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Abstract: To cope with the challenges that low light conditions produce in images, photographers tend to use the light
provided by the camera flash to get better illumination. Nevertheless, harsh shadows and non-uniform illumi-
nation can arise from using a camera flash, especially in low light conditions. Previous studies have focused
on normalizing the lighting on flash images; however, to the best of our knowledge, no prior studies have
examined the sideways shadows removal, reconstruction of overexposed areas, and the generation of synthetic
ambient shadows or natural tone of scene objects. To provide more natural illumination on flash images and
ensure high-frequency details, we propose a generative adversarial network in a guided conditional mode. We
show that this approach not only generates natural illumination but also attenuates harsh shadows, simulta-
neously generating synthetic ambient shadows. Our approach achieves promising results on a custom FAID
dataset, outperforming our baseline studies. We also analyze the components of our proposal and how they
affect the overall performance and discuss the opportunities for future work.

1 INTRODUCTION

Scenes with low light conditions are challenging in
photography, cameras usually produce noisy and/or
blurry images. In these situations, people usually use
an external device such as a camera flash, thus, cre-
ating flash images. However, when the light from the
flash is pointing directly at the object, the light can be
too harsh for the scene and create a non-uniform il-
lumination. Comparing a flash image with its respec-
tive image with ambient illumination, it is clear that
the illumination is more natural and uniform because
the available light can be more evenly distributed (see
Figure 1).

Researchers have studied the enhancement of
flash images (Petschnigg et al., 2004; Eisemann and
Durand, 2004; Agrawal et al., 2005; Capece et al.,
2019), producing enhanced images by the combina-
tion of such ambient and flash images, or normalizing
the illumination on flash image in a controlled envi-
ronment (backdrop and studio lighting), but without
replicating the natural skin tone of people. However,
in a real scenario with low light conditions, there is no
information about how the ambient image is. On the
other hand, on scenarios without a backdrop, objects
away from the camera will have very low illumina-

tion, thus, creating dark areas in the image, consider-
ing that there is only the illumination of the camera
flash. Consequently, in a real scenario with low light
conditions, creating ambient images from flash im-
ages poses a very challenging problem.

(a) Flash image (b) Ambient image

Figure 1: A comparison of a flash image and an ambient
image. (a) Image with camera flash illumination. The image
suffers from harsh shadows, dark areas and bright areas. (b)
Image with available ambient illumination. In this image,
the illumination is more uniform, natural, and the image has
not sideways shadows. Images extracted from FAID (Aksoy
et al., 2018).
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Prior works handle the enhancement of low light
images, where a scene is underexposed; however,
on flash images, objects close to the camera tend to
be bright and these techniques overexpose these re-
gions. Our method attenuates the illumination that is
close to the camera, and illuminates the underexposed
regions at the same time. Since flash and ambient im-
ages represent the same scene, researchers (Capece
et al., 2019) study the lighting normalization on a
flash image by learning the relationship between both
images to estimate a relationship between these pair
of images, which is added to the respective flash im-
age in a next step, thus, normalizing the illumination
on flash images but maintaining high-frequency infor-
mation. This approach is not effective to restore over-
exposed areas due to this region still needs to compute
the final result.

In this article, we propose a conditional adversar-
ial network in a guided mode, which follows two ob-
jective functions. First, the reconstruction loss gener-
ates uniform illumination and synthetic ambient shad-
ows. Second, the adversarial loss, which represents
the objective function of GANs (Goodfellow et al.,
2014), forces to model high-frequency details on the
output image, and perform a more natural illumina-
tion. Both loss functions are guided through the at-
tention mechanism, which is performed by attention
maps based on the input image and ground truth. The
attention mechanism allows to the model to be more
robust to overexposed areas and sideways shadows
presented on flash images. It also improves the ro-
bustness of the model on inconsistent scene match be-
tween pairs of flash and ambient images since they are
both usually not perfectly aligned at the moment of
capture. We compare against state-of-the-art enhance-
ment techniques for low light images (Fu et al., 2016;
Guo et al., 2017), and flash images (Capece et al.,
2019). Ablation studies are also performed on the ar-
chitecture.

Then, the major contributions of this article are:

• An attention mechanism to guide a conditional ad-
versarial network on the task of translating from
flash images to ambient images. Giving robust-
ness against overexposed areas and shadows pre-
sented on flash and ambient images, and the mis-
aligned scene between both images. This mech-
anism guides the adversarial loss to avoid blurry
results on regions by discriminating these cases.

• Our proposed attention mechanism also guides
the reconstruction loss to be robust against high-
frequency details thought the texture information
that the attention map gives.

2 RELATED WORK

2.1 Low Light Image Enhancement

Prior works (Petschnigg et al., 2004; Eisemann and
Durand, 2004; Agrawal et al., 2005) combine the ad-
vantages of both ambient and flash images. These im-
age processing techniques use the information of the
image with the available illumination (ambient im-
age) and the image with light from the camera flash
(flash image) and create an enhanced image based on
both images. In contrast with these techniques, our
model enhances the flash image but without any kind
of information of the ambient image.

In SRIE (Fu et al., 2016), the reflectance and il-
lumination are estimated by a weighted variational
model, then, the images are enhanced with the re-
flectance and illumination components. LIME (Guo
et al., 2017), on the other hand, enhance the images
by the estimation of their illumination maps. More
specific, the illumination map of each pixel is first es-
timated individually by finding the maximum value
in the R, G and B channels, then the illumination
map is refined by imposing a structure prior. This
refined illumination map has smoothness texture de-
tails. Both methods SRIE and LIME do not contem-
plate sideways shadows removal, reconstruction of
overexposed areas or generation of synthetic ambient
shadows.

2.2 Image-to-Image Translation

Prior works use symmetric encoder-decoder net-
works (Ronneberger et al., 2015; Isola et al., 2017;
Chen et al., 2018) for image-to-image translation such
as: image segmentation, synthesizing photos, enhanc-
ing low light images, etc. These networks are com-
posed of various convolutional layers, where the input
is encoded to a latent space representation and then
decoded to estimate the desired output. Inspired on
the U-Net architecture (Ronneberger et al., 2015), our
model employs skip connections to share information
between encoder and decoder, to recover spatial in-
formation lost by downsampling operations.

In (Capece et al., 2019), a deep learning model
turns a smartphone flash selfie into a studio por-
trait. The model generates a uniform illumination, but
not reproduce the same skin tone of the person under
studio lighting. The encoder part of the network rep-
resents the first 13 convolutional blocks of the VGG-
16 (Simonyan and Zisserman, 2015), and the weights
of the encoder are initialized with a pre-trained model
for face-recognition (Parkhi et al., 2015). The inputs
and target of this network are given filtered, to es-
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timate an image with low-frequency details, which
represent the relationship on illumination between the
ambient and flash image. This pre-processing step is
the drawback of this model because it can not learn a
high-quality relationship of illumination between the
flash and the ambient image. This step also has a com-
putation time due to the model uses a bilateral filter.

We exploit the transfer learning approach of this
model, but we proposed an end-to-end architecture
where the encoder path is initialized with the VGG-
16 pre-trained on the ImageNet dataset (Deng et al.,
2009), thus, making our model for general scenes, not
only for faces. And the decoder part is symmetric re-
spect to the encoder. The end-to-end architecture also
avoids an additional pre-processing step.

2.3 Conditional GANs

Conditional GANs (Mirza and Osindero, 2014) have
been proposed as a general purpose for image-to-
image translation (Isola et al., 2017). A cGAN is com-
posed of two architectures, the generator, and the dis-
criminator. Both architectures are fully convolutional
networks (Long et al., 2015). On the generator, which
represents an encoder-decoder network, each step of
the encoder and decoder is mainly composed by con-
volutional layers. The generator G and discriminator
D are conditioned on some type of information such
as images, labels, texts, etc. In our case, this infor-
mation represents the flash images I f , and our cGAN
learns to map from flash images I f to ambient images
Ia. Thus, the generator synthesizes ambient images Îa,
which can not be distinguished from the real ambient
images Ia, while the discriminator is trained in adver-
sarial form respect to the generator to distinguish be-
tween Ia and Îa. As it shows in pix2pix model (Isola
et al., 2017), this min-max game ensure the learn-
ing of high-frequency details unlike using only a re-
construction loss like a MAE (Mean Absolute Error),
which output smoothed results.

3 PROPOSED METHOD

Our model is composed of two architectures, gener-
ator G, and discriminator D; and translate from flash
images I f to ambient images Ia. Then, the training
procedure follows two objectives: the reconstruction
loss R, which aims to minimize the distance between
the input image (I f ) and the target image (Ia); and the
adversarial loss A; which represent the objective of
the cGAN (Isola et al., 2017). Figure 2 illustrates an
overall of our architecture model.

Figure 2: Network architecture. The generator has as its in-
put the flash image I f and as its output the synthetic ambient
image Îa. The discriminator network learns through the ad-
versarial loss A to classify between the real ambient image
Ia, this is the ambient image that belongs to the training set,
and the synthetic ambient image Îa. We also set the recon-
struction loss R between Ia and Îa. All attention maps are
compute thought I f and Ia.

Both the reconstruction loss R and the adversarial
loss A are guided by our attention mechanism to en-
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sure a better learning procedure. The attention mech-
anism is performed on the entries of R and A, that is,
the ambient image Ia and synthetic ambient image Îa
first pass through the attention map before the com-
putation of R and A.

3.1 Attention Mechanism

The attention mechanism that we propose aims to
guide the reconstruction and adversarial loss. The
mechanism is simple but efficient, we guide both R
and A with an attention map base on the flash image
I f and the ambient image Ia. We define the attention
map M as:

M (i, j) = 1− 1
C

C

∑
k=1
| Ia(i, j,k)− I f (i, j,k) | . (1)

In Equation 1, C represents the number of chan-
nels and M (i, j) the value of the attention map at
the position (i, j). I(i, j,k) represent the pixel value
at (i, j) and channel k. Then, Ia and Îa pass though the
attention map before compute the reconstruction loss
R and the adversarial loss A,

Ia :=Ia⊗M , Îa := Îa⊗M . (2)

The operation⊗ represents the element-wise mul-
tiplication. Equation 2 guides A and R to a bet-
ter learning procedure through the discrimination of
overexposed areas, shadows, and scene misalignment,
between I f and Ia. Then R, which represent the L1
distance, and A are defined as:

R(G) = EI f∼pdata,Ia∼pdata

[∥∥Ia−G(I f )
∥∥

1

]
A(D,G) = EIa∼pdata [logD(Ia)]

+EI f∼pdata [log(1−D(G(I f )))] .

(3)

By this operation, the reconstruction loss R is con-
ducted to learn the normalization of the lighting, dis-
criminating the high-frequency details because the at-
tention map M gives this information by the element-
wise multiplication. M also guides R to be robust for
the misaligned scene between flash and ambient im-
ages. On the other hand, the adversarial loss A is fo-
cused on generating realism and high-frequency de-
tails on the regions indicated by M . A not allows
blurry outputs where the attention map M indicates,
because all blurry regions are classified as fake and
the adversarial loss tries to fix it by generating high-
frequency details on these regions.

Finally, our full objective L is a mix of the re-
construction and the adversarial loss, maintaining the
relevance of the reconstruction loss and scaling the

adversarial loss by the hyperparameter λ. Equation 4
allows determining to what extent the adversarial loss
A should influence to L , thus, controlling the genera-
tion of artifacts in the output images.

L(G,D) = R(G)+λ ·A(G,D). (4)

We perform ablation studies on the architecture,
and verify the improvements of using our proposed
attention mechanism. Our ablation studies also con-
sider the use and not of a pre-trained model in the
generator.

4 EXPERIMENTS

In this section, we describe the Flash and Ambient Il-
lumination Dataset (FAID) and the custom set of these
images that we use. We present the training protocol
that we followed and show the quantitative and qual-
itative results that validate our proposal. Finally, we
present the controlled experiments that we perform to
determine how the components of our architecture af-
fect the overall performance.

4.1 Dataset

Figure 3: Ambient images from FAID (Aksoy et al., 2018)
with low illumination, reflections, and shadows from exter-
nal objects.

Introduced by (Aksoy et al., 2018), the FAID(Flash
and Ambient Illumination Dataset) is a collection of
pairs of flash and ambient images, which present 6
categories: People, Shelves, Plants, Toys, Rooms, and
Objects. As a result, we have 2775 pairs of flash
and ambient images. We inspected each image in the
dataset and found that there exist ambient images
that have problems such as low illumination, shadows
from external objects or even reflections. Therefore,
we used a reduced set of the entire FAID dataset for
our experiments. Finally, our custom dataset has 969
pairs of images for training and 116 for testing and
all images were resized to 320×240 or 240×320 de-
pending on their orientation.

VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications

384



Input SRIE LIME DeepFlash Ours Target

Figure 4: Qualitative comparison. Enhancement of low-illuminated areas (red), and estimation of natural skin and air tone of
people (green). We compare with SRIE (Fu et al., 2016), LIME (Guo et al., 2017), and DeepFlash (Capece et al., 2019).

4.2 Training

We freeze all convolutional layers of in the encoder
part of the generator, and train our model using the
Adam optimizer (Kingma and Ba, 2015) with β1 =
0.5, based on (Isola et al., 2017). Using learning rates
2 ·10−5 and 2 ·10−6 for the generator and the discrim-
inator respectively, equal or higher learning rate of the
discriminator respect to the generator results on a di-
vergence. To regularize the adversarial loss A, we set
λ = 1, fewer values for λ results on blurry outputs
and higher values of λ results on many artifacts. The
training procedure is performed using random crops
of 224×224 and horizontal random flipping for data
augmentation. The implementation of our architec-
ture is in Pytorch, and the training process takes ap-
proximately one day using an NVIDIA graphics card
GeForce GTX 1070.

4.3 Quantitative and Qualitative
Validation

We use the PSNR (Peak Signal-to-Noise Ratio) and
the SSIM (Structural Similarity) to measure the per-
formance of our quantitative results. Table 1 reports
the mean PSNR and the mean SSIM on the test set, for
1000 epochs. All hyperparameters are setting on the

same way for (Capece et al., 2019), and the encoder-
decoder network was pre-trained on the ImageNet
dataset (Deng et al., 2009) instead on a model used
for face recognition (Parkhi et al., 2015). Our quanti-
tative results do not significantly outperform the state-
of-the-art image enhancement methods, but at least
shows improvements on the flash image enhancement
task.

Table 1: Reporting the mean PSNR and the mean SSIM
with SRIE (Fu et al., 2016), LIME (Guo et al., 2017), and
DeepFlash (Capece et al., 2019).

Method PSNR SSIM

LIME 12.38 0.611
SRIE 14.09 0.659
DeepFlash 15.39 0.671
Ours 15.67 0.684

Estimation of the skin tone of people is shown
in Figure 4, where the illumination map created
by LIME (Guo et al., 2017) conducts to brighten-
ing and overexposing the flash images. LIME (Guo
et al., 2017), can not distinguish the natural color of
dark objects and tend to illuminate them. Results in
SRIE (Fu et al., 2016) do not present considerable
changes concerning the flash images on these kind of
scenes. DeepFlash (Capece et al., 2019) present non-
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Figure 5: Qualitative comparison. Generation of ambient shadows (green), attenuation of overexposed areas (red), and side-
ways shadow removal (orange). We compare with SRIE (Fu et al., 2016), LIME (Guo et al., 2017), and DeepFlash (Capece
et al., 2019).

uniform illumination on flash images of people, ap-
parently this is due to trying to simulate shadows. In
the case of flash images that have low illuminated ar-
eas and also high illuminated areas like the Rubik’s
Cube on Figure 4, (Capece et al., 2019) present mean-
ingless illumination on their results, and our method
shows considerable better results, that is, our result
looks much more similar to the ground truth.

Figure 4 reveals some aspects about the gener-
ation of ambient lighting on people. Note the syn-
thetic shadows in mouth and under the chin. Almost
all ambient images from train data was taken with
light source that came from above through a typical
light source that exists in homes. Therefore, the model
learns to generate synthetic ambient lighting simulat-
ing a light source that comes from above.

Figure 5 shows that our model synthesizes ambi-
ent shadows on flash images such as shelves, but suf-
fer for restoring overexposed areas produced by the
camera flash. LIME (Guo et al., 2017), and SRIE (Fu
et al., 2016) do not attenuate overexposed areas or
synthesize ambient shadows on these type of scenes,
these methods do not handle this kind of issues of
flash images. DeepFlash architecture (Capece et al.,
2019) performs weak ambient shadows, attenuate
overexposed areas without restoring them, and out-
puts many artifacts on their results. In the case of
sideways shadow removal, all models fail (including
ours).

4.4 Ablation Study

We perform different experiments to validate the fi-
nal configuration of our architecture. Table 2 reports
the quantitative comparison between our controlled
experiments. Furthermore, we also show in Figure 6
qualitative compositions between conditions in Ta-
ble 2.

Table 2: Controlled experiments. This table reports the
mean PSNR and the mean SSIM for distinct architecture
configurations.

Condition PSNR SSIM

1. Default (RM +AM ) 15.67 0.684
2. R+A 15.55 0.676
3. R 15.64 0.681
4. U-Net 14.81 0.643

Our quantitative assessments show that using a
pre-trained model improves significantly the model
trained from scratch (condition 4). The other meth-
ods seem to have similar results. This is because
these models, which use the MAE for the objec-
tive function (condition 3), generate blurry results
to minimize the error between estimated images and
the targets. Condition 2, which is similar to the de-
fault model without the attention mechanism, has less
quantitative values than condition 3 because the ad-
versarial loss gives some sharpness on their output
images.
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Figure 6: Qualitative comparison for each condition in our controlled experiments on the loss function, the attention map, and
the network architecture.

We explore our qualitative results (Figure 6) for
different loss functions, the attention map, and net-
work architectures.

Loss Function. Table 2 reports the influence by using
the adversarial loss. Condition 3 represents the same
structure of the generator without considering the ad-
versarial loss, i.e., just an encoder-decoder network,
without a discriminator. This architecture presents
blurred results comparing with our default model. In
this case the reconstruction loss R is not enough to
generate high-frequency details on their results, note
the blurry image of the headphones (Figure 6). The
adversarial loss A ensure a better quality due to the
deep discriminator network, which classifies blurry
results as fake. Condition 2 presents also blurry re-
sults; however, the output images present more uni-
form illumination due to the adversarial loss.

Attention Map. Condition 1, which represent our de-
fault model, present uniform illumination, and high-
frequency details (note the sharpness on the head-
phone respect to the other conditions). Our attention
mechanism guides the reconstruction and adversarial
loss to obtain uniform illumination and also sharpness
results with less artifacts. However, due to the robust-
ness for overexposed areas and shadows, our model
can not re-lighting dark areas with high-frequency de-
tails. We believe that a better formulation of the atten-
tion mechanism could address this problem.

Network Architecture. As we report in Table 2,
we perform the well known U-Net (Ronneberger
et al., 2015) architecture in condition 4. We adopt
the model proposed by (Chen et al., 2018) for en-
hancing extreme low light images, and train it from
scratch. U-Net present blurry output images and also
non-uniform illumination. Our default model, which
uses transfer learning, performs better quantitative
and qualitative results. We believe this is due to the
few samples in the training set.

5 CONCLUSIONS

Ambient lighting generation is a challenging prob-
lem, even more on flash images under low light condi-
tions. Shadows on the flash image have to be removed,
overexposed areas should be reconstructed, and am-
bient shadows must be synthesized as a part of the
simulation of an ambient light source. In this paper,
we propose a model with a guided reconstruction loss
for normalizing the illumination and a guided adver-
sarial loss to model high-frequency illumination de-
tails on flash images. Our results show that our guided
mechanism estimated high-frequency details without
introducing visual artifacts in our synthetic ambient
images. The guided adversarial loss also produces
more realistic ambient illumination on flash images
than the state-of-the-art methods. Our current results
are promising, nonetheless, there are cases where our
model fails such as: restoring overexposed areas, nor-
malizing the lighting for flash images on extreme low
light conditions, and sideways shadow removal on
flash images (see Figure 4). We believe that a more
dedicated approach on the adversarial loss would be
useful to address these issues.

Other methods based on intrinsic image decom-
position (Shen et al., 2013) would be also useful by
recovering the albedo (reflectance) and shading of
the flash image, then, modifying directly the shad-
ing component to obtain the ambient image. As we
show on this article, some cases need a more dedi-
cated treatment. We aim to further study these cases
and evaluate new techniques to improve the ambient
lighting generation for flash images in such situations.
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