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Abstract: Community question answering (CQA) sites are quickly becoming an invaluable source of information in
many domains. Since CQA forums are based on the contributions of many authors, the problem of finding
similar or even duplicate questions is essential. In the absence of supervised data for this problem, we propose
a novel approach to generate weak labels based on easily obtainable data that exist in most CQAs, e.g., query
logs and references in the answers. These labels accommodate training of auxiliary supervised text classifica-
tion models. The internal states of these models serve as meaningful question representations and are used for
semantic similarity. We demonstrate that these methods are superior to state of the art text embedding methods
for the question similarity task.

1 INTRODUCTION

Community Question Answering (CQA) sites have
emerged as a popular and rich source for informa-
tion, where both domain specific sites (e.g., Stack-
Overflow1, TTLC2), and general purpose sites (e.g.,
Quora3), provide a platform for users to get precise
answers to their questions. Though community con-
tribution is crucial in order to keep such huge amount
of information up to date, question authors are not
necessarily aware of all the already existing questions.
It is therefore common to find similar or even du-
plicate questions. A question to question similarity
measure is important in many applications like ques-
tion deduplication, similar question recommendation,
question routing, retrieval and more (Nakov et al.,
2017; Srba and Bieliková, 2016).

While each CQA site may have unique traits, all
major sites share the following three components:
structure of questions, a reference mechanism and
an internal search engine. In detail, the structure of
a question is composed of a mandatory title and an
optional details section. The title is usually one or
two sentences containing the subject of the question.
The details is a short section, few sentences long, that
elaborates on the question. An answer to a question is
termed as a reply. The reference mechanism allows to

1https://stackoverflow.com
2https://ttlc.intuit.com/
3www.quora.com

link within a reply of a seed question to a referenced
question.

Most existing approaches for CQA question simi-
larity require labeled data (Nakov et al., 2017). How-
ever, in many real world applications this supervision
does not exist and it is impractical to obtain a large
corpus of labeled data. Our proposed approach lever-
ages auxiliary data to generate abundant amount of
weak supervision. Then we apply a neural network
to learn representations for questions, which in turn
would be used to calculate question similarity.

2 RELATED WORK

The huge amount of data residing in CQAs have at-
tracted a significant amount of attention from the re-
search community. Multiple aspects of CQA systems
have been studied (Srba and Bieliková, 2016), such
as question and answer retrieval, automatic question
answering, question quality and more. Question to
question semantic similarity is a fundamental task and
multiple approaches have been tried to model it. One
of the subtasks in SemEval CQA task (Nakov et al.,
2017) was directly aimed at finding good question
to question similarity measures. The task was struc-
tured as a supervised retrieval problem, imposing that
the majority of the proposed solutions modeled the
similarity using unsupervised text similarity methods
which are later combined to a similarity score us-
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ing a supervised classification method. (Charlet and
Damnati, 2017) which were the top system at Se-
mEval17, used a supervised combination of SoftCo-
sine similarity over question tokens with cosine dis-
tance between question embeddings using word em-
bedding weighted average. (Nassif et al., 2016) used
stacked bidirectional LSTM to learn similarity classes
between questions. (Shao, 2017) proposed learning
the element wise differences of the outputs of CNN to
generate similarities. (Filice et al., 2017) trained an
SVM over engineered intra and inter pair similarity
features. Similar approaches were proposed to cap-
ture general semantic similarities between texts in Se-
mEval STS (semantic text similarity) task (Cer et al.,
2017) as well as for a more specific deduplication task
(Bogdanova et al., 2015; Zhang et al., 2017). Two
major limitations of those methods are high complex-
ity and the need for labeled datasets to train the final
supervised component.

Question similarity can be considered as a special
case of a general text similarity problem. A popular
approach for text similarity is to encode the text in low
dimensional vector spaces which capture the text se-
mantics and later model the similarity as a geometric
proximity in the embedding space. One approach to
produce sentence level embeddings is by composing
word level embeddings (Arora et al., 2017; Pagliar-
dini et al., 2018). Alternative modern approaches use
sentence level tasks to directly encode longer texts.
(Kiros et al., 2015) proposed such an embedding by
trying to reconstruct the surrounding sentences of the
encoded sentence and (Logeswaran and Lee, 2018)
structured this idea as a classification problem. (Con-
neau et al., 2017) train a universal sentence embed-
ding method using supervised methods on the SNLI
dataset. (Cer et al., 2018) use Transformer and DAN
networks to produce general embeddings that transfer
across various tasks. Though most of these text em-
beddings methods are trained to be successfully ap-
plied on a variety of downstream tasks they are not
optimized directly for pairwise similarity. Pretrained
language models (Devlin et al., 2019) are success-
fully improving results on many NLP tasks, but are
designed to be fine-tuned with labeled data and are
not meant to serve as sentence representation extrac-
tors.

In contrast to general text representation ap-
proaches, some work has been done to learn repre-
sentations that directly optimize the similarity task.
Siamese networks (Chopra et al., 2005) are a popular
framework to learn similarities and have been used for
text by (Mueller and Thyagarajan, 2016) and (Necu-
loiu et al., 2016). A more general triplet architecture
(Hoffer and Ailon, 2015) was applied for text simi-

larity by (Ein Dor et al., 2018). While these meth-
ods provide a principled way of modeling similarity
directly between arbitrary texts, where the architec-
ture of the sub-network can be adapted to the texts at
hand, they do not aim to be transferred as is to other
domains and require a substantial amount of labeled
data as well as sophisticated negative sampling meth-
ods.

Unlike NLP methods, which measure similarity
between questions using the question’s content, meth-
ods from information retrieval have a long history
of inferring such similarities from the click through
data recorded by search engines. This line of work
uses user clicks on query results as an implicit rele-
vance signal (Baeza-Yates and Tiberi, 2007) and thus
queries can be represented as a function of the clicked
documents and vice versa. Popular approaches sug-
gest to construct either a bipartite graph of queries and
documents and leverage its structure to learn similar-
ities (Craswell and Szummer, 2007; Jeh and Widom,
2002), or an equivalent sparse query-document click
through matrix. Models leveraging deep learning
were also proposed (Huang et al., 2013) for this task.
A majority of the existing work focuses on query
similarity (Ma et al., 2008), but some suggestions
were made (Poblete and Baeza-Yates, 2008; Wu et al.,
2013) to apply these methods for documents as well.
While some work was done on query log analysis of
CQA (Figueroa and Neumann, 2013; Wu et al., 2014)
we are not aware of any in the context of question
similarity. A major limitation of using strictly click
through information, is the existence of questions for
which the number of recorded clicks is very limited
or even non existing. This is natural for newly posted
questions, and in our case also frequent for many ex-
isting unpopular questions

3 THE DATA - TurboTax LIVE
COMMUNITY

This work focuses on question similarity on the Tur-
boTax Live Community (TTLC) site. TurboTax, de-
veloped by Intuit, is the most widely used tax filing
service in the US. TTLC is a tax related CQA oper-
ated by Intuit that provides a wide knowledge base for
US tax filers, containing over 3 million questions with
a mix of tax related and product related questions. As
described above, questions are usually posted with
question phrased titles describing the general infor-
mation the user looks for and a details section that
describes the specifics of the posting user’s question.
Like in many other CQA platforms, question are usu-
ally answered by domain experts like tax profession-
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als or by the Intuit TurboTax support representatives
who are well versed in the details of the TurboTax
product. Since most posting users are looking for fac-
tual information on tax regulations or product guid-
ance, the vast majority of questions result in a single
answer providing the needed information.

Although the tax system is complex, the breadth
of topics on TTLC is much smaller compared to plat-
forms like Quora or StackOverflow. The vast majority
of posts relate to a relatively small set of central top-
ics either around tax regulations or the operation of
the TurboTax product with different variations depen-
dant on the posting user specific situation. To address
this need, Intuit is maintaining several thousands of
high quality expert-created guide pages (FAQs) which
provide general high quality information around those
central topics. Due to this nature, a common case is
that a reply to a question will be a reference to an-
other answer or more frequently an FAQ page, and
TTLC’s user interface allows the rendering of the ref-
erenced page within the original reply which provides
a citation-like interface to those references.

TTLC’s search engine records all queries submit-
ted to it from users, as well as all questions clicked
following those queries. Due to the varying quality
of questions on the site, the search engine is designed
to rank the higher quality questions higher, especially
Intuit generated FAQs. This results in many commu-
nity generated questions receiving very low traffic. A
common scenario for a posted question is to be an-
swered after surfacing in the unanswered questions
queue, be read by the posting user after he was no-
tified it was answered, and later never be clicked by
other users as a search result (though users can be ex-
posed to questions in ways other than search). Our
modeling decisions were therefore impacted by the
high volume of questions not appearing in query logs.

4 PROPOSED MODEL

With the absence of massive amount of labels re-
quired for training modern supervised models, our so-
lution is divided into two parts: (i) learn question rep-
resentation based on weak supervision and (ii) apply
the representations to measure similarity.

We propose two methods for learning question
representation using two auxiliary sources of infor-
mation: the reference mechanism and search engine.
Both methods leverage the auxiliary information to
construct a classification training set, where the ques-
tion is used to predict its properties - the reference in
the question reply or the query that was used to re-
trieve the question. With these training sets, a neural

network classifier is trained, and the question repre-
sentation is obtained by extracting the last layer of
the network. Later, we use the fact that the two mod-
els share similar formulations to train a joint model
that leverages both the queries and references.

4.1 Reference Prediction Model

The reference prediction model uses the assumption
that similar questions have similar replies. However,
reply texts are usually of even greater complexity than
those of the questions. Two replies that reference
the same question usually resolve around the subject
of the referenced page, thus indicating that the cor-
responding question are similar as well. The large
amount of references present in the TTLC system al-
lows us to simplify and use the second assumption
to learn similarity. Table 1 shows random examples
of questions and the title of their referenced ques-
tion. As this table shows, the content of the refer-
ence is indicating the topic of interest of the original
question. We therefore treat the referenced page as a
weak signal for the topic of the referencing question.
Note that while in TTLC the referenced pages are also
part of the same CQA, this is in general not required
for our algorithm, since the content of the referenced
page is not used by the model. In other domains the
references can point to an arbitrary content such as
Wikipedia pages.

In order to find questions with references, a reg-
ular expression search over the replies text was per-
formed to extract the references, resulting in a dataset
of 210,308 questions. In the case of several refer-
ences in the same reply or in the case of multiple
replies for the same question, we took the first refer-
ence in the chronologically first reply. We then frame
the task of reference prediction as a multi-class text
classification, where each unique reference is repre-
sented with a class. As one may expect, the frequency
of referenced pages is highly skewed, with a small
number of highly referenced pages and a long tail of
pages referenced only once. While training can be
done with such configuration, this is sub optimal both
due to the low number of training examples per class
as well as the potential duplication between the ref-
erenced pages content. To address this limitation, we
restrict the number of unique referenced pages in the
training set, requiring at least 20 referencing pages
per reference. This resulted in 893 referenced pages
in the dataset and 162,468 question-reference pairs.

The classification model used neural network, and
followed popular configuration (İrsoy and Cardie,
2014) for text classification. It contained the follow-
ing four parts.
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Figure 1: Neural Network architecture of reference predic-
tion model.

• Learn a domain specific vector representations for
all words in the titles of the questions. Represen-
tations are learned with the Word2Vec SGNS em-
bedding scheme (Mikolov et al., 2013). This is
done in a separate pre-processing step.

• Embed the question titles in the training set by
representing words with the learned embeddings.

• Process the embedded question titles with two
stacked bidirectional LSTM layers (Schuster and
Paliwal, 1997; Hochreiter and Schmidhuber,
1997). The concatenation of the last hidden states
of the forward and backward parts of the second
LSTM serve as the encoding of the question title
to a fixed size vector representation.

• The question representations are fed into two fully
connected layers and softmax normalization. The
output of the model is a probability distribution
of a question to reference each of the target refer-
ences.

The model architecture is presented in details in
Figure 1. The highlighted part of the network is the
representation extractor, namely we represent each
question as the output of the last hidden layer of the
MLP part. Naturally, after the network is trained rep-
resentation can be obtained for arbitrary questions,
not restricted to those appearing in the model train-
ing set.

4.2 Query Log Prediction Model

The query log is a valuable source of information for
similarity. In this approach the training data are the
query logs of the CQA, namely, the questions that
were clicked following each query. While the ref-
erence approach assumed similarity of two question
based on sharing the same reference in the reply, here
our modeling is based on the idea that questions are
similar if they are viewed by users that searched for

the same queries. The query logs of TTLC are query-
question pairs (qi,d j) which are the result of a user
entering the query qi in the CQA search engine, and
clicking question d j from the search results. As de-
scribed in Section 3, a significant portion of questions
has very little or even no click-through data. This is
naturally the case for newly posted questions. There-
fore, though it is possible to compute similarities be-
tween documents directly on the click-through pairs,
we use the click-through data again as weak labels set
for a training set for a text based classification model.

By grouping the click-through pairs list P, we con-
struct a set Ltop = {q1 . . .qn} of the n most popular
queries, where from early experiments we set n =
2000. We then filter P to contain only pairs (qi,d j)
where qi ∈ Ltop. After the filtering we remained with
≈ 500K pairs where the number of unique questions
is over 25,000. We enumerate the queries and then
train the exact same neural network as in 4.1 where
for a click pair (qi,d j) the query index of qi is pre-
dicted using the title of question d j. An important
difference from the reference model is the fact that
unlike in the reference model, where we select just
one reference per question, in this model the training
data may contain several different labels for the same
question. The click counts were used only for filter-
ing purposes, and after the filtering stage no grouping
or counting is performed on the click data, i.e., each
click is a distinct training example.

4.3 Combining Reference and Query
Log Data

Sections 4.1 and 4.2 propose different ways to con-
struct weak labeling for learning question’s represen-
tations. Due to the different data which is fed to each
of the methods, each representation encodes different
properties of the questions. The semantic generaliza-
tion of the query log model is limited by the retrieval
function of the CQA search engine, while the refer-
ence model may present poorer performance on top-
ics where high quality references do not exist. There-
fore it is useful to combine the two methods to get
a representation which fuses both types of informa-
tion. One straight forward way of combination is by
vector operation like concatenation or averaging. A
more sophisticated alternative is to jointly learn both
supervised tasks from the question’s content. We ex-
periment with two approaches for such joint learning.

Multi-task learning (Ruder, 2017) is a popular ap-
proach in which a single model tries to reconstruct
two targets based on the same input. In our case, this
can be applied by trying to predict both the reference
and the query. However, this is not straight forward
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Table 1: Example of questions and referenced pages.

Question title Referenced page title

some how i clicked I am self employed and we are not
and now its asking for that info. Where or how can I
delete this or should I put a zero in those spots

Can I downgrade to a lower-priced version of Tur-
boTax Online?

I get a refund amount thats less than what was on Turbo-
Tax???

Why is my federal refund less than I expected?

I need to file taxes for my invalid daughter. How can I
start a new income tax without errassing min

How do I start another return in TurboTax Online?

Why wont it take my credit card for IRS payment. I have
been trying all day.

Can I pay my IRS taxes with a credit or debit card?

since in the query log training set, the same question
can appear with multiple queries as labels unlike a
single reference in the reference model. On top of
that, the intersection of questions both appearing in
the query logs and have references in the reply is rel-
atively low. Since we also want to restrict the number
of queries the model predicts, this will result in only
several thousands question with both targets. There-
fore we propose two alternatives to the straight for-
wards multi-task setting. The first, instead of fram-
ing the query prediction as a multi-class classification
problem and minimizing the cross entropy between
the predicted and actual classes, we will have the net-
work, on top of the reference prediction, also min-
imize the dot product between the question’s repre-
sentation and the query representation where we rep-
resent a query with the average embedding of it’s to-
kens. We do this for all query-click qi,d j pairs where
d j has a reference in one of it’s replies. This method is
referred in the results as the multi-task method and is
illustrated in Figure 2 with the highlighted part repre-
senting the component later used for extracting ques-
tion representations. The second method takes quite a
different approach, in which we do not change the su-
pervision framing setting. Instead, we reuse the same
weights for learning both tasks, where we train the
models in an alternating manner. We share all layers
of the network except the last fully connected layer
and the Softmax normalization (which is exactly the
question encoding part), and train the model for an
epoch with the reference target and then an epoch
with the query target. We do this alternating train-
ing for 8 iterations. We later use the shared part of the
two networks as a question encoder and refer to this
combination as the iterative method.

4.4 Modeling Question Details

Oftentimes users ask very specific question which
cannot be phrased using one or two sentence long ti-
tles. Specifically, in the tax domain the user may need
to describe the precise details of his case to get an ac-

Figure 2: Neural network architecture of the multitask
model.

curate answer. Due to this fact, the text contained in
the details section may be very important for similar-
ity estimation. However, due to its length and its com-
plex structure it is harder to process. Since the lion’s
share of information still resides in the question titles,
we compare several methods to include the details in
the similarity calculation along with the title.

4.4.1 Unsupervised Combination

The simplest way to combine the two parts of the text
is by concatenating the details and the title into one
text and apply the methods from previous sections.
Though compelling for it’s simplicity, this method ig-
nores the semantic differences between the title and
the details. To overcome this problem we combined
the representations instead of combining the text. We
separately encode the title and the details using any
of the methods previously described so as to obtain
a separate representation for each part. Once we had
this representation we combined the two representa-
tions using either averaging or concatenation.
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Figure 3: Neural network architecture of jointly predicting
references using title and details.

4.4.2 Joint Learning

In order to avoid the complication in the previous sec-
tion, we learned the problem on both the title and the
details jointly. Unlike the concatenation of the text,
separate networks are used to process each of the ti-
tle and the details, and the layer outputs of the net-
works are concatenated, and serves as an input to sev-
eral additional layers for the prediction. In theory the
same network can be used to process the two texts
with shared weights, but this will prevent the net-
work from addressing the structural differences be-
tween the two texts, for example their length. Even
without weights sharing, the simple network architec-
ture used for titles can be inadequate for the details
section which is often much longer. We experiment
with two models for joint learning: (i) symmetric in-
dependent model and (ii) hierarchical model. In the
symmetric model two identical networks which struc-
ture is described in 4.1 are learned with no weight
sharing, so the first network encodes the title and the
second encodes the details. Each network outputs a
vector of dimension 64 and the concatenation of both
vectors enters another fully connected layer so as to fit
the labeled output. The network is illustrated in Fig-
ure 3 .The second model uses hierarchical attention
networks (HAN) (Yang et al., 2016) for the encoding
of the details, and is similar to the first model in all re-
maining components. This special configuration was
designed to address the problem of the long text in the
details.

5 EXPERIMENTAL RESULTS

5.1 Evaluation Protocol

Measurement of quality of a similarity function is
somewhat hard since there are multiple traits that we
expect from a good similarity function. Possible ways
to do that are either to discretize the similarity to fixed
classes (Conneau et al., 2017) or to let the similar-
ity function to retrieve the nearest neighbours of a
point and measure the resulted set in IR based mea-
sures (Nakov et al., 2017). Classification between re-
lated vs. unrelated question may be trivial in some
cases and classification of similarity to fixed classes
may be highly subjective. In this work we measure
similarity using relative comparisons of two similar-
ity scores. We manually created a set of triplets of
questions (q,qp,qn), such that the similarity between
q and qp (positive) is higher than q and qn (negative).
Since compiling such a set is like looking for a needle
in a haystack, we assist with the TTLC tagging sys-
tem, which allows users to assign tags to questions.
We manually composed a set of ≈ 400 tags which
represent clear important concepts around the tax do-
main. We then sampled pairs of questions that have 2
common tags. Those questions act as candidates for
(q,qp), and after manually filtering pairs with a low
semantic relatedness we ended up with 1,174 pairs
with a solid connection. We have two methods to in-
troduce the negative question qn as to generate the
desired (q,qp,qn) triplets: coarse-grained that ran-
domly selects a question with no common tags with
q and fine-grained, that randomly selects a question
that has a single common tag with q. The latter ap-
proach finds negative samples with some relatedness
to q, making the differences more subtle. A sample
of the fine grained similarity dataset is presented in
Table 2 and from the coarse-grained dataset in Table
3.

5.2 Experimental Settings

5.2.1 Evaluation Measures

Given a similarity function sim and a triplet t =
(q,qp,qn), we define that sim is correct on t by

Isim,t =

{
1 sim(q,qp)> sim(q,qn)

0 otherwise
(1)
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Table 2: Example question triplets from the fine-grained similarity dataset.

Seed question First reference question Second reference question

Requested the MAC software to
amend my 2016 taxes. Turbo
emailed a link with a code and
password.

need to amend 2016 but don’t re-
member my password

do I need to send a copy of my
amended federal tax return with
my Louisiana state return

what if I don’t have my 1095 how do i revise self employed
health insurance figure once en-
tered?

With the cost of medications and
healthcare, does HIV qualify as
severely disabled?

Table 3: Example question triplets from the coarse similarity dataset.

Seed question Reference question Random question
How to deal with an overfunded
401k.

If a 401K contribution includes
cents, and the tax contribution is
rounded does that have any future
tax implication?

Does being enrolled in health in
2015 qualify if it began in 2016?

how do we file jointly? Divorce not final on Dec 31, can I
file single?

Was last years taxes filed?

For a dataset D of n triplets, the ratio of correctly
classified triplets by sim is simply

∑
n
i=1 Isim,ti

n
We denote this ratio as similarity accuracy. For each
method we report the similarity accuracy for both the
fine-grained and coarse datasets. As explained in the
previous section, in each triplet t, q and qp are the
same in both datasets and qn is random in the coarse
dataset and shares a tag with q in the fine-grained
dataset

5.2.2 Baselines

We consider a variety of methods for similarity com-
putation as baselines. We mix methods that directly
address similarity, as well as text representation meth-
ods. For text representation we include both mod-
els that use unsupervised word vector combination as
well as pre-trained models trained on other domains.
All our models and baselines use the same tokeniza-
tion mechanism where all non alphanumeric charac-
ters are removed and tokens are obtained by splitting
on spaces.

Soft-Cosine. Soft-Cosine similarity was used in
the winning approach for SemEval 2017 and is a suc-
cessful technique for direct similarity computation.
We use 100 dimensional CBOW word2vec represen-
tations trained on the titles of all questions in the
database and follow (Charlet and Damnati, 2017) for
the Soft-Cosine implementation. We consider this
model as a direct similarity baseline.

SIF Embeddings. This is a popular and success-
ful baseline for constructing sentence embeddings

from individual token embeddings. For word embed-
dings we use the same vectors as described in Soft-
Cosine and follow the implementation described in
(Arora et al., 2017). We use cosine similarity over
the representations to compute question similarity.

Universal Sentence Encoder. As described in
(Cer et al., 2018) Universal Sentence Encoder (USE)
is state of the art approach for universal text repre-
sentations that can be effectively leveraged for many
downstream tasks including similarity. We used the
code released by the authors 4 to obtain question rep-
resentations and use inner product for similarity.

5.2.3 Model Training

All models were implemented with Keras 5 using Ten-
sorFlow 6 backend. Both the reference and query
log models, which share almost identical architec-
tures, used 100 dimensional word embeddings as in
the baselines and further tuned by each model while
training. Both bidirectional LSTMs had 128 dimen-
sional hidden states and the two fully connected layers
had 64 dimensional hidden states and a RELU activa-
tion function. Between the two fully connected layers
we applied dropout with a rate of 0.2. The question
titles were truncated to 30 tokens and padded where
needed before training. The model was trained us-
ing Adam optimization with initial learning rate of
0.001 and β1 and β2 are 0.9 and 0.999 respectively.
Both models used batch size of 256 and the reference

4https://tfhub.dev/google/universal-sentence-encoder/2
5https://keras.io
6https://www.tensorflow.org
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model was trained for 12 epochs while the query log
model was trained for 70 epochs. Hyper-parameters
were tuned using 10% validation set on the original
supervised task for each model.

For the multi-task method we use the same word
embeddings described in the baselines. due to the
dot product operation we use 100 dimensional fully
connected layers instead of the regular 64 used in the
rest of the models. We minimize a weighted average
α∗query loss+(1−α)∗ cite loss, where query loss
is the mean of the squared dot products between query
and question representations and cite loss is the cross
entropy of the reference predictions. α is set to 0.2
using a validation set on the original tasks. In the it-
erative method we use the same network setting as
the individual models, with 8 iteration each, starting
with an epoch with the query log target followed by
an epoch with the reference target.

The models that exclusively use the details section
are trained with the exact same settings as those using
the titles. Since the details section is usually longer,
the texts in this case are truncated to 100 tokens which
resulted in truncation of 3% of the questions. Train-
ing a separate word embeddings for the details did not
yield performance increase, and they are initialized
with the embeddings learned from the titles and fine
tuned during training. In the joint title-details mod-
els the sub-component parameters are identical to the
networks described for individual models, where the
fully connected layer after concatenation has 64 di-
mension hidden state and a dropout with 0.2 rate is
performed between the concatenated vectors and the
fully connected layer. For hierarchical attention net-
works we use a sentence tokenizer from nltk 7. We
follow the paper implementation for HAN, when we
change the word embedding dimensions and the op-
timization scheme to the same as described for the
titles.

5.3 Results

5.3.1 Title Methods

Figure 4 shows the similarity accuracy of methods
based on exclusively the titles. The evaluation clearly
shows that the supervised models significantly outper-
form all baselines. While on the fine-grained dataset
the supervised models present almost equal perfor-
mance on the coarse dataset the embeddings coming
from the hidden layer of the reference model are sig-
nificantly better than the rest. We explain the fact
that the unsupervised models perform poorly by the
unique semantics and vocabulary present in the tax

7https://www.nltk.org/

Figure 4: Comparison of title based embeddings on similar-
ity prediction.

domain. The fact that USE, being a fully transfer
model, underperforms SIF which has the advantage of
leveraging domain specific word vectors further sup-
ports this explanation. As expected, the coarse dataset
is much easier for classification, with the accuracy of
the best performing model on the fine-grained dataset
is on par with the lower performing model on the
coarse dataset.

5.3.2 Combination Methods

Figure 5 presents the performance of the different
combination methods mentioned in 4.3. We show the
base two models and compare them to three combi-
nation methods. While not dramatic, there is signif-
icant improvement of the combined models on the
fine-grained dataset. While the multi-task approach
seems not to be effective, both concatenation, averag-
ing and especially iterative training outperform each
of the stand alone models on the fine-grained dataset
with no performance loss on the coarse dataset. We
address the poor performance of the multi-task ap-
proach to the low amount of questions having both
labels. The success of the iterative model confirms
our assumptions on the advantage of combining both
supervised signals in one model.

5.3.3 Models with Details Section

When we combine the details section into the model,
the results are less decisive with several models show-
ing similar performance. The full results are listed
in Table 4. The attempt to jointly learn the refer-
ences from both title and details did not yield sig-
nificant improvement over the title only representa-
tions (the results for the iterative and query log mod-
els are not listed but are inferior to other models as
well). The addition of a more complex model for de-
tails, in the form of HAN, yielded very marginal im-
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Figure 5: Similarity accuracy of combination methods of
reference and query-log models.

provements. We address the overall disappointing re-
sults of the joint learning to the fact that the question
representations were not significantly different from
those learned with the titles exclusively. This is sup-
ported by the similar performance of the joint model
to the models reported in Figure 4. The joint mod-
els also only marginally improved performance on the
original supervised tasks. We leave the improvement
of joint models for future work. We therefore focus
on unsupervised combinations of separately learned
representations for each section. In most cases, av-
eraging and concatenation behaved very similar for
all approaches and we report results for concatena-
tion. On the fine-grained dataset, concatenation of
representation learned in a supervised way were the
best performing. Specifically the model in which both
titles and details were separately iteratively trained
on both references and query logs was the most suc-
cessful one. Despite showing quite poor performance
on titles only, Universal Sentence Encoder proved to
be very useful in encoding the details and was only
slightly inferior on the fine-grained dataset and the
best performing model on the coarse dataset. We at-
tribute this to the model’s ability to model complex
textual data which is present in the details section. As
expected, SIF embedding (and moreover Soft-Cosine)
struggled to model long texts in an effective way.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we presented methods for measuring
similarity in CQA sites. We showed that learning the
representation by using supervised text classification
on proxy variables leads to a significant improvement
over state of the art text embedding models. More-
over, when similarity was calculated from the titles

Table 4: Comparison of similarity accuracy of models
which use both titles and details.

Model fine-
grained
dataset

coarse
dataset

Concatenation of references
models

.7793 .9199

Concatenation of query log
models

.7291 .8688

Concatenation of iteratively
trained models

.7964 .9131

Joint learning on references .6797 .8356
Joint learning on references
with HAN

.6797 .8390

Concatenation of USE rep-
resentations

.7640 .9293

Average of USE representa-
tions

.7606 .9386

Concatenation of SIF repre-
sentations

.7027 .8475

only the advantage of our methods was even bigger.
We also compared few methods to combine multiple
supervised models and obtained that its superior to
each model separately.

For future work we intend to explore several direc-
tions. First, the TTLC data contains relatively large
number of high quality internal question references
which made the reference prediction model very suc-
cessful. However, the replies and reference mech-
anism contain additional structure that can be used,
such as multiple references, the textual context of the
reference and more. We expect that deeper analysis of
all these would provide more training data in TTLC,
as well as make our method more applicable to other
CQAs.

Contrary to the high-quality reference data that
we had, the query click data was relatively small and
lacked a lot of important features. For example, the
page dwell time could definitely improve our algo-
rithm. The gap in quality between data sources also
emphasizes the need for a good method to combine
different sources of information with different level
of confidence. Of course pure statistical methods
like parameter tuning using cross-validation could be
used, however since cross-validation is again relying
on labeled data, it would be interesting to come with
a near-optimal solution for which it is not required.

Finally, we are aware that NLP methods for text
modeling are improving rapidly. In our experiments,
Universal Sentence Encoder was highly accurate for
representing the details section, probably because of
its ability to capture the semantics of longer and
more complicated texts. Lately, fine tuning pretrained
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transformer based language models has achieved state
of the art results on many NLP tasks. Incorporating
the weak signals with those methods may further in-
crease performance.
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İrsoy, O. and Cardie, C. (2014). Opinion mining with deep
recurrent neural networks. In EMNLP, pages 720–
728.

Jeh, G. and Widom, J. (2002). Simrank: A measure of
structural-context similarity. In Proceedings of the
Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02.

Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Tor-
ralba, A., Urtasun, R., and Fidler, S. (2015). Skip-
thought vectors. arXiv preprint arXiv:1506.06726.

Logeswaran, L. and Lee, H. (2018). An efficient framework
for learning sentence representations. In International
Conference on Learning Representations ICLR 2018.

Ma, H., Yang, H., King, I., and Lyu, M. R. (2008). Learn-
ing latent semantic relations from clickthrough data
for query suggestion. In Proceedings of the 17th ACM
Conference on Information and Knowledge Manage-
ment, CIKM ’08, pages 709–718, New York, NY,
USA.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words

Learning Question Similarity in CQA from References and Query-logs

351



and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–
3119.

Mueller, J. and Thyagarajan, A. (2016). Siamese recurrent
architectures for learning sentence similarity. In Pro-
ceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, AAAI’16, pages 2786–2792.

Nakov, P., Hoogeveen, D., Màrquez, L., Moschitti, A.,
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