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Abstract: This paper describes a novel approach of edge bundling that employs a genetic algorithm (GA) to optimise 

the placement of control points. Edge bundling is a useful technique to reduce visual clutter and a number of 

model-based edge bundling approaches have been introduced in the literature. However, these do not attempt 

to optimise aesthetic rules directly. Differently from them, our approach assumes that edge bundling is 

regarded as an optimisation problem for aesthetic rules. To solve this problem, we present an GA-based 

algorithm where gene representation defines control points of edges in order to allow flexibility and the fitness 

function is defined based on quantitative criteria for edge bundling. Experimental results using a visualisation 

of a Japanese airline map demonstrates the feasibility of our proposed method and its usability. 

1 INTRODUCTION 

Edge bundling is a method to decrease visual clutter 

and thus improve understanding the layout of edges 

by bundling edges based on certain rules. 

Edge bundling is a well researched research topic. 

Most works in this area define a model to express 

edge bundling with one of the best known methods 

being Holten’s work where they proposed 

Hierarchical Edge Bundling for a graph based on a 

tree structure (Holten, 2006).  

Geometry-Based Edge Bundling (GBEB) 

proposed by Cui et al. (2008) realises edge bundling 

so as to bend edges based on meshes generated 

through a Delaunay triangulation, although this 

approach sometimes leads to some extreme bends. On 

the other hand, Holten et al. (2009) proposed Force-

Directed Edge Bundling (FDEB) which performs 

bundling based on Hooke's law. Also, Selassie et al. 

(2011) introduced Divided Edge Bundling by 

improving FDEB to apply to directed graph, while 
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Hurter et al. (2012) proposed Kernel Density 

Estimation Edge Bundling based on image-based 

visualisation. Yamashita et al. (2017) presented a 

Line-Graph Based Edge Bundling that is based on the 

idea that clustered edges should be bundled with the 

clusters being detected by a line-graph. 

In this paper, we propose an approach that differs 

from the above-mentioned ones. In particular, we 

propose a genetic algorithm (GA)-based approach for 

edge bundling. GA (Goldberg, 1989) is a well-known 

optimisation technique that is rooted in a model of 

evolution and the principle of survival of the fittest. A 

characteristic feature of our approach is that it allows 

for a flexible implementation and to easily modify 

parameters and fitness function.  

Some recent related approaches also regard edge 

bundling as an optimisation problem.  In particular, 

the work by Ferreira et al. (2018) formulates an 

optimisation problem where the number of edges 

including bundled edges is minimised based on the 

assumption that only edges sharing the same vertex 
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should be bundled. They also use constraints on the 

bundled edges, in particular an angle threshold and 

compatibility constraints. 

In this paper, we take quantitative criteria based 

on aesthetic rules into consideration and solve the 

optimisation problem using a genetic algorithm. For 

this, we adopt the control points approach used in 

FDEB and the criteria from (Sakamoto et al., 2019; 

Saga, 2016; Saga, 2018). As a result, we are able to 

overcome the overcome the shortcomings of  

Ferreira’s model. 

The main contributions of this paper are the 

following: 

▪ It is the first approach of a genetic algorithm-

based edge bundling algorithm optimising control 

points with regards to an aesthetic evaluation 

index. 

▪ We show that edge bundling using a 

computational intelligence approach to 

optimisation yields a feasible method. 

▪ We discuss the extensibility of our proposed 

method and its application in future work 

2 GA-BASED EDGE BUNDLING 

2.1 Genetic Algorithm 

Genetic algorithms, which belong to the family of 

evolutionary algorithms, simulate Darwin's theory of 

evolution (Goldberg, 1989). GAs are employed to 

solve difficult, often NP-hard, optimisation problems. 

The genetic representation and fitness function 

depend on the problem and domain to solve. After 

these are defined, a GA proceeds iteratively through 

stages of selection, crossover, and mutation to 

improve a population of individuals that expresses 

candidate solutions to the problem.  

2.2 Genetic Representation 

In our approach, the genetic representation we choose 

is based on control-based approaches differently from 

Ferreira’s. The approach employed in FDEB divides 

an edge uniformly by c control points. By moving 

these control points the edges can be controlled for 

edge bundling. In our algorithm, edges in the input 

graph are also divided based on c uniformly spaced 

points as shown in Figure 1. For each control point, 

we then store a displacement vector v (as (x,y)-co-

ordinates) whose distance we limit. Thus, for n edges 

and using c control points per edge, we encode 2*n*c 

parameters. 

 

Figure 1: Genetic representation. 

2.3 Fitness Function 

An appropriate fitness function is key to a successful 

GA. Some investigations of graph layout using GA 

for visualisation design the fitness function based on 

aesthetics rules (Eloranta et al. 2001, Wang et al. 

2005,). In graph drawing, the following rules are 

generally accepted: 

(1) Uniform spatial distribution of vertices; 

(2) Minimise the total edge length on the pre-

condition that the distance between any two 

vertices is no less than the given minimum value; 

(3) Uniform edge length; 

(4) Maximise the smallest angle between edges 

incident on the same vertex; 

(5) The angles between edges incident on the same 

vertex should be as uniform as possible; 

(6) Minimise the number of edge crossings; 

(7) Exhibit any existing symmetric feature. 

For our problem at hand, it is necessary to 

quantify such aesthetics rules for edge bundling. 

Here, there are also some general accepted aesthetic 

rules like for the general graph drawing problem 

which have been introduced in the literature 

(Sakamoto et al., 2019). The data-ink ratio (Tufte 

2001) is one of the most widely used ones to evaluate 

visualisation results quantitatively in all of 

visualization problems. It is based on the ink amount 

required for drawing a visualised figure. The path 

quality, proposed by Cui in GBEB, is also useful to 

evaluate the degree of zig-zag in edge bundling. 

Furthermore, Saga (2016, 2018) proposed three 

quantitative criteria to evaluate edge bundling which 

are formulated from the difference of edge length, 

area illustrated by edges (which is similar to data-ink 

ratio), and density of edges. 

In our approach, we adopt these three criteria 

together with the path quality by Cui. 

2.3.1 Mean Edge Length Difference 

Mean Edge Length Difference (MELD) is a criterion 

to express the difference from the original edges after 
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edge bundling.  A smaller change of edge lengths 

indicates superior edge bundling because of over-

bundling, whereas a large change often leads to a loss 

of the meaning of the original network.  MELD is 

calculated as 

𝑀𝐸𝐿𝐷 =
1

𝑛
∑ |𝐿′(𝑒) − 𝐿(𝑒)|𝑒∈𝐸   (1) 

where n is the number of edges, E is the edge set, and 

L(e) and L’(e) are the lengths of edge e before and 

after edge bundling, respectively. Employing this 

criterion, we can prevent edges from over-bending 

and over-bundling. MELD can be normalised to [0;1] 

by 

𝑀𝐸𝐿𝐷 =
1

𝑛
∑|1 −  𝐿′(𝑒)/𝐿(𝑒)|

𝑒∈𝐸

 

In our approach, we aim to minimise the MELD. 

2.3.2 Mean of Occupation Area 

Mean of Occupation Area (MOA) indicates the 

degree among the compressed areas before and after 

edge bundling. Based on the idea that better bundling 

can compress the area occupied by the edges, MOA 

is calculated as  

𝑀𝑂𝐴 =
1

𝑁
|⋃ 𝑂(𝑒)

𝑒∈𝐸

| (2) 

where N is the number of total areas, O(e) is the set of 

areas occupied by edge e based on an occupation 

degree (we use 5% of unit area), and | | indicates the 

number of elements contained by a set. Minimising 

the MOA is one of our optimisation goals.  

2.3.3 Edge Density Distribution 

Edge Density Distribution (EDD) is rooted in the idea 

that a better edge bundling method can gather edges 

within a unit area and that the density per unit is high. 

EDD is calculated from an image by  

 𝐸𝐷𝐷 =
1

𝑛
∑ |𝑝(𝑎) − 𝑝|𝑎∈𝐴    (3) 

where A is a set of unit areas, p(a) is the rate of the 

number of pixels, in which the edges pass in Area a, 

and p is a mean of p(a). A variance-based measure, 

the EDD is higher when the values are concentrated 

on some ranges. 

However, this calculation does not work well as it 

is calculated from an image and it is difficult to 

express the density correctly from an image. Also, 

EDD does not work well when edge spread in an area 

due to zig-zag although path quality mentioned later 

can address this. 

Therefore, we redefine EDD to express the 

density more clearly by counting not the area but the 

number of edges per pixel and calculating the 

variance of edges as 

 𝐸𝐷𝐷 =
1

|𝑃|
∑ (𝐻(𝑝) − 𝐻)2

𝑝∈𝑃   (4) 

where P is a set of pixels, H(p) is the number of edges 

pathing pixel p, and H is the average of H(p). We aim 

to maximise the EDD.  

2.3.4 Path Quality 

Path Quality (PQ) expresses the degree of zig-zag. 

The lower the PQ, the better the edge bundling. PQ is 

calculated by the summation of angle differences 

between neighbours as 

𝑃𝑄 = ∑ (− ∑ 𝛾𝑖|∆𝑖|𝑚
𝑖=3 )𝑒∈𝐸    (5) 

with 

∆𝑖= {

𝐴𝑖 − 𝐴𝑖−1 
|𝐴𝑖 − 𝐴𝑖−1| − 2𝜋 

2𝜋 + |𝐴𝑖 − 𝐴𝑖−1| 
     

if − 𝜋 < |𝐴𝑖 − 𝐴𝑖−1| < 𝜋

if |𝐴𝑖 − 𝐴𝑖−1| > 𝜋

if |𝐴𝑖 − 𝐴𝑖−1| < −𝜋

 (6) 

and 

𝛾𝑖 = {
0 
1 

      
if sign(∆𝑖) = sign(∆𝑖−1)

if sign(∆𝑖) ≠ sign(∆𝑖−1)
 (7) 

, where m is the number of segments divided by 

control points+1, and Ai is the angle between the 

original edge and the segment edge. In our GA, we 

try to maximise PQ. 

We use the above four criteria separately and 

perform multi-objective optimisation. 

2.4 Genetic Operations 

We employ a standard genetic algorithm. We perform 

random initialisation, use uniform crossover and 

uniform mutation, while we update the population 

based on an elitist strategy. Note that, this problem is 

solved as a multi-objective optimisation problem, so 

that in our elitist strategy, pareto solutions are 

regarded as elite and inherited to the next generation 

while the remaining individuals are selected 

randomly from parents and offsprings. 

3 EXPERIMENTS 

3.1 Goal, Dataset, and Parameters 

To confirm the usability of our proposed method, we 

perform a set of experiments using a Japanese airline 

map with 79 nodes and 233 edges. Figure 2 shows the 

map as well as the result obtained by FDEB.  
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Figure 2: The original Japanese flight map and FDEB result

 

Figure 3: The results of our proposed method (First row: population:200 max: 300, Second row: population: 500, max:750). 

For our algorithm, we used the following 

parameter settings: number of generations: 750, 

population: (initial 200, maximum 300) and (initial 

500, maximum 700); mutation probability: 0.01, 

crossover probability: 0.7, s of MOA: 5; c (the 

number of control points): 4; v: 20, 30, and 50.   

3.2 Results 

Figure 3 shows one of the pareto solutions for each of 

the tested values for v and population sizes.  

From these, we see that all results have areas 

where edges are successfully bundled. For v=20 and 

v=30, mainly, edges in the area where the edge 

density is low in the original graph (for example, 

around Sado Island) were separated without being 

bundled well. This is probably due to the fact that the 

edges cannot be deformed to an appropriate bundle 

position due to the number of control points and their 

limits of displacement distance.  

Overall, edges tend to be less smooth as the 

displacement distance is increased. This is likely 

caused by control point moving more than necessary 

given the wider range of flexibility. 

We can also compare the difference of the results 

between population configurations. From Figure 3, 

we can see that a larger population leads to an 

improved visualisation. 

Interestingly, our proposed method is able to 

separate the route from Tokyo to Okinawa (in the 

bottom-left area of the graph) clearly for v=30 and 50, 

whereas FDEB is unable to do so.  

We notice that in our results the edges still show 

some zig-zag appearance, this is not unexpected since 

the path quality is only one of the four criteria we 

employ. 
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Figure 4: Fitness Function (x: generation, y: criteria). 

Figure 4 plots the four criteria of the fitness 

function as the GA progresses through the 

generations. From there figure, we can be seen that 

the values converge and the evolution has stopped. 

Therefore, it is speculated that this result has fallen 

into local optimization, and it is speculated that this 

will be an issue.  In other words, there is room to 

improve the quality when we can prevent the 

algorithm from falling into local optimization. 

4 CONCLUSIONS 

In this paper, we have proposed a genetic algorithm-

based edge bundling methods for visualisation 

applications. We employ control point information 

that is encoded in the GA together with a fitness 

function that optimises several aesthetic rules. The 

obtained results on a Japanese air route map confirm 

the applicability and usability of our proposed 

algorithm. We conclude with some issues that we 

plan to investigate in future work. 

4.1 Fitness Function 

The employed fitness function and be modified or 

extended to consider also the possibility of 

faithfulness (Nguyen et al., 2013; Nguyen and Eades, 

2017) and other indicators such as the ink-ratio.  

4.2 Extensibility 

In this approach presented here, the genetic 

representation is based on control points. Adding 

information on nodes and aesthetic rules of nodes 

would allow also edge bundling in consideration of 

the arrangement of nodes. Also, in this work, we have 

employed only a simple standard GA whereas a large 

number of other, more advanced GA algorithm can be 

utilised. 

4.3 Limitations 

In this study, our aim is to highlight the potential of 

generating an acceptable edge map visualisation 

employing computational intelligence for edge 

bundling. There are of course still limitations. One is 

the computational complexity, which is a general 

drawback of black-box optimisation techniques such 

as GAs, in particular for large graphs. There is also a 

problem with visual encoding. Although we do not 

discuss visual encoding here, this extension can also 

be applied if information on Visual Encoding is added 

to a single locus. 
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