of classes in which
the 8 contexts (excluding context 5) are merged
with the 9 subcontexts of context 5. To address

Table 1: Accuracy of different single-modal methods based
on GPS in the 9 Contexts scenario. The performance
scores of the methods marked with the ”*” sign are reported
from (Milotta et al., 2019a).

Model | Fold 0 Fold 1 Fold 2 AVG

DCT* | 7876 % | 46.83 % | 76.53% | 67.37%
SVM* | 78.89 % | 52.59 % | 78.50% | 69.99%
KNN* | 80.38 % | 54.34 % | 81.05% | 71.92%
MLP | 82.44% | 63.13% | 82.57% | 76.04%

this classification task, the methods needs to be
able to infer location at both a coarse (the 8 con-
texts) and a fine (the 9 subcontexts) level.

Figure 7 illustrates the topology of the natural site in-
cluding the subdivision of the space into contexts and
subcontexts.

All experiments have been performed using an
NVIDIA GTX 1050 GPU with 2GB of RAM. We
compared all architectures on the 9 contexts settings
to provide ablation with respect to the different fusion
approaches. The methods achieving best performance
in these settings are further evaluated on the 9 subcon-
texts and 17 contexts scenarios.

4.2 Results on the 9 Contexts Settings
4.2.1 Methods based Only on GPS

Table 1 compares the performance of the considered
Multilayer Perceptron (MLP) with respect to the De-
cision Classification Tree (DCT), the Support Vector
Machine (SVM) and the K-Nearest Neighbor (KNN)
classifiers investigated in (Milotta et al., 2019a). The
table reports the results obtained on each fold, as well
as the average performance across folds. Best results
per-column are highlighted in bold. In average, the
accuracy of MLP increases by 9% compared to DCT,
6% compared to SVM and 4% compared to KNN.
These observed performance gaps suggest that GPS
coordinates are too noisy to allow for accurate local-
ization on the 9 contexts. Indeed, if they were accu-
rate enough, geometrical approaches such as decision
trees, SVM and KNN should be able to easily divide
the space into regions to perform classification. In-
stead, the non-linearity of a properly tuned MLP al-
lows to improve performance by significant margins.

4.2.2 Methods based Only on Images

Table 2 compares the performance of different CNN's
for image-based localization. The best performances
per-column are reported in bold numbers. As it can
be expected, the shallow SqueezeNet-6 obtains lower
performance as compared to the full SqueezeNet,
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Table 2: Accuracy of different CNNs for image-based localization in the 9 Contexts scenario. The performance scores of the
methods marked with the ”*” symbol are reported from (Milotta et al., 2019a).

Model Fold 0 Fold 1 Fold 2 AVG

SqueezeNet-6 82.01% | 79.12% | 82.70% | 81.27%

AlexNet* 90.99% | 90.72% | 89.63% | 90.45%
SqueezeNet* 91.24 % | 93.23% | 91.40% | 91.91%

ResNet18 94.01% | 94.89% | 93.78% | 94.25%

VGG16* 94.26% | 95.59% | 94.08% | 94.64%

Combined ResNet18 + DenseNet121 | 94.43% | 95.00% | 94.99% | 94.80%
DenseNet121 94.76% | 95.29% | 95.18% | 95.07 %

Table 3: Accuracy of the multi-modal methods processing both images and GPS on the 9 Contexts scenario. For reference,
the top part of the table also reports the performances of the single-modal branches. The performance scores of the methods
marked with the ”*” symbol are reported from (Milotta et al., 2019a). Per-fold results have not been made available by the
authors of (Milotta et al., 2019a) for these methods.

] Model | FoldO | Foldl [ Fold2 [ AVG |

DCT* 78.76 % | 46.83 % | 76.53% | 67.37%

MLP 82.44% | 63.13% | 82.57% | 76.04%

SqueezeNet-6 82.01% | 79.12% | 82.70% | 81.27%

AlexNet* 90.99% | 90.72% | 89.63% | 90.45%

SqueezeNet* 91.24% | 93.23% | 91.40% | 91.91%

VGG16* 94.26% | 95.59% | 94.08% | 94.64%

DenseNet121 94.76% | 95.29% | 95.18% | 95.07%

MLP + SqueezeNet-6 (learned late fusion) | 92.65% | 79.84% | 91.97% | 88.15%

MLP + SqueezeNet-6 (weighted late fusion) | 92.13% | 81.56% | 91.52% | 88.40%

MLP + SqueezeNet-6 (modality attention) 93.44% | 79.99% | 93.58% | 89.00%

AlexNet + DCT (weighted late fusion)* - - - 91.33%

SqueezeNet + DCT (weighted late fusion)* - - - 92.47%

VGGI16 + DCT (weighted late fusion)* - - - 94.86%

MLP + SqueezeNet (weighted late fusion) | 94.15% | 94.02% | 94.11% | 94.09%

MLP + SqueezeNet (learned late fusion) 94.49% | 93.35% | 94.56% | 94.13%

MLP + SqueezeNet (modality attention) 95.57% | 93.53% | 96.06% | 95.05%

MLP + DenseNet121 (modality attention) | 96.15% | 95.60% | 96.09% | 95.94%
which is probably due to the lower number of param- 4.2.3 Methods based on Images and GPS

eters and to the limited flexibility due to the reduced
depth. In general, deeper models tend to perform bet-
ter than shallow ones (e.g., VGG16 vs AlexNet and
DenseNet121 vs VGG16 and ResNet18). To assess
whether fusing two CNNs can be beneficial, we used
the “Combined CNNs” fusion architecture illustrated
in Figure 3 to combine ResNet18 and DenseNet121.
As can be noted, this results in a performance drop,
probably due to overfitting induced by the increased
capacity of the overall architecture and to the re-
dundancy of the visual features extracted by the two
networks. It is worth noting that even a very shal-
low CNN such as SqueezeNet-6 already outperforms
GPS-based localization obtaining a 81.27% accuracy,
versus the accuracy of the MLP for GPS-based clas-
sification which is equal to 76.04%. This highlights
how vision-based classification can be more accurate
than classification obtained from noisy GPS measure-
ments.
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Table 3 reports the accuracy achieved by multi-modal
approaches on the 9 Contexts scenario. To assess the
improvements due to fusion, the top part of the ta-
ble also reports the performance of the single-branch
models. The table also includes the results reported
in (Milotta et al., 2019a) for comparison. All methods
obtained by fusing the shallow SqueezeNet-6 CNN
and the MLP significantly improve over the single-
modal branches. For instance, combining the MLP
and SqueezeNet-6 with modality attention allows to
obtain an accuracy of 89.00%, which is about 13%
higher than the one obtained using the MLP alone
(76.04%) and about 8% higher than the one obtained
using SqueezeNet-6 alone (81.27%). Improvements
are observed also for the full SqueezeNet (95.00%
with modality attention vs 76.04% with MLP and
91.91% with the CNN alone) and for DenseNet121
(95.94% with modality attention vs 95.07% with the
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Table 4: Accuracy of the single-modal and multi-modal methods on the 9 Subcontexts scenario. The performance scores
of the methods marked with the ”*” symbol are reported from (Milotta et al., 2019a). Per-fold results have not been made
available by the authors of (Milotta et al., 2019a) for these methods.

Model Fold0 | Fold 1 Fold 2 AVG
MLP 59.66% | 49.01% | 51.72% | 53.46%
AlexNet + DCT (weighted late fusion)* - - - 83.68%
SqueezeNet 83.96% | 88.06% | 84.21% | 85.41%
SqueezeNet + DCT (weighted late fusion)* - - - 85.89%
SqueezeNet+MLP (modality attention) 86.51% | 88.10% | 86.28% | 86.96%
VGG16 + DCT (weighted late fusion)* 90.01%

DenseNet121

91.15% | 92.11% | 89.35% | 90.87%

DenseNet121+MLP (modality attention)

92.23% | 92.29% | 91.40% | 91.97%

Table 5: Accuracy of the single-modal and multi-modal methods on the 17 Contexts scenario. The performance scores of the
methods marked with the ”*” symbol are reported from (Milotta et al., 2019a). Per-fold results have not been made available

by the authors of (Milotta et al., 2019a) for these methods.

Model Fold0 | Fold 1 Fold 2 AVG
MLP 66.97% | 48.58% | 66.32% | 60.62%
SqueezeNet 87.94% | 91.07% | 87.42% | 88.81%
AlexNet + DCT (weighted late fusion)* - - - 86.59%
SqueezeNet + DCT (weighted late fusion)* 89.37%

SqueezeNet+MLP (modality attention)

91.24% | 91.12% | 91.46% | 91.27%

DenseNet121

91.42% | 94.25% | 91.58% | 92.41%

VGG16 + DCT (weighted late fusion)*

92.43%

DenseNet121+MLP (modality attention)

94.44% | 94.59% | 92.85% | 93.96 %

CNN alone). It is worth noting that for deeper
CNNs the relative improvement of the fusion with
respect to the CNN become smaller. This is due
to the fact that CNNs can already solve the prob-
lem with high accuracy without GPS. Interestingly,
even in such cases, the proposed modality atten-
tion approach always brings improvements, even if
marginal, and never leads to overfitting. It can also
been observed that modality attention outperforms
both weighted late fusion and learned late fusion
with both SqueezeNet-5 and SqueezeNet. Indeed,
weighted late fusion leads to minimal improvements,
whereas learned late fusion performs even worse than
weighted late fusion. Finally, even the relatively small
model fusing SqueezeNet and MLP with modality
attention outperforms all approaches previously re-
ported in (Milotta et al., 2019a), which are indicated
by a ”*” symbol in the table.

4.3 Results on the 9 Subcontexts and 17
Contexts Scenarios

Table 4 and Table 5 compare the best perform-
ing models based on the fusion of SqueezeNet and
DenseNet121 with MLP through modality attention
with the respective single-branch performances and
with previous methods proposed in (Milotta et al.,
2019a) (marked with the **’ symbol). In the 9 subcon-

texts scenario (Table 4) modality attention allows to
obtain large improvements over the MLP both when
SqueezeNet (86.96% vs 53.46%) and DenseNet121
91.97% vs 53.46%) are considered. The meth-
ods also improve over the performances achieved by
the respective CNNs. As can be noted, the pro-
posed approaches outperform the methods proposed
in (Milotta et al., 2019a).

Similar trends can be observed in the case of
the 17 contexts (Table 5), where the proposed
SqueezeNet+MLP model with modality attention
outperforms the SqueezeNet+DCT model proposed
in (Milotta et al., 2019a) by +1.9% and similarly,
DenseNet121+MLP outperforms VGG16+DCT by
4+1.53% and AlexNet+DCT by +7.37%. These re-
sults highlight the flexibility of the proposed modality
attention approach for multi-modal fusion.

4.4 Computational Resources Analysis

Table 6 reports the required time and memory of the
considered methods. Times have been computed on
CPU using a four-cores Intel® Core™ i7-7700HQ
@ 3.80GHz, averaging over 400 predictions. For ref-
erence, we also report the accuracy of such methods
on the 9 Contexts scenario. While methods based on
GPS are fast and require very little memory, their per-
formances are limited. Using even small CNNs such
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Table 6: Execution time, required memory and average accuracy on the 6 Contexts scenario of the different methods consid-

ered in this study.

Model Time (ms) | Mem (MB) | Accuracy
DCT 0.01 0.07 67.37%
MLP 0.49 0.006 76.04%
SqueezeNet-6 7.88 0.31 81.27%
SqueezeNet-6 + MLP (modality attention) 9.23 0.50 89.00%
SqueezeNet 18.30 2.78 91.91%
AlexNet 20.25 217.60 90.45%
SqueezeNet + MLP (modality attention) 24.40 3.19 95.05%
VGGI16 434.86 512.32 94.64%
DenseNet121 559.09 27.685 95.07%
DenseNet121 + MLP (modality attention) 563.71 30.434 95.94%
as SqueezeNet-6 and SqueezeNet, allows to improve ACKNOWLEDGEMENTS

performance with a small computational overhead.
In particular, the SequeezeNet-6 + MLP (modality
attention) model achieves significantly better perfor-
mance with respect to DCT, MLP and SqueezeNet-6
still mantaining a fast inference and a small memory
footprint. Fusing a full SqueezeNet model with an
MLP using modality attention allows to achieve per-
formance comparable to the one obtained by much
larger model such as DenseNet121 still maintaining
a fast inference (about 25ms) and a very small mem-
ory footprint (about 3MB). This suggests that fusing
predictions based on images and GPS with modality
attention can bring a significant boost in performance
with a very efficient inference.

S CONCLUSION

We have investigated the use of different fusion tech-
niques to improve the localization of visitors in a nat-
ural site from egocentric images and noisy GPS mea-
surements. The experiments have highlighted that: 1)
GPS data alone allows to achieve only limited perfor-
mance, which suggests that such data is not accurate
enough in the considered context, 2) localization from
egocentric images can achieve much more accurate
results, 3) fusing image- and GPS-based predictions
generally allows to improve results and in particular,
4) the proposed modality attention fusion mechanism
allows to achieve good localization performance at a
very low computational budget, which makes the in-
vestigated methodologies suitable for implementation
in embedded settings. Future works can investigate
the use of the considered fusion techniques to perform
a more fine-grained localization based on camera pose
estimation.
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