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Abstract: In this paper, we introduce twieeavy caterpillar distances between rooted labeled unordered traese, for
short) based on the edit distance betweerhdaey caterpillars obtained from the heavy paths in trees. Then,
we show that the heavy caterpillar distances provide themuppund of the edit distance for trees, can be
computed in quadratic time under the unit cost function aedrecomparable with other variations of the edit
distance.

1 INTRODUCTION A caterpillar (cf. (Gallian, 2007)) is a tree trans-
formed to a path after removing all the leaves in it.
Recently, Murakeet al. (Muraka et al., 2018) have
shown that the problem of computing the edit distance
between caterpillars is tractable and the structural re-
striction of caterpillars provides the limitation of the
tractability for computing the edit distance. Also Mu-
rakaet al. (Muraka et al., 2019) have developed the
method to fast approximate the edit distance between

Comparing tree-structured data such as HTML and
XML data for web mining or RNA and glycan data for
bioinformatics is one of the important tasks for data
mining. The most famous distance measure (Deza
and Deza, 2016) betweenoted labeled unordered
trees (trees, for short) is theedit distance 11, (Tai,
1979). The edit distance is formulated as the mini- caterpillars
mum cost ofedit operations, consisting of aubstitu- i ) )

tion, adeletion and aninsertion, applied to transform Hence, in this paper, we introduce new distances
atree to another tree. It is known that the edit distance fO (rées by using the edit distance between the em-
is always a metric and coincides with the minimum Pedded caterpillars. Then, we focus on teavy

cost of Tai mappings (Tai, 1979). Unfortunately, the Path (Sleator and Tarjan, 1983), which is a famous
problem of computing the edit distance between trees €Mmbedded pathin a tree obtalngd by selecting vertices
is MAX SNP-hard (Zhang and Jiang, 1994). This Whose_numberofde_scendants is Ia_lrgestfrom the root.
statement also holds even if trees are binary or the !N Particular, Demainet al. (Demaine et al., 2009)

maximum height of trees is at most 3 (Akutsu et al., have adopted the heavy path to analyze the time com-
2013; Hirata et al., 2011). plexity of computing the edit distance for rooted la-

Many variations of the edit distance have de- beledordered trees.

veloped as more structurally sensitive distances as I this paper, first we formulate eeavy caterpil-

the minimum cost of the variations of the Tai map- lar in a tree as the caterpillar whose backbone is the
ping (Jiang et al., 1995; Kan et al., 2014; Kuboyama, heavy path in the tree and whose set of leaves con-
2007; Lu et al., 2001; Wang and Zhang, 2001; Ya- Sists of all the adjacent vertices to the heavy path in
mamoto et al., 2014; Yoshino and Hirata, 2017; the tree. Then, we introduce the following tieavy
Zhang, 1996). In particular, thalignment distance caterpillar distances tyc andtg; between trees.

Tawn (Jiang et al., 1995) and thsegmental distance The heavy caterpillar distanagc is formulated

Tss (Kan et al., 2014) are the most general variations as the sum of the edit distance between heavy cater-
of 11, Whereta,y IS incomparable withtss, and pillars and the cost of deleting and inserting the re-
theisolated-subtree distance 1, s (Wang and Zhang, mained vertices not contained in the heavy caterpil-
2001) (orconstrained distance) (Zhang, 1996) is the  lars. On the other hand, the heavy caterpillar distance
most general tractable variation ofy, (Yoshino and 1 is formulated as the sum of the edit distance be-
Hirata, 2017). tween heavy caterpillars and the cost of the Tai map-
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ping obtained by repeating recursively, after selecting

Heavy Caterpillar Distances for Rooted Labeled Unordered Trees

We use the ancestor ordersand<, thatis,u < v

vertices (as leaves in heavy caterpillars) to bridge the if v is an ancestor ofi andu<vif u<voru=v.

Tai mapping between the heavy caterpillars, to com-

We say thatv is theleast common ancestor of u and

pute the edit distance (the Tai mapping) between the v, denoted byullv, if u < w, v < w and there exists
heavy caterpillars of the complete subtree rooted by no nodew € T such thatw’ <w, u<w andv <

the selected vertices.

w. LetT be a rooted tre¢V,E) andv a node inT.

Then, in this paper, we show that the heavy cater- A complete subtree of T at v, denoted byT[v], is a

pillar distancegc andt; provide the upper bound
of Tra, that is, Tra < Tz < Tye. For the maxi-
mum heighth and the maximum numbaer of leaves
in given two trees, we can computgc in O(h?A3)
time under the general cost function and@gh?\)
time under the unit cost function, ang(T1, T2) in
O(h?A%) time under the general cost function and in
O(h?A\?) time under the unit cost function. Further-
more, we show thatyc and 14 are incomparable
with Tj.s7, Tain @ndtsg. Hence, the heavy caterpillar
distancegyc andt; provide another tractable vari-
ations of the edit distancg,, incomparable with the
isolated-subtree distantgsy.

2 PRELIMINARIES

A tree T is a connected grapfV, E) without cycles,
whereV is the set of vertices arfelis the set of edges.
We denote/ andE by V(T) andE(T). Thesize of
T is |V| and denoted byT|. We sometime denote
veV(T)byve T. We denote an empty tr¢®, 0) by
0. A rooted treeis a tree with one nodechosen as its
root. We denote the root of a rooted tréey r(T).

Let T be a rooted tree such that=r(T) and
u,v,w e T. We denote the unique path franto v, that
is, the tregV’,E’) such thaV’ = {v1,...,w},vi =T,
vk = vand(vi,vi+1) € E’ for everyi (1 <i <k-1),
by UP; (v).

Theparent of v( r), which we denote bpar (v),
is its adjacent node oblP,(v) and theancestors of
v(# r) are the nodes odP; (v) — {v}. We denote the
set of all ancestors of by anc(v). We say thatiis a
child of vif vis the parent ofi andu is adescendant
of v if vis an ancestor ofl. We denote the set of
children ofv by ch(v) and thatv is a ancestor ofi
by u < v. We call a node with no childrenlaaf and
denote the set of all the leavesTrby Iv(T).

A rooted path P is a rooted tree
({Ve,... Vo), {(Vi,Vig1) | 1 <0 < n—1}) such
thatr(P) = v1. We call the node, (the leaf ofP) an
endpoint of P and denote it by(P).

Thedegree of v, denoted byl(v), is the number of
children ofv, and thedegree of T, denoted byl(T), is
max{d(v) | ve T}. Theheight of v, denoted byh(v),
is max{ |UPy(w)| | w € Iv(T[v])}, and theheight of T,
denoted byh(T), is maXh(v) |[ve T}.

rooted treeT’ = (V',E’) such thatr(T') =v, V' =
{ueV |u<v}andE = {(uw) €E |uweV'}.

We say thau is to the left of vin T if pre(u) <
pre(v) for the preorder numbgrein T andpost(u) <
post(v) for the postorder numbegost in T. We say
that a rooted tree isrdered if a left-to-right order
among siblings is givenynordered otherwise. We say
that a rooted tree imbeled if each node is assigned a
symbol from a fixed finite alphab& For a nodey,
we denote the label afby | (v), and sometimes iden-
tify v with I(v). In this paper, we call a rooted labeled
unordered tree &ee simply.

Furthermore, we call a set of treesf@est. In
particular, we denote the forest obtained by deleting
vin Tv] by T(v).

Definition 1 (Caterpillar €f., (Gallian, 2007))) We
say that a tree is eaterpillar if it is transformed to a
rooted path after removing all the leaves in it. For a
caterpillarC, we call the remained rooted pathack-
bone of C and denote it byb(C).

It is obvious thatr(C) = r(bb(C)) andV(C) =
bb(C) Ulv(C) for a caterpillarC, that is, every node
in a caterpillar is either a leaf or an element of the
backbone.

Next, we introduce dree edit distance and aTai
mapping.

Definition 2 (Edit operations (Tai, 1979))The edit
operationsof a treeT are defined as follows, see Fig-
ure 1.

1. Substitution: Change the label of the noden T.

2. Deletion: Delete a nodey in T with parentV,
making the children o¥ become the children of
V. The children are inserted in the placevos
a subset of the children of. In particular, ifvis
the root inT, then the result applying the deletion
is a forest consisting of the children of the root.

3. Insertion: The complement of deletion. Insert a
nodev as a child of/ in T makingv the parent of
a subset of the children of.

Lete ¢ 2 denote a specidlank symbol and define
> = 2U{e}. Then, we represent each edit operation
by (11— 12), where(l1,12) € (2 x Z¢ —{(¢,€)}). The
operation is a substitution if # € andl, # €, a dele-
tion if I, = €, and an insertion if; = €. For nodew
andw, we also denotd (v) — I (w)) by (v — w). We
define acost functiony: (Z¢ x Z¢ \ {(g,€)}) — R on
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Substitution ¢ +— w)
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Deletion {+— ¢€)

N S 3
AT

Insertion € — V)
72\ A
Figure 1: Edit operations for trees.

pairs of labels. We often constrain a cost functjao
be ametric, that iS,y(|1, |2) > 0,y(|17 |2) =0iffly =1y,
y(l1,12) = y(I2,11) andy(l1,13) <y(l1,12) +y(I2,13). In
particular, we call the cost function thefiy,l;) =1
if 11 # I aunit cost function.

Definition 3 (Edit distance (Tai, 1979))For a cost
functiony, thecost of an edit operatior =11 — I,
is given byy(e) = y(I1,12). Thecost of a sequence
E =ey,...,e of edit operations is given by(E) =
s ,v(e). Then, anedit distance Tra (T1,T2) be-
tween treed; andT; is defined as follows:

of edit operations

Tral (Tl,TZ) =min y(E)
transformingTy to To

E is a sequence }
Definition 4 (Tai mapping (Tai, 1979))Let T; and
T, be trees. We say that a trip(81,T1,T,) is a Tai
mapping (a mapping, for short) fromTy to T2 if M C
V(T1) x V(T2) and every paifvi,wi) and(v2,Wz) in
M satisfies the following conditions.

1. vi = vo iff wy =ws, (One-to-one condition).

2. v1 < vo iff wy < ws (ancestor condition).

We will useM instead of(M, T1, T2) when there is no
confusion denote it byl € M (T1, T2).

Let M be a mapping fronT; to To. Letly andJy
be the sets of nodes iR andT, but not inM, that is,
Im={veTi|(vw) €M} andy ={we T | (v,w) &
M}. Then, thecost y(M) of M is given as follows.

y(M) = (v, W) + Z V(V,€) + Z y(E,W).
(vw)eM VeElm wedm
Theorem 1((Tai, 1979)) Tra (T1, T2) = min{y(M) |

M e MTA| (Tl,Tz)}.

mappings.

200

et al.,, 1995) has first defined by using an align-
ment tree between two trees as the common su-
pertree, it is known that the alignment distance coin-
cides with the minimum cost of less-constrained map-
pings (Kuboyama, 2007). Hence, in this paper, we
regard the less-constrained mapping as an alignable
mapping and formulate the alignment distance as the
minimum cost of alignable mappings.

Definition 5 (Variations of Tai mapping)Let T; and
T, be trees anl € M1 (T1, T2).

1.

2.

We say that M is an alignable map-
ping (Kuboyama, 2007) (or ahess-constrained
mapping (Lu et al.,, 2001)), denoted by
M € Man(T1,T2), if M satisfies the follow-
ing condition:

V(V]_,W]_)(V27W2)(V37W3) eM
((vll_lvz<v1uV3):>(WguW3:W1uW3)).
Also we define an alignment distance
Tawn (T, T2) (Jiang et al.,, 1995) as the mini-
mum cost of all the alignable mappings, that
is:

LVNEN (Tl,Tz) = mln{y(M) ‘ M e MALN (Tl,Tz)}.

We say thatM is an isolated-subtree map-
ping (Wang and Zhang, 2001) (or a&on-
strained mapping (Zhang, 1996)), denoted by
M € M sr(T1, T2), if M satisfies the following
condition:

V(Vl,Wl)(Vz,Wz)(V3,W3) eM

((V3 <vilwg) <= (W < W1|_IW2)).
Also we define anisolated-subtree distance

Tis7(T1,T2) as the minimum cost of all the
isolated-subtree mappings, that is:

TILST(TlvTZ) = min{V(M) ‘ M e MILST(TlvTZ)}-

. We say thaM is asegmental mapping (Kan et al.,

2014), denoted byl € M 55(T1, T2), if M satisfies
the following condition.

Y(v,w) e M~
IV, W) € M((\/ € anc(v)) A (w € anc(w)))
= ((par(v)7par(w)) € M)

Also we define asegmental distance 1s¢(T1, T2) as
the minimum cost of all the segmental mappings,
that is:

T56(T17T2) = mln{y(M) | M e MSG(TLTZ)}

Furthermore, for distances, and1g, we say that
Ta is incomparable with 1g if there exist treesly,
Furthermore, we introduce the variations of Tai T, Tz and T4 such thatta(Ti,T2) < 18(T1,T2) and

Whereas the alignment distance (Jiangtg (T3, Ta) < Ta(T3, Ta).



Theorem 2 ((Kuboyama, 2007; Yoshino and Hirata,
2017)) Let T3 and T, be trees. Then, it holds that
MILST(TLTZ) C Man (TlaTZ) C Mra (T17T2> and
Mse(T1,T2) € Mta(T1,T2). On the other hand,
M.s1(T1,T2) of M (T, T2) isincomparable with

M s6(T1, T2) with respect to set inclusion.

Theorem 2 impliestra (T1,T2) < Taw (T, T2) <
Tist(Te, T2) and tra (T1, T2) < 1s6(Ty, T2) for every
tree Ty andT,. On the other handg s or Tan iS
incomparable withts;. Furthermore, the following
theorem is known for the problem of computing,
and its variations.

Theorem 3. Let T; and T> be trees such that n =
max{|T1,|T2|} and d = min{d(T1),d(T2)}.

1. The problem of computing Tra (T, T2) is
MAX SNP-hard (Zhang and Jiang, 1994). This
statement holds even if both T, and T, are binary;,
the maximum height of T; and T, is at most 3 or
the cost function is the unit cost function (Akutsu
et al., 2013; Hirata et al., 2011).

2. The problem of computing Ta.(Ty,T2) is
MAX SNP-hard. On the other hand, if the
degrees of T; and T, are bounded by some
constants, then we can compute tan(T1, T2) in
polynomial time with respect to n (Jiang et al.,
1995).

3. We can compute Ty,s7(Ty, T2) in O(n?d) time (cf.,
(Yamamoto et al., 2014)).

4. The problem of computing Tss(Ti,T2) IS
MAX SNP-hard. This statement holds even
if both T; and T, are binary or the cost functionis
the unit cost function (Yamamoto et al., 2014).

In contrast to Theorem 3, Muralaial. (Muraka
et al., 2018) have recently shown the following theo-
rem of the edit distance for caterpillars.

Theorem 4 ((Muraka et al., 2018)) Let C; and
C, be caterpillars, h = max{h(C;),h(C;)} and A =
max{|Iv(C1)|,|[IV(C2)|}.  Then, we can compute
T1a (C1,C2) in O(h?A3) time under the general cost
function and O(h?\) time under the unit cost function.

3 HEAVY CATERPILLAR
DISTANCES

In this section, we introduce thesavy caterpillar in

a tree, based on theeavy path (Sleator and Tarjan,
1983). Then, we formulate another variation of the
edit distance akeavy caterpillar distances based on
the edit distance for heavy caterpillars.

Definition 6 (Heavy path (Sleator and Tarjan, 1983))
Let T be a tree. Fow € T andw € ch(v), w is

Heavy Caterpillar Distances for Rooted Labeled Unordered Trees

a heavy child of v if |T[w]| is maximum and de-
note it by hv(v). A heavy path of T is the rooted
path ({v1,...,vn},{(Vi,vi+1) | 1 <i < n—1}) such

thatvy = r(T), vizs = hv(vi)) (1 <i <n-1) and

v € IV(T).

If there exist more than two heavy children\gf
then we may name one of them arbitrary a heavy child
of v. Then, based on the heavy path in a tree, we
introduce the heavy caterpillar in a tree as follows.

Definition 7 (Heavy caterpillar) Let T be a tree and
P the heavy path of. Then, we define théeavy
caterpillar he(T) = (V,E) of T as follows.

V = V(P)U{wech(v)|veV(P)},

E = EP)U{(v,w) |[veV(P),wech(v)}.

We denote the minimum cost Tai mapping be-
tweenC; = hc(Ty) andC, = he(T,) by Mpe(Cyq,Co).
Then, the algorithm My CATMAP in Algorithm 1
returns a Tai mapping based on the heavy caterpil-
larsC; andC,. We define théneavy caterpillar map-
ping betweenl; andT, as the mapping obtained from
the algorithm H/y CATMAP(T1,T2) and denote it by
Mhe(T1, T2).

1 procedure HvY CATMAP(T1,T2)

[* Ty, T : trees */

2 C1 < hc(Ty); Co « he(Tp); L1+ Iv(Cy);

Lo+ |V(C2); M th(Cl,Cz);

3 L+ {(vw)eM|velLj,wely Ti(v) #
0, To(w) # 0};

foreach (v,w) € L do
L M1 < HvY CATMAP(Ty1|V], T2[W]);

M+ MUMzq;
6 return M;

Algorithm 1: Hvy CATMAP.

Definition 8 (Heavy caterpillar distances).et T; be
atree,C = hc(Ti) andD; = i\ G (i = 1,2). Then,
we define theneavy caterpillar distances Ty (T, T2)
andt(Ty, T2) as follows.

THC(TlaTZ)
=11 (C1,C2) + Y y(v,€)+
) VG%l we%
T2 (T2, T2) = Y(Mne(T1, T2)).

Theorem 5. For trees Ty and To, it holds that
Tra (T2, T2) < T5a(Ta, T2) < The(Te, T2).

Proof. For Ci = hc(Ti) and M’ = Mpc(T1, T2) \
it

(&, W),

2

Mhc(C1,Cz), sincetra (Cp,C2) = Y(Mpe(C1,C2)),
holds thall'ﬁz(Tl,Tz) = TT1al (Cl,CZ) +V(M/)- If M’

0, then it holds thay(M’) = % y(v,€) + % y(g, W),
veDq webo
which implies thatt - (T1, T2) < The(T1, To).
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In order to show thatrs (Ty, T2) < 152 (Ty, T2), it
is sufficient to show that the heavy caterpillar map-
ping Mpc(T1, T2) is & Tai mapping. If it is true, then it
holds thattra (T1, T2) < Y(Mpe(T1, T2)).

LetL* = {(v1,wW1),...(Vk, W)} be the union of all
the L selected at line 2 in My CATMAP in Algo-
rithm 1 recursivelyyp = r(T1) andwp = r(Tz). Also
let M; be the output of MY CATMAP(T1[vi], T2[Wi])
O0O<i<kandM = MgUM3 U --- UMy, where
Mo = Mpe(C1,C2) € M1p (T1,T2). Note thatM; €
Ma (Te[Vi], T2[Wi]), SOM; € Ma (T1, T2).

Since M; is mutually distinct for everyi and
Mi € M1a (T1]Vi], T2[Wi]), M satisfies the one-to-one
condition. By the construction of, (M \ M;) U
{(vi,w;)} satisfies the ancestor condition for every
(vi,w;) € L*, which implies thai satisfies the ances-
tor condition. Hence, it holds thtd € M1y, (T1, T2).
SinceM = Mpe(Tq, T2), it holds thatMpc(T1, T2) €
MTAI (T17T2)' O

Theorem 6. Let T; and T> be trees, where h =
max{h(T1),h(T2)} and A = max{|Iv(T1)|, |[IV(T2)|}.
Then, we can compute Tyc(Tp, T2) in O(h?A%) time
under the general cost function and in O(h?A) time
under the unit cost function. Also we can compute
T5z (T2, T2) in O(h?A%) time under the general cost
function and in O(h?\?) time under the unit cost func-
tion.

Proof. LetCi = hc(T;) (i = 1,2). First, we can obtain
Ci in O(|Ti|) = O(bA) time (Sleator and Tarjan, 1983).
Since it is essential for computingc(T1, T2) to com-
putetr, (C1,Cp), the time complexity of computing
THc follows from Theorem 4.

Next, consider the number of recursive calls
in HvYCATMAP in Algorithm 1. ForL* in the
proof of Theorem 5, we denote] = {v € V(Ty) |
(vyw) € L'} and Ly = {w e V(T2) | (v,w) € L*}.
Then, for every leals € Iv(T1) \ Iv(C1) (resp., u €
Iv(T2) \ IV(Cy)), there exists exactly onec L} (resp.,

w € L%) such thatTi[v] (resp., Tz[w]) called as
Hvy CATMAP(T1[V], T2[w]) at line 4 in Algorithm 1
containsu. This statement implies thgt*| < A.
Hence, the number of recursive calls is at mosso
the statement of computirg; holds. O

T1a (T1, T2) = 2 becauséM; in Figure 2 is the mini-
mum cost mapping forr,, . Note thatty s;(T1, T2) =
Tan (T1, T2) = T1s6(T1, T2) = 2.

On the other hand, by the definition of, we
construct the mapping with cost 0 betweéi(iT; ) and
hc(Ty), that is, the second child of the rootTa (la-
beled bya) is corresponding to the third child of the
root in T, (labeled bya) and the third child of the
root in T1 (labeled byb) is to the second child of the
root in T, (labeled byb). Then,M5 in Figure 2 is the
minimum cost mapping for;-. Hence, it holds that
Tlfl\C(Tl’Tz) =2n—-4,

@

@

Figure 2: Treesl; and T, in Lemma 1 and the minimum
cost mapping$; for 114 andMy for The

Lemma 2. There exist trees Ty and T, such that
|T1| = |T2| = O(n), TTal (Tl,Tg) = T%(Tl,Tz) = O(l)
but T|L5T(T]_,T2) - Q(n)

In the remainder of this section, we assume that Proof. ConsidefT; andT; illustrated in Figure 3. Itis

the cost function is the unit cost function. Then, we
comparet; with the edit distancer,, and its other
variationstan, Tist andtay.

Lemma 1. Thereexist trees T, and T, such that | Ty | =
IT2| = O(n), Tra(T1, T2) = O(1) but 15:(T1, T2) =
Q(n).

Proof. ConsiderT; andT; illustrated in Figure 2. It
is obvious thatT;| = |T2| = 2n+ 1. Also it holds that
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obvious tha{Ti| = |Tz| = 2n+ 1. SinceT; andT; are
caterpillars, it holds thatta (T1, T2) = T5:(T1, T2) =
The(T1,T2) = 1. Note thatta(Ti,T2) = 1 and
ng(Tl,Tz) =3.

On the other hand, the minimum cost isolated-
subtree mapping maps=r(T1) tor, =r(T2), n+1
children ofr; to n+ 1 children ofr,, so the number
of the remained (non-mapped) verticesiis 1 +n=
2n—1. Hence, itholds that s (T1,T2) =2n—1. O



Figure 3: Tree§y andT, in Lemma 2.

Lemma 3. There exist trees Ty and T, such that
ITa| = [T2| = O(n), Tra (T2, T2) = T (T1, T2) = O(2)

Proof. Consider treed; and T, in Figure 4. It is
obvious that|Ti| = |T2| = 2n+ 2. SinceT; is trans-
formed toT; by inserting a vertex labeledlin T, af-

ter deleting a vertex labeled lyin Ty, it holds that
Trai (T1, T2) = 2. SinceT; and T, are caterpillars, it
also holds thatyc(Ty, T2) = T5:(T1,T2) = 2. Note
thattss(T1, Tp) = 4.

On the other hand, the minimum cost alignable

mapping maps a vertex labeled byresp., c) in Ty
to a vertex labeled by (resp., b) in T, injectively.
Then, it holds thata n(T1,T2) = 2n. Also it holds
thatt sr(T1, T2) = 2n. O

Figure 4: Treeg; andT, in Lemma 3.

Lemma 4. There exist trees Ty and T, such that
|T1| = |T2| = O(n), TTAl (Tl,Tz) = T@(Tl,Tz) = O(l)
but Tse (Tl,Tz) = Q(n).

Proof. ConsiderfT; andT; illustrated in Figure 54f.,
(Kan et al., 2014)) and leZ; = hc(T;) (i=1,2). ltis
obvious tha{T;| = 4nand|Tz| = 4n— 2. Also it holds
thattra (T1,T2) = 2.

For C; and C; in Figure 5, it holds that
The(T1, T2) = T1a (C1,C2) +2n = 2n+ 2. Since the
minimum cost mapping forr, (C1,C2) maps the
rightmost vertexv in C; to the rightmost vertex
w in Cp, hc(Ty,T2) maps the children off in Ty
to the children ofw in T, injectively. Hence, it
holds thatt ;- (T1, T2) = T1a(C1,C2) = 2. Note that
Tist(T1, T2) = Taw (T1, T2) = 2.

Heavy Caterpillar Distances for Rooted Labeled Unordered Trees

Figure 5: Treeqy, Ty, C; andCy in Lemma 4.

Lemmas 2, 3 and 4 imply the following theorem.

Theorem 7. Thedistances Tyc and T areincompa-
rable with the distances Ta,n, Tist and Tsg.

By incorporating Theorem 6 and 7, we can con-
clude that the heavy caterpillar distanagg andt;
are tractable variations of the edit distangg incom-
parable with the isolated-subtree distange;.

4 CONCLUSION

In this paper, we have introduced heavy the caterpil-
lar distancesc and 15 and shown that they pro-
vide the upper bound of the edit distarmcg,, they
are tractable, in particular, quadratic-time computable
under the unit cost function, and incomparable with
other variations ofr,, presented by (Yoshino and Hi-
rata, 2017). Since, s is the most general tractable
variation oftr, (Yoshino and Hirata, 2017y and
T4 are another tractable variations®f, incompa-
rable witht) 7.

Concerned with Lemma 1, it is possible to avoid
this problem to compute the edit distance (the Tai

On the other hand, since the minimum cost seg- mapping) between heavy caterpillars by considering

mental mapping maps to the path with- 1 vertices
and itsn children and the vertex and itschildren in

the occurrences of labels in the descendants. Itis a fu-
ture work whether or not we can design a new method

T, the number of remained (i.e., nhon-mapped) ver- to avoid to this problem.

tices isn4+1in Ty andn—1 in T, so it holds that
Tse (T]_,Tz) =2n. O

The heavy caterpillar distanceg: and 1. are
defined by Mp(C1,C2) and Mpc(Tp,To) as opera-
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tional, whereas other variations of,, are based on  Muraka, K., Yoshino, T., and Hirata, K. (2018). Computing

the declarative definition of the Tai mapping. Then, it edit distance between rooted labeled caterpillars. In
is a future work whether or not to give the declarative Proc. FedCSS 18, pages 245-252.
definition of tyc andTHAc' Muraka, K., Yoshino, T., and Hirata, K. (2019). Vertical

and horizontal distances to approximate edit distance

In general, we cannot determine the heavy path for rooted labeled caterpillars. FProc. ICPRAM' 19,

and then the heavy caterpillar uniquely. Then, itis a
fut k to design the method to select the h Pages 580-597.
uture work to design the method to select the heavy Sleator, D. D. and Tarjan, R. E. (1983). A data structure for

path and the heavy caterpillar uniquely appropriate to dynamoic treesJ. Comput. S/s. ci., 26:362—391.

The andTge. _ _ ) Tai, K.-C. (1979). The tree-to-tree correction probled.
Finally, after improving that the heavy caterpillar ACM, 26:422-433.

distancestyc and Ty, are determined uniquely, it s \yang, J. T. L. and Zhang, K. (2001). Finding similar con-

an important future work to give experimental results sensus between trees: An algorithm and a distance hi-

to comparanc andt; with the isolated-subtree dis- erarchy.Pattern Recog., 34:127-137.

tancert, s for real data. Yamamoto, Y., Hirata, K., and Kuboyama, T. (2014).
Tractable and intractable variations of unordered tree
edit distance. Internat. J. Found. Comput. <ci.,
25:307-329.
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