
Defining Referential Integrity Constraints in Graph-oriented Datastores

Thibaud Masson1, Romain Ravet1, Francisco Javier Bermudez Ruiz2, Souhaila Serbout2,
Diego Sevilla Ruiz2 and Anthony Cleve1

1NADI Research Institute, PReCISE Research Center, University of Namur, Belgium
2ModelUM Research Group, Department of Computer Science and Systems, University of Murcia, Spain

Keywords: Referential Integrity, NoSQL, Graph-oriented Datastores, Model-driven Engineering, Domain-specific
Languages.

Abstract: Nowadays, the volume of data manipulated by our information systems is growing so rapidly that they cannot
be efficiently managed and exploited only by means of standard relational data management systems. Hence
the recent emergence of NoSQL datastores as alternative/complementary choices for big data management.
While NoSQL datastores are usually designed with high performance and scalability as primary concerns, this
often comes at a cost of tolerating (temporary) data inconsistencies. This is the case, in particular, for managing
referential integrity in graph-oriented datastores, for which no support currently exists. This paper presents
a MDE-based, tool-supported approach to the definition and enforcement of referential integrity constraints
(RICs) in graph-oriented NoSQL datastores. This approach relies on a domain-specific language allowing
users to specify RICs as well as the way they must be managed. This specification is then exploited to support
the automated identification and correction of RICs violations in a graph-oriented datastore. We illustrate the
application of our approach, currently implemented for Neo4J, through a small experiment.

1 INTRODUCTION

Since the 1970s, Information Systems (IS)
have widely been dependent on relational
databases (Wiederhold, 1992). Nowadays, those
systems are becoming more and more complex due to
the increasingly large amount of data that they need
to manage. The enormous growth of data that the
world is facing has pushed organisations to migrate
to more flexible data storage mechanisms. Therefore,
non-relational (NoSQL) datastores became more
popular due to their scalability, their flexibility
and their ability to easily adapt. NoSQL platforms
typically store data without explicit structure, i.e.,
they are schema-less. This ensures a higher level of
flexibility during the development process (Leavitt,
2010), and this may also lead to better data access
performance (Hendawi et al., 2018). Although in a
relational database, a schema clearly describes the
characteristics (structures and constraints) of the
information stored in the database, it is not the case
for a NoSQL datastore (Jatana et al.,)1.

NoSQL datastores are classified into four distinct
paradigmatic families: (1) key-value: every data item

1Note that we typically use database as the term to refer
to a relational database, while we use datastore to designate
a NoSQL database.

is stored as a key and a value; (2) document-oriented:
links every item with a (possibly) complex data struc-
ture; (3) column store: structures data as columns to
optimise queries; (4) graph-oriented: uses nodes and
relationships to represent data (Nayak et al., 2013).
Graph-oriented datastores are used to represent ref-
erences in a simple way, which would be more dif-
ficult to model in the relational paradigm. Such a
datastore uses nodes, edges and properties to build
a graph representing the data. The data items (en-
tities) are represented by nodes, with properties and
edges. Node properties correspond to attributes and
edges correspond to relationships with other nodes. A
graph-oriented datastore can apply CRUD operations
(create, recovery, update and delete) on top of a graph
data model. This datastore becomes very useful in
cases where tree-like or network-like data structures
have to be manipulated, e.g., when analyzing social
networks. It is no longer necessary to make joins be-
tween primary keys, which simplifies the task.

In contrast with relational databases, non-
relational datastores do not explicitly handle data in-
tegrity constraints, which can prevent users to ex-
ploit them. The present work aims to provide a
Model Driven Engineering (MDE-based) (Brambilla
et al., 2012) approach to handle data integrity in
NoSQL datastores in general, and in particular, to

Masson, T., Ravet, R., Ruiz, F., Serbout, S., Ruiz, D. and Cleve, A.
Defining Referential Integrity Constraints in Graph-oriented Datastores.
DOI: 10.5220/0008991004090416
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 409-416
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

409

manage Referential Integrity Constraints (RICs) in
graph-oriented datastores. This approach aims to im-
prove data consistency and therefore data integrity in
graph-oriented datastores.

A Referential Integrity Constraint is a rule that en-
sures that the references and relationships between the
elements of a datastore are correct. In other words,
it prevents users or other applications from impact-
ing negatively the data and the structure within the
Database Management System. The aim is to ensure
consistency within the database when several data en-
tities are in relationship, like a reference between a
Foreign Key of a table and a Primary Key in an-
other table. In this case, a row in the target table can-
not be modified or deleted without impacting on the
other table(s) referencing it.

MDE uses models to improve software produc-
tivity and some aspects of software quality such as
maintainability and interoperability. The advantage
is that models and metamodels provide a high level
formalism to represent artefacts. Moreover, the defi-
nition of a Domain-Specific Language (DSL) enables
users to work in the proper (domain) abstraction level.
Metamodelling and Model Transformations are also
MDE techniques for defining and transforming mod-
els meaning concepts from different paradigms and
different abstraction levels.

In this paper we propose an approach to man-
age referential integrity constraints in NoSQL, graph-
oriented datastores. Most of the time, RICs are used
within relational databases but rarely in a NoSQL
context. However, using integrity constraints in non-
relational datastores allows developers to discover
data inconsistencies and to enforce data integrity by
fixing those inconsistencies. Therefore, this paper ex-
plores this possibility as NoSQL datastores become
more and more popular. Our approach makes use of
MDE techniques for supporting the definition of RICs
and enforcing their validation in a graph-oriented
datastore. The main contributions of this work in-
clude (1) the definition of a DSL to specify referen-
tial integrity constraints (RICs) in a graph-based data
model along with an editor for the DSL; and (2) a gen-
erative approach that produces a referential integrity
management component from the RICs specification.
This component automatically identifies RICs viola-
tions in the graph-based datastores, and applies data
modifications to reestablish consistency if needed, in
conformance with the RICS specification.

This paper is organised as follows: Section 2
describes the background needed for a good under-
standing of our proposal; Section 3 presents our ap-
proach, by describing the DSL, its syntax and seman-
tics. A simple proof-of-concept, illustrative experi-

ment of the DSL is presented in Section 4. Finally, we
give concluding remarks and anticipate future work in
Section 5.

2 BACKGROUND

In this section we will present and describe those con-
cepts required for a better understanding of the solu-
tion. Firstly, we will introduce the concept of RICs
and some work dealing with its inferring and enforc-
ing. Later, a technological background is given, about
graph-oriented datastores and the MDE technologies
used in this work.

2.1 Referential Integrity Constraints

The integrity constraints are used to enforce business
rules by specifying conditions or relationships among
the data. So that any operation that modifies the
database must satisfy the corresponding rules without
the need to perform any checking within the applica-
tion. The term integrity with respect to databases in-
cludes both database structure integrity and semantic
data integrity. Data integrity in the relational context
is managed by primary key, foreign key and unique
constraints. They corresponds well to the integrity
constraints for the non-relational domain and, in addi-
tion, check constraints could also be used to improve
data consistency.

In (Blaha, 2019) a referential integrity is defined
as a protection for the database which makes sure that
the references between the data are valid and undam-
aged. The use of these constraints allows several ben-
efits, such as: improve data quality to preserve refer-
ences, make the development faster, reduce the bugs
amount thanks to better data consistency, enhance the
consistency through applications.

Unlike relational databases, where the same struc-
ture must be maintained for each set of records (rela-
tions or tables), the nodes and relationships in graph
databases do not need to have the same number of at-
tributes. If a value is not known or defined, we are not
required to have this attribute.

2.1.1 Inferring Referential Integrity Constraints

In (Meurice et al., 2014), the authors carried out a de-
tailed analysis of the problems posed by the reengi-
neering of a complex information to support RICs,
where they found that many of the assumptions gen-
erally used in database re-engineering methods do
not apply easily. Therewith, they designed a process

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

410

and implemented tools for detecting RICs in the con-
text of a real-world problem. Also in (Weber et al.,
2014), the authors presented the previous problem in
the context of the metaphor of technical debt, used to
characterise issues derived from software evolution.
The article deals with the problem in the context of
databases, and concretely in the technical debt related
to database schemas, and the absence of explicit ref-
erential constraints (foreign key technical debt).

In (Cleve et al., 2011) the authors use dynamic
program analysis as a basis for reverse engineering
on relational databases. They show several techniques
allowing, in an automate way, to capture the trace of
SQL executions and analyse them by applying sev-
eral heuristics supporting the discovery of referential
constraints (implicit foreign keys).

2.1.2 Enforcing Referential Integrity
Constraints

In (Georgiev, 2013), the authors address several prob-
lems by using foreign keys and some semantic re-
lationships between documents which are lying in
the same collection or in different collections. They
implement a verification approach which uses the
MapReduce programming model in document ori-
ented databases.

In (Pokorný and Kovačič, 2017), it is presented
the concept of Integrity constraints in graph-oriented
databases. Various kinds of integrity constraints are
developed in the article,including referential integrity
for checking that only existing entities can be refer-
enced, and each entity should have at least one rela-
tionship with an entity of another label to validate a
RIC (foreign key constraint in relational databases).

2.2 Technological Background

Neo4J 2 is a NoSQL database management system
which uses the approach of graph-oriented datastores.
It allows data to be represented in a graph as nodes
connected by a set of arcs. It presents also Cypher,
a language that allows to perform queries (on term of
nodes and edges) on the datastore and it is composed
of a set of clauses, keywords and expressions. Sev-
eral APIs are provided for executing Cypher. In Java,
there are two the main libraries for managing Cypher
queries: the Java Driver API for Neo4J and JCypher.
The Java Driver API enables developers to manage
the Neo4J graph database directly from the Java code
by writing a Cypher query in a String literal. JCypher
provides also a fluent Java API that allows to concate-
nate methods for each clause of a Cypher query.

2https://neo4j.com/

MDE techniques have been useful for developing
solutions based on code-generation (Kelly and Tolva-
nen, 2008). Metamodeling and model transforma-
tions are the most common techniques, along with
the definition of DSLs. Building a DSL involves the
definition of its concrete and abstract syntax. Con-
crete Syntax is normally graphical or textual. Xtext
is a framework for building DSLs workbenches using
a textual syntax. When the grammar is defined, its
corresponding Ecore metamodel is generated. Also
a model serializer to create examples beside a parser
and an injector. All these artefacts are provided in
the context of an editor. Acceleo 3 is a model-to-text
transformation language which is based on the defi-
nition of templates that generate the output code by
querying the model inputs to be transformed.

3 APPLYING REFERENCTIAL
INTEGRITY CONSTRAINTS TO
Neo4J

In this section the proposal of the work is described.
The grammar of the DSL is defined, detailing the
clauses composing the RIC declaration. Later, the
metamodel generated by the grammar is depicted. Fi-
nally, the semantic of the DSL is presented, showing
how the semantic is implemented by using model-to-
text transformations and what are the type of Cypher
queries generated by the transformation, in order to
validate the RICs.

3.1 Proposal

NoSQL datastores lacks of explicitly handle the data
integrity. Thus, we propose in this work a solution
for managing data integrity in NoSQL graph-oriented
datastores by using RICs. The goal of our proposal
is therefore to improve the data consistency and in-
tegrity.

In order to create the support for defining RICs
and applying them on NoSQL datastores, two main
artefacts have been defined and implemented. The
first artefact is the Domain Specific Language (DSL)
for declaring the language intend to define the RICs
and the connection to the datastore. The second arte-
fact is a Java code generator to produce the code in
order to validate and enforce the declared RICs (pro-
viding thus the semantic of the DSL).

Figure 1 depicts the process that developers have
to execute using our proposal. In the step (1), devel-
opers use the editor provided by the RIC DSL in or-

3https://www.eclipse.org/acceleo

Defining Referential Integrity Constraints in Graph-oriented Datastores

411

Figure 1: Schema of the proposal.

der to introduce the datastore connection and mainly
to define the set of RICs. Developers design the set of
RICs based on the graph-oriented datastore in which
they want to enforce the constraints. The editor has
been made by XText. The grammar of the RICs def-
initions has been designed in order to have an appro-
priate referring metamodel. In the step (2), the editor
is generating automatically the validation code in Java
for checking and enforcing (if required) the RICs on
the datasource. To do this, it is necessary to build
the code in charge of sending the data requests to the
graph-oriented datastore. As the datastore that has
been selected is Neo4J, the queries have been written
in the Cypher language. The execution of the gener-
ated code requires to read the datastore and also mod-
ify it, in case that the actions in the RICs are defined
for updating the datastore (step 3). In addition, a re-
port file in JSON format is generated for documenting
the results of the RICs checking and enforcing on the
datastore (step 4).

3.2 Grammar of the DSL

In this section the grammar of the DSL is depicted,
starting by defining the main structure and clauses.

Datasource(url=’connection url’,
usr=’user’, pwd=’password’)

RIC ric_identifier1
message: info_message
[entity1.attributeA -> entity2.attributeB]
[entity1 -(tag)-> entity2]
in-condition: entity1.attributeA = ’value’
in-fail: [INFO/ADD/DELETE]

RIC ric_identifier2
...

The first data that has to be provided is the info
about the database connection, in the Datasource
clause. Then, the set of RICs are listed. Each con-
straint is defined after the token RIC. Firstly, a RIC
identifier is declared. Then the message that will

be shown in case that it would be required to no-
tify the violation of a constraint in the datasource.
Following, the RIC is declared using the appropri-
ate structure of the relationship underlying the con-
straint: a classical one (entity1.attributeA ->
entity2.attributeB) that establishes a reference
between two attributes of two nodes, or one based
on arc tags (entity1 -(tag)-> entity2). Then
an optional condition could be defined after the to-
ken ’in-condition’ for defining an extra-condition to
be applied beside the referential constraint. Finally
(and also optionally), we could indicate the action to
be done in case that a RIC was violated. More details
about all this clauses are provided in the following
subsections.

3.2.1 Structure of a Relationship

As we described before, we have determined in our
language that a RIC can be classified by two main
types: Classic relationship or Tag relationship.

The Classic relationship is a RIC based on
attributes and is defined with the following syntax:
entity1.attribute1 -> entity2.attribute2.
The goal will be to compare the values of the
attribute of a first entity with regards to the values
of the attribute of a second entity. To have a valid
relationship, every value contained in attribute1,
belonging to entity1 has to match to a value of
attribute2, belonging to entity2.

Tag relationship is the reference between two
nodes with an arc whose label will be the Tag.
This type of relationship present the next syntax:
entity1 -(TAG)-> entity2. Every node belong-
ing to entity1 should have at least one arc, with the
TAG name, with an entity2 element.

Afterwards, we can configure a new type of re-
striction in the relationship for a RIC. A relation-
ship can be also bi-directional, which would mean
that the previous definition will be applied for both

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

412

ends of the relationship arrow. That is, the relation-
ship will first be analyzed from left to right and then
from right to left, as if they were two simple rela-
tionships. Thus, a bi-directional relationship will be
represented by the next syntax (going from the Clas-
sic relationship to the Tag relationship, respectively):
entity1.attribute1 <-> entity2.attribute2
entity1 <-(TAG)-> entity2

3.2.2 Cardinalities

The cardinality defines the number of occurrences in
one entity/attribute which are associated (in a rela-
tionship) to the number of occurrences in another. It
will be necessary to verify if the value is in the in-
terval specifying the cardinality. In a unidirectional
relationship, a cardinality can be added to the desti-
nation side of the arrow (for example after entity2).
While in bi-directional relationships, cardinalities can
be added to both sides of the relationship at the same
time. It is not mandatory to specify cardinalities but
it can be interesting for consistency reasons. An ex-
ample of their syntax could be entity1.attribute1
-> entity2.attribute2[MIN..MAX]

3.2.3 Actions

Actions are defined in order to improve the consis-
tency of the datasource by enforcing the RICs. The
actions are checking the validity of a RIC, and they
will be performed when a constraint is not accom-
plished, allowing the user to adapt the content of the
database to the constraints defined. We decided to
represent them under four different cases, that will be
explained in this part. It is important to indicate that
this feature will be optional for the user, but also it is
the only way to modify the content of the datastore.

This first action is named Add Info and it
will add some information in the dataset. Its
behaviour depends on the relationship type. In
the case of a Classic relationship, an edge
is created when it does not already exist but
the constraint is declared. Being a datastore
with a classical RIC: entityRed.attributeRed ->
entityBlue.attributeBlue. With the action Add
Info, the proposal will add an edge between nodeA
(of entityRed) and nodeC (of entityBlue) only if the
value of attributeRed corresponds to the value of at-
tributeBlue of nodeC meaning that there is a reference
between nodeA and nodeC, but there is no arc on the
graph. For the case of Tag relationship (entityRed
-(TAG)-> entityBlue) a checking is made to know
if there are relationships, defined by edges, between
nodeRed nodes and nodeBlue nodes. If there is any
relationship, the identifier value (in attributeBlue)

of the nodeBlue node is added to the attributeRed
of the nodeRed node.

Summarising, the goal of this action is to keep
consistency between nodes and attributes referenced
by classical and tag relationships, by means of adding
to the nodes the required edges or attribute values, in
order to reflect the relationship defined in the RIC.

The purpose of the Delete action will be to delete
an information or a node violating a RIC. Cautions
are needed when this type of actions is used, as it is
always risky to delete data from the database. In the
case of Classic relationship as defined before, each
value of the AttributeRed are taken. We will check if
there is a nodeBlue that have this value in its Attribute-
Blue. If no match exists, the value of the AttributeRed
is removed. For Tag relationships as defined before,
a node of the source entity nodeRed should have at
least one relationship with a node of the target entity
nodeBlue. If there is no relationship, the first node
would be deleted. Another kind of deletion of infor-
mation has been found out: Deleting information in
cascade. Even though in the case of classical rela-
tionship it will not change anything, it will require
a special attention for tag relationships. If a source
node is removed, and this one has other relations with
other entities, this action will permit to delete all of its
relative nodes in cascade.

The last action is Info. The idea here is to show
information about a violated RIC. It will return all the
information about the node and entity, and its direct
relationships with other entities.

3.2.4 Condition

The concept of condition here is to act as an extra-
validation for the RIC by checking if the attribute
value in the dataset accomplishes with the written
condition to validate the RIC. Therefore, not only
the classical or tag relationship must be accom-
plished for not violating a RIC, but also the con-
dition declared in the corresponding clause. The
syntax of the condition is described as follow-
ing: entity.attribute {RelationalOperator}
value {LogicalOperator}. Although the expres-
sion declared for a condition could be very complex,
as a simple proof of concept, this work only com-
pares a property with a value using one of these five
different relational operators: equals (=), greater than
(>), lesser than (<), greater than or equals (>=), lesser
than or equals (<=). A property is the value of an
attribute of a particular entity represented like this:
entity.attribute. The compared value can be either a
String, an Integer or a Boolean. This condition can be
linked to one or a few more thanks to a logical opera-
tor, AND and OR.

Defining Referential Integrity Constraints in Graph-oriented Datastores

413

3.3 RIC Metamodel

Figure 2 represents the Referential integrity constraint
metamodel for the grammar defined in the RICs DSL,
after integrating all the elements discussed in the pre-
vious grammar section. All classes correspond to the
elements of the grammar section, except the RicDSL
class which represents the root element of the meta-
model.

3.4 Semantic of the DSL

The semantic of the RICs DSL has been provided by
means of a model-to-text transformation in charge of
generating the validation code in accordance with the
set of RICs defined. Therefore, a model-to-text trans-
formation translates the RIC declaration in Cypher
queries that will be executed on the specified NoSQL
datasource. The execution could or not modify the
datasource (depending on the action configured) and
a JSON file is reporting the status of the validation of
each RIC.

3.4.1 M2T Transformation

The model-to-text transformation is done using Ac-
celeo. We have considered a hypothesis based on the
next assumption about the structure of the nodes of
the Neo4J datastore, as simple proof of concept: each
node in the dataset is identified by a property id that is
of type Integer. This attribute will be unique and will
allow us to browse through all the nodes in a sim-
ple and efficient way. The previous hypothesis can
obviously be modified and adapted later according to
future needs. The transformation implemented in Ac-
celeo is generating the Java files that implement, in
JCypher and/or Java Driver API for Neo4J, the val-
idating queries. Regarding to the clauses defined in
the RIC grammar, for a constraint we can combine
until three criteria with two possible values each one:
(1) the structure of the relationship defining the RIC
(Classical or Tag), (2) the directionality of the rela-
tionship (unidirectional or bi-directional); and (3) the
use of cardinality (yes or not). Therefore, the model
transformation is generating eight different methods
resulting of combining the previous criteria.

We take as an example, for illustrating our expla-
nations, a Classic relationship without cardinality be-
tween two attributes of different entities. The method
must verify that all the values present in the attribute1
of the first node correspond to a value existing in the
attribute2 of one of the nodes of the second entity. In
the algorithm, for each node of the first entity whose
identifiers will be kept in a list, it is checked that these
values correspond to a value of a node of the second

entity. Nodes that do not meet this condition will have
their identifier added to a list of failed nodes (named
idNodeFail). As shown in the pseudocode below,
in case where this list is not empty, we know that at
least one node has failed, so the RIC will not be val-
idated and we do not need to test the condition, even
if there is one. If this list is empty, it means that each
node is valid, we can then test the condition if there
is any. listCondition is a list containing all subcon-
ditions. If it does not contain any condition, we can
return the previous result of the validation of the RIC.
In the opposite case, we must have to test the condi-
tion(s). If the global condition is valid, the RIC will
be validated, otherwise it will fail. In addition, if an
action had been provided, the action would be tested.
if(!idNodeFail.isEmpty()) {

validRIC=false;
for(int id : idNodeFail){
Map<Str,Obj> attNode = info(firstEnt, id);
nodeFail.add(attNode);

}
} else {

if(!listCondition.isEmpty()){
conditions = checkCondition(listCondition);
for (Entry<Str,Bool> entry : conditions) {

if (entry.getKey().equals("result")) {
validCondition = entry.getValue();
validRIC = validCondition;
break;}}

} else validRIC=true;
}

Finally, for the conditions added to the RICs valida-
tion, only one version of code is sufficient for all the
possible relationships due to the conditions are not de-
pendent on the type of relationship. In order to imple-
ment the condition testing, a hypothesis was made:
the values checked in the condition are single values
(i.e. no arrays or lists), and moreover their type must
be either String, Integer or Boolean.

3.4.2 Generated Results

As result of applying the Cypher Java code for vali-
dating the set of RICS, a JSON file is reporting the
status of the validation. The important information
that will be found in the result file is: (1) the validity
of the RIC, (2) information about nodes that do not
comply with the RIC, (3) the action, if there is one,
(4) changes produced by the action on the dataset, (5)
the global condition, if there is one, (6) the validity of
each of the conditions. For the sake of space reasons,
not figures could be included.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

414

Figure 2: RIC Metamodel generated by XText.

4 EXPERIMENTATION

This section aims to experiment with a simple run-
ning example in order to test the different kinds of
RICs, vary according their type, the cardinalities of
the attribute as well as their possible conditions and
actions. The simple dataset used in the experimen-
tation is composed of Actor and Movie nodes. Only
one type of relationship is represented: the ACTS IN
relationship from an Actor node to a Movie node. The
relationship can have an attribute, that is the role the
actor plays in a film (see Figure 3). The properties
of nodes before validation are shown in Table 1. The
ACTS IN property contains the list of identifiers of
the movies in which the actor played. is linked is a
Boolean property indicating that an actor has played
in at least one movie. Finally, numMovie corresponds
to the number of films to which the actor is linked.

Figure 3: Initial dataset of the experiment.

These properties present several inconsistencies.

Table 1: Properties of nodes before validation.

Property Node1 Node2 Node3 Node4 Node5 Node6

name Actor1 Actor2 Actor3 Movie1 Movie2 Movie3
id 101 102 103 1 2 3
ACTS IN [1,2] [1,19]
is linked true true false
numMovie 2 2 0

First, the Actor1 node have only one relationship with
a node of label Movie while it has two references in
its attribute ACTS IN. Afterwards, the Actor2 node
is linked to a node whose identifier is ’19’ accord-
ing to its attribute ACTS IN. However, no node in the
dataset has this identifier, which makes it an incorrect
reference. It also has a relationship with the Movie3
node which is not indicated by its property ACTS IN.
Lastly, the Actor3 node is not relevant because it has
no reference with other nodes.

We defined a set of RICs in order to validate and
correct inconsistencies. Another goal has been to en-
sure that the RICs also work properly depending on
the type of relationship. The test composed of 19
RICs is accessible online 4, and it includes a short
description of each RIC.

Figure 4 shows the datastore fixed by the RIC def-
inition. We can see that some relationships have been
added to strengthen the consistency of the data. The
Actor3 node has finally been removed as it had no
reference with other elements of the graph. As men-

4https://cutt.ly/ErqJMtT

Defining Referential Integrity Constraints in Graph-oriented Datastores

415

tioned earlier, the user must be very careful when
deleting data from the database. Finally, we can see
in Table 2 that the properties of the Actor nodes have
also been updated to ensure data consistency. The
ACTS IN property has been adapted to match the re-
lationships with the Movie nodes. Applying the RICs
to this database, each element linked to another will
be linked both by a direct relationship (an edge) and
also by the value present in its ACTS IN property.

Figure 4: Fixed dataset of the experiment.

Table 2: Properties of nodes after validation.

Property Node1 Node2 Node4 Node5 Node6

name Actor1 Actor2 Movie1 Movie2 Movie3
id 101 102 1 2 3
ACTS IN [1,2] [1,2]
IS LINKED true true
numMovie 2 2

5 CONCLUSIONS AND FUTURE
WORKS

In this work we have proposed a solution enabling
the definition of Referential Integrity Constraints in
graph-oriented datastores. For that, a DSL for stat-
ing RICs in details has been built. In addition to
a code generation for being able to execute the de-
fined RICs in a Neo4J graph-oriented NoSQL datas-
tore. The DSL provided for defining RICs includes
several clauses to configure the semantic of the RIC
definition: bidirectionality, cardinality, extra condi-
tions and the action to apply in case that a RIC was
violated. The implementation has been addressed us-
ing MDE techniques, such as the creqtion of a DSL
and the implementation of a model-to-text transfor-
mation for generating code. The access to the Neo4J
datastore relies on the Cypher Java APIs.

In the proposal, we have observed some weakness
that have to be improved in future work. First of all,
the testing of the tool has to be extended. Not all the
possible test cases have been covered. Moreover, the

deleting on cascade action has been partially imple-
mented. The editor and the tool to generate the code
are not integrated in a unique solution, thus currently
it has to be executed separately. Finally, the grammar
(concrete and abstract syntax) of the DSL, as well as
the semantics must be extended in order to consider
other NoSQL datastores (e.g. MongoDB 5).

ACKNOWLEDGEMENTS

This work was supported in part by the Spanish Min-
istry of Science, Innovation and Universities, under
Grant TIN2017-86853-P.

REFERENCES

Blaha, M. (2019). Referential integrity is important for
databases.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
driven software engineering in practice. Synthesis
Lectures on Software Engineering, 1(1):1–182.

Cleve, A., Noughi, N., and Hainaut, J. (2011). Dynamic
program analysis for database reverse engineering. In
GTTSE 2011, Braga, Portugal, July 3-9, 2011. Re-
vised Papers, pages 297–321.

Georgiev, K. (2013). Referential integrity and dependencies
between documents in a document oriented database.
GSTF Journal on Computing (JoC), 2:24–28.

Hendawi, A., Gupta, J., Jiayi, L., Teredesai, A., Naveen, R.,
Mohak, S., and Ali, M. (2018). Distributed nosql data
stores: Performance analysis and a case study. pages
1937–1944.

Jatana, N., Puri, S., Ahuja, M., Kathuria, I., and Gosain,
D. A survey and comparison of relational and non-
relational database.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling: Enabling Full Code Generation. Wiley.

Leavitt, N. (2010). Will nosql databases live up to their
promise? Computer, 43(2):12–14.

Meurice, L. et al. (2014). Establishing referential integrity
in legacy information systems - reality bites! In Pro-
ceedings of ICSME 2014, pages 461–465.

Nayak, A., Poriya, A., and Poojary, D. (2013). Article:
Type of nosql databases and its comparison with re-
lational databases. International Journal of Applied
Information Systems, 5(4):16–19.

Pokorný, J. and Kovačič, J. (2017). Integrity constraints
in graph databases. Procedia Computer Science,
109:975–981.

Weber, J. H. et al. (2014). Managing technical debt in
database schemas of critical software. In 2014 6th Int.
Workshop on Managing Technical Debt, pages 43–46.

Wiederhold, G. (1992). Mediators in the architecture of fu-
ture information systems. Computer, 25(3):38–49.

5https://www.mongodb.com

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

416

