
Generative Choreographies: The Performance Dramaturgy of the
Machine
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Abstract: This paper presents an approach for a full body interactive environment in which performers manipulate virtual
actors in order to augment a live performance. The aim of this research is to explore the role of generative
animation to serve an interactive performance, as a dramaturgical approach in new media. The proposed
system consists of three machine learning modules encoding a human’s movement into generative dance,
performed by an avatar in a virtual world. First, we provide a detailed description of the technical aspects of
the system. Afterwards, we discuss the critical aspects summarized on the basis of dance practice and new
media technologies. In the process of this discussion, we emphasize the ability of the system to conform with
a movement style and communicate choreographic semiotics, affording artists with new ways of engagement
with their audiences.

1 INTRODUCTION

New advances in machine learning have empow-
ered computational designers with advanced tools for
data-driven design, exploiting the critical importance
to form meaningful representations from raw sen-
sor data (Crnkovic-Friis and Crnkovic-Friis, 2016).
Among design practices, generative choreography
can show promising results in producing movement
phrases that exhibit motion consistency, realistic ap-
pearance and aesthetics. These phrases might then be
utilized by virtual performers, sharing the same stage
with humans, such as soft agents, robots or other me-
chanical performers (Schedel and Rootberg, 2009).

In a research creation context, we examine three
independent neural network architectures trained on
raw motion data, captured from a human performer,
which then used to generate original dance sequences.
Except of the primary objective for collaborative
human-machine choreography, we believe that the
proposed system would be a useful tool for artistic
exploration.

a https://orcid.org/0000-0003-0750-1919
b https://orcid.org/0000-0001-6520-4221

1.1 Dramaturgy and New Media

Full body interactive environments have increasingly
become part of the dramaturgy of live performance
events (Seo and Bergeron, 2017). On the other hand,
autonomous virtual agents, a new area of research,
can provide an attractive abstraction that is driven
from human motion data. These virtual agents, or
robots, should be able to communicate ideas, sym-
bolisms and metaphors.

New media definition is changing as per require-
ments and technology advancements. Defining what
is new media is not easy (Lister et al., 2008). It is what
makes their artifacts, practices, and arrangements dif-
ferent from those of other technological systems but
also the social dimensions; the exchange of ideas is of
primary importance to new media (Socha and Eber-
Schmid, 2014). By considering this we can form an
opinion whether performers can share the same stage
with virtual actors that possess a degree of autonomy
(Kakoudaki, 2014). These actors may act without the
intervention of a human but the human might be able
to influence the behavior of the agent.

However, most proposed systems suggest one to
one mappings between a set of human actions and
a direct visual interpretation of the expressiveness of
the body. The main approach usually involves esti-
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mating a set of body state, such as pose or motion,
that link to a visual element. In this approach, a team
consisting of software engineers and artists work to-
gether to build multi-modal interactions and immer-
sive visual effects for stage, such as real-time pro-
jection mappings (Mokhov et al., 2018). But the di-
alogue between the dancer and the ’visualization’ is
predetermined, automatically executed, and the actor
has little input to explore.

For these reasons we seek to develop an exper-
imental framework where we can describe, concep-
tualize, design and direct an interactive performance.
Observing the developments in new media, such as
generative art, and the duality of autonomous virtual
actors and human performers sharing the same stage,
we can see a re-position of the performer’s presence
as a creative entity. Within this emerging role, the per-
former’s motivation can be drastically changed, influ-
encing the artistic development and the audience per-
ception.

2 BACKGROUND

The use of generative technology provides new ways
to explore and express the artistic intent. Some sup-
porters of generative systems consider that the art is
not anymore in the achievement of the formal shape
of the work but in the design of a system that explores
all possible permutations of a creative solution modu-
lated by the quality of the dialogue.

2.1 The New Role of the Performer

The use of highly sophisticated video and audio con-
tent, along with powerful projectors and machines,
such as robots, reflects a subtle re-positioning of bod-
ily presence, rather than signaling the absence of the
human bodily presence (Eckersall et al., 2017).

Moreover, new media have given rise to multiple
forms of distributed co-presence (Webb et al., 2016),
between performers and audiences, across a range of
performative spaces, both real and mediated (Feng,
2019).

The integration of new media, especially compu-
tationally generated visuals, with a live performance
is nonetheless a common practice (Grba, 2017) merg-
ing real and virtual worlds into a single experience. A
number of works draw on a range of technologies ex-
ploiting emergent technologies such as motion track-
ing.

2.2 Human Motion Tracking

Human motion tracking can be achieved with a wide
range of technologies that utilize optical, magnetic,
mechanical and inertial sensors. The tracking ac-
curacy depends on the sensors, as well as post-
processing, the intended application, dramaturgical
purposes and environmental parameters.

2.2.1 Motion Features

A multitude of features related to human move-
ment expressiveness have been used to drive interac-
tive performance environments (Alemi and Pasquier,
2019). The quantities that sensors capture are sum-
marized in (Alemi and Pasquier, 2019) within these
categories:

1. Joint positions and rotations: motion capture sys-
tems.

2. Joint acceleration and orientation: accelerometer
and gyroscope.

3. Biometric features: electromyography, electroen-
cephalography, breath, heart rate, and galvanic
skin response.

4. Location of the body: Radio Frequency ID
(RFID), Global Positioning System (GPS), and
Mobile Networks.

As we will see in Sec. 3.1, our motion capture sys-
tem makes use of the first two categories within an
integrated hardware/software package.

2.3 Generative Animation

Generative art, as an artistic approach, utilize an
autonomous system controlled by a set of prede-
fined elements with different parameters balancing
between unpredictability and order. Thus the genera-
tive system produces artworks by formalizing the un-
controllability of the creative process (Grba, 2017),
(Dorin et al., 2012). According to (Galanter 2003)
”Generative art refers to any art practice where the
artist uses a system, .., which is set into motion with
some degree of autonomy contributing to or resulting
in a completed work of art”.

Generative animation can encompass a range of
stochastic methods for motion synthesis, modulated
by the motion of a human performer. Consequently,
generative animation can be seen as a way of explor-
ing a space of creative solutions spanned by a set of
choreographic rules.
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2.4 Human Computer Interaction

The research on movement generation usually fol-
lows one or more of following three themes (Alemi
and Pasquier, 2019): (a) achieving believability, (b)
controlling and manipulating the characteristics of the
generated movements, and (c) supporting real-time
and continuous generation. Believability is one of
the fundamental notions in virtual agent animation
and human-computer interaction (HCI); even non-
movement-expert audience can notice the smallest de-
tails that make movement look unnatural (Alemi and
Pasquier, 2019). Believability is usually achieved by
(a) physical validity, and (b) expressivity. Next, for
a meaningful dialog between the performer and the
audience through the virtual agents, the agent move-
ments should be controllable. The control should al-
low the natural motor variability. Humans never ex-
actly repeat the same movement even when they try
to do so. Consequently, the virtual agents that repli-
cate the same execution will be perceived as more me-
chanical than natural. The most important factor for
an interactive system is the real-time computational
constraints (c), which we visit in the next section.

3 DESIGN AND SYSTEM
IMPLEMENTATION

Our implementation is a multidisciplinary framework
that uses full body interaction to create believable,
that is physically-valid and highly expressive visu-
als. This is influenced by the meta-instrument con-
cept, although this research does not focus on ges-
tural interaction between performers and virtual ac-
tors. Before presenting the system implementation as
a whole, we first introduce movement acquisition and
feature tracking.

3.1 Feature Tracking

To capture the movements of the dancer, a Rokoko
Smartsuit Pro1 was used. This suit uses 19 inertial
measurement units (IMUs) to sense the orientation of
the body parts they are placed on. The sensors are
placed in a wearable, which has sensor slots at various
joints, as well as along the back of the suit (hip joints).
Each sensor outputs a quaternion rotation vector and
a position vector. The sensors have a sampling rate of
30Hz.

1https://www.rokoko.com/en/products/smartsuit-pro

3.2 Data Acquisition and Data Flow

The data from the suit was streamed, thourhg Rokoko
Studio, to a Unity 3D2 scene, using the Rokoko Unity
plugin, where it was used to animate a digital avatar.
The data was put to a machine learning model and the
obtained results were streamed back to the host com-
puter and applied to another avatar in the unity scene.
This streaming between computers was performed
with Node-red3 using open sound control (OSC) con-
nections.

The Unity scene was also rendered on the host PC,
and sent to a HTC Vive VR head-mounted display
(HMD), which the dancer was wearing. The scene
was also sent to two other computers, one rendering
the viewpoint of the guest and sending it to their HTC
Vive VR HMD, and another one rendering the scene
from a third person perspective. The last renderer was
routed to a large-screen LED TV for the audience.

Before being used for training, a set of joints were
chosen because they were considered to be vital to the
expression of the dance, such as the knee, elbow and
hip joints. Other joints were discarded, such as most
vertebrae joints, since these could be approximated by
knowing the quaternions of the hip, and neck joints.
This selection was done to eliminate redundant infor-
mation, as many of the vertebrae joints would often
have similar rotations, and thus provide an easy local
minimum for the neural networks to find. The approx-
imation of the rotations of the discarded joints rota-
tions was done using inverse kinematics when the pre-
dicted joint quaternions were applied to the model in
Unity. The data used for training the machine learning
model was obtained from a performance by a dancer
wearing the suit and was written to a file instead of
streaming. This data flow is illustrated on Fig. 1 and
includes both the positions and quaternions for each
sensor. The details of the data processing and filtering
roughly correspond to the general workflow in motion
retargeting, see e.g., (Villegas et al., 2018). For more
details on the quaternion-based learning, see (Pavllo
et al., 2019).

3.3 Training an Agent

Three approaches for modeling this data were exper-
imented with, 1) mixture density networks (MDN)
(Bishop, 1994), 2) auto-encoders (Liou et al., 2014),
and 3) long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997).

2https://unity.com/
3https://nodered.org/
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Figure 1: Training data flow. The dancer’s movements were
captured by the suit, smoothed and the resulted quaternions
saved into a CSV file.

3.3.1 Mixed Density Network

A MDN was applied to this problem with promising
results (Alemi and Pasquier, 2019) and thus was the
first technique that was focused on. A MDN is a net-
work that does not produce a single definite output
like a normal neural network, but rather the mean and
standard deviation (STD) of a Gaussian distribution
(figure 2). From this distribution, a value can then
be drawn and used as an output. This is useful if
one input has to map to different outputs, since this
is a case normal neural networks cannot handle well.
However, in the case of an MDN this input can map
to a Gaussian distribution that covers all output possi-
bilities, as well as how often those possibilities were
encountered during training.

All of these possibilities can sometimes not be
covered by a single distribution, without that distri-
bution having too high of a standard deviation to be
useful. In this case multiple distributions should be
used. This is done by making the MDN output more
pairs of mean and STD, along with a third parameter,
the mixture coefficient, which is a weighting of that
distribution in the overall distribution.

By using this technique it would be possible to
teach the AI the distribution of possible dance moves
based on a given pose of the dancer. In this case, each
quaternion distribution describes a space of choreo-

Figure 2: The architecture of the MDN network used. The
α, σ, µ represent mixing coefficient, standard deviation and
mean respectively for each of the n inputs.

graphical solutions. These distributions could then be
combined to a single multi-variate Gaussian distribu-
tion, for each quaternion, from which a new quater-
nion could be sampled.

In theory this approach would generate all possi-
ble movements from a given pose, however in practice
this was not always desirable. If the STD of the distri-
bution became large, the method would sample from a
too wide range of quaternions, generating wildly dif-
ferent movements very quickly. This happened of-
ten during the training of the network, and caused the
generated movements to seem random.

This problem was caused by the network not hav-
ing the right amount of distributions available to de-
scribe the data accurately, and thus it instead gen-
erated larger distributions that covered the data too
much. A possible solution to this might be an ex-
haustive fine-tuning the amount of means and STDs
outputted for each quaternion, along with the hyper-
parameters used to train the network. Instead another
model was considered, the Auto-encoder, as it was
known to be easily trained and is also a powerful net-
work structure for generative tasks (Shu et al., 2018).

3.3.2 Auto-encoder Network

Auto-encoder is a self-supervised network topology
for representation learning (Liou et al., 2014). It can
be thought as a generative model that can generate
outputs sharing common structural elements, such as
correlations, with the trained data. Auto-encoders can
automatically exploit these relationships without ex-
plicitly defining them (Liou et al., 2014). An auto-
encoder is a neural network that has a ”hourglass”
structure, meaning it compresses its input and then
extracts the output from that compressed representa-
tion 3. These structures are usually used in an un-
supervised manner, where the output of the network
is trained to be the same as the input, i.e. if a 10 is
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Figure 3: The hourglass-like architecture of the Auto-
encoder. The output is trained to be the same as the input.

inputted a 10 should be outputted. This has the ef-
fect, that a very abstract representation of the input
is found in the middle of the network (the most nar-
row point). From this representation, the output can
be reconstructed. In this case, this means that every
pose of the dancer is represented by a point in this
abstract space, and thus if a translation in this space
occurs, a new pose will be generated by the network.
The idea was therefore to input the real-time move-
ments of the dancer into this network, obtain the ab-
stract representation, translate that representation by
some set amount and then generate a new movement
which would be applied to the avatar.

Autoencoders are easy to train as reconstructing
the input is a simple task if the abstract space is big
enough. For these experiments we used a 5 dense
layer structure, 3 layers for the encoder and 2 for the
decoder. The input to this model was a 1-D array of
15 quaternions with 4 values each, totalling 60 values.
The middle layer contained 20 neurons. This short
topology was chosen as deeper topologies would be
more prone to overfitting. However, this approach
over-fitted too easily and thus produced wrong results
for inputs it had not encountered before. These errors
were also unstable, meaning a small variation in input,
resulted in a big variation in output. The movements
the network produced over time, were very jittery and
noisy, as the small movements of the actor between
frames resulted in larger unpredictable movements of
the avatar.

3.3.3 Long Short-term Memory Network

Long short-term memory networks(Hochreiter and
Schmidhuber, 1997) were the answer to the instabil-
ity problem of the auto-encoders. The LSTM net-
work consisted of three LSTM layers, of which the

Figure 4: The 3 layer LSTM structure trained on a time se-
ries of t (5)× n (15) quaternions. The output is the predicted
real coefficients of the n (15) quaternions at time t+1.

first two output a time-series while the third only out-
put a single vector. Rather than processing a single
pose of the dancer at a time, this network processed
the last 5 poses and tried to predict what the next pose
would be. This resulted in the network learning about
temporal coherence, and made it more stable than the
auto-encoder.
The LSTM layers can learn temporal relationships in
the data due to the way they process the data. As op-
posed to traditional dense layers that process all data
at once, LSTM layers are recurrent layers that iterate
over time-series and can find their temporal relations.
For each iteration the current data-point is processed
by a dense layer, together with the output from the
previous iteration. The result of this iteration is then
stored to be used for the next iteration. This result can
also be used as an output, if it is desired that the layer
should return the full time-series. If only a single out-
put is desired, only the output of the last iteration will
be returned.
However, the vanishing/exploding gradient prob-
lem(Hochreiter, 1998) can occur if no other process-
ing is done between iterations. This is the problem
that LSTM layers solve, as they use forget-gates to
retain or discard information between iterations, thus
only important information is retained.

The LSTM network was trained to predict the
movements of the dancer, rather than replicate them.
This is a very important aspect to generative design
because the generated movements were in fact inter-
pretations rather than reproductions. The LSTM was
also more stable during training, less prone to overfit-
ting, as predicting the next move is a much more dif-
ficult task than simply reproducing a pose. Because
of these reasons, the LSTM network was used instead
of the auto-encoder and the MDN.

Generative Choreographies: The Performance Dramaturgy of the Machine

323



Figure 5: A pre-trained (using LSTM) virtual agent responding to the movement of a dancer, from the audience view.

Figure 6: A dancer in a free improvisation, represented by a sequence of pose estimations captured from the motion data suit
and remapped the default avatar. The extracted quaternions (n=15), which are not explicitly shown on the figure, are used to
train all three neural network architectures. All frames correspond to the dancer, and none to the neural network.

Table 1: A comparison of the three models in producing choreographic phrases, based on motion’s expressive qualities.

HUMAN EXPRESSIVENESS - MODEL MDN AE LSTM

Interaction Irregularities fair poor fair

Posture Prediction and Temporal Coherence fair poor good

Overall Appearance and Aesthetics poor fair good

Motion Consistency fair fair good

4 RESULTS AND DISCUSSION

Human expressiveness should be assessed based on
affective and cognitive cues (Billeskov et al., 2018).
Visual inspection provides an immediate, though sub-
jective, means of qualitatively comparing the three
machine learning algorithms from the perspective of
human expressiveness. The generative choreographic

model, tested with three different modules, and ob-
tained a variety of choreographies which then in-
spected in terms of posture prediction, action irreg-
ularities, motion consistency and overall appearance
and aesthetics 1. The proposed system was capable to
generate expressive choreographies following the mo-
tion style represented in the training data. In a kine-
matic level, the system was capable to reveal basic
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joints rotational relationships while in a more abstract
level, choreographic semiotics and symbolic qualities
were being communicated, derived from the training
dancing moves. Moreover, the system was capable
to form hybrid compositions, based on different data-
sets, corresponding to a variety of dancing samples.

The three modules depicted diverse behaviors and
results. The MDN was capable of extracting the pe-
riodicity of the human performer, which can be at-
tributed to the fact that an MDN can generate sam-
ples conforming to a Gaussian distribution. The use
of a mixture coefficient, as a hyper-parameter, re-
vealed the potential of generating dance moves trig-
gered from a single choreographic pose. This led us
to conclude that the MDN can be a useful tool to ex-
plore a vast space of possible choreographic solutions.
However this advantage might come at a cost. If the
standard deviation of the distribution became large,
the method tends to generate a series of movements
manifested as uncoordinated motion, highly variable,
mostly perceived as jittery motion. The variational
auto-encoder, as a self-supervised network doesn’t re-
quire an explicit mapping between the input data and
the generated motion data. This is a very attractive
approach but also tend to over-fitting quite often, thus
it requires a very large set of training data to gen-
erate meaningful outputs. This model was accurate
on reproducing known series of poses but also pro-
duced wrong results for sequences it had not encoun-
tered before, possibly due to over-fitting. Thus, small
variations in the input was producing big variations
in the output which in turn produced perpetual oscil-
latory motion. The LSTM network considered to be
the most stable from all the cases in this study. This
network depicted the most consistent temporal behav-
ior generating movements that were interpretations of
the trained data, rather than reproductions. This can
be explained due to the fact that recurrent topologies
are robust on predicting with less over-fitting.

4.1 Case Study: Singularity

Singularity was a live, interactive performance that
took place in the Multi-sensory Experience lab 4 of
Aalborg University Copenhagen.

The concept of this performance, was to repre-
sent the acceleration of machine learning and AI to-
wards the so-called ”Singularity Threshold”, where
AI’s will surpass humans in every task. By making
a machine learning model that copies, and predicts,
human choreography it is shown that even artistic ex-
pression is not safe from this advance. By immers-
ing both the dancer and the guest in the digital world,

4https://melcph.create.aau.dk

through head-mounted displays, they can both see the
effects of the dancers movements on the AI. How,
when she accelerates, the AI does too. And how the
AI starts to split and multiply, outnumbering the hu-
mans at the end of the performance. The dance itself
was a ritual, a sort of abstract dance, which the guest
also partook in. Furthermore, the changing sound-
track, played through the 360 degree speaker sys-
tem, reinforces the immersion of the guest and dancer
in the world. Audiences outside could see this per-
formance from a third person perspective, through a
screen as shown in figure 5

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we detailed a generative animation sys-
tem and compared three independent neural network
architectures. The system was used to generate danc-
ing animations of a virtual agent interacting with a
human dancer with the main effort focusing on the
machine learning approach to generate dancing se-
quences. Comparing the three neural network ar-
chitectures, it can be hypothesized that a fusion of
these approaches might result in better solutions that
share the best characteristics from each individual
approach. By developing a fusion of these models
and combining them in linear combination, we expect
to generate more complicated and more expressive
motion phrases. Another interesting future direction
could be to compare our machine learning approaches
to the evolutionary methods used in behavioural sim-
ulation for autonomous characters based on motion
or choreographic rules. More experiments by artists
could lead to user experiences data to be worked on
and also to feed the AI engine for enhancing the learn-
ing process.

5.1 Communication and Aesthetics

Communication through semiotics of body movement
and attitude is a very important factor, that is also
closely associated to perception of aesthetics. The
evaluation of computational aesthetics is a difficult
problem, with most current paradigms drawing in-
sights from models of human aesthetics such as Arn-
heim or Martindale. Galanter, (galanter2011) sug-
gests putting the focus on empirical evidence of hu-
man aesthetics and the emergence of complex behav-
iors rather than algorithmic complexity. Neural net-
works are capable of building inner representations,
through an abstraction space consisting of hierarchi-
cal layers to abstract the source into a semantic, low
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dimensional, representation (Hinton 2014). By sim-
plifying a very rich source of data, such as human mo-
tion, in which unimportant details are ignored, a set of
semiotics could possibly emerge conveying messages
through non-verbal means, such as gestures and body
expressions.

5.2 Multimodal Approach

The input data could be extended, beyond motion cap-
ture data to include other sensorial input, both direct
such as a music score or indirect such as using Elec-
troencephalography (EEG) or other bio-signals from
a participant on stage (Hieda, 2017). By exploring
this sensorial diversity new choreographic forms and
practices can emerge, redefining the role of the per-
former and their artistic relationships.
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