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Abstract: The application of wireless technology to monitor and record high quality real-time signals is playing an 
important role in today`s world. Various applications such as electromyography and electrocardiography 
require low-power and low-voltage portable wireless sensors for remote e-health monitoring. The use of such 
technology allows patients with muscle or heart problems to be monitored from the comfort of their home. 
Additionally, wireless implantable electromyogram sensing is also integrated in the design of intelligent 
myoelectric  control for powered prostheses. The specifications within such applications constrain the design 
and development of wearable electromyographic sensors. This work presents a low-cost, portable, wireless 
non-invasive 8-channel system to monitor and classify electromyographic signals related to hand or finger 
movement. The proposed system operates at 1.0 V and draws a current of 1 mA in power-down mode. The 
paper also discusses the hardware and software implementation details and presents various measurement 
results. This work concludes through feature comparison with other similar technologies in the market. 

1 INTRODUCTION 

Wearable technology has been trending in healthcare 
and myoelectric applications for the last decade. 
Electromyography (EMG) sensors have been 
succesfully used in assistive and therapeutic 
healthcare. Such applications impose several 
challenges on the development of such wearable 
technology for the continuous daily health 
monitoring; these include small form factor, minimal 
power consumption, portability and extended battery 
life. EMG signals are distributed in a frequency range 
between 10 to 500 Hz. Additionally, EMG sensors are 
also used in motion therapies in order to track patient 
motion and applied forces (Nikolic, 1994), (Suster, 
2007), (Cong, 2009), (Kamali, 2014). 

EMG sensor which are expensive and have a large 
form factor are already available in the market. 
However, researchers are finding challenges in 
designing and developing low-cost, low-voltage, and 
small form-factor sensors that are able to detect finger 
and hand movement (Nair, 2010), (Lui, 2000).  

Such requirements are critical for wearable and 
portable applications. Various EMG-based control 
techniques apply the use of pattern recognition, 
mapping techniques or models (Burke, 2004), neural 

nets and time domain (Nagaraju, 2010), (Benatti, 
2017), (Teng, 2014) analysis for the classification of 
hand or finger movement (Cappellari, 2018), 
(Berezhnoy, 2018), (Bembli, 2019), .This work 
presents a new low-cost, low-voltage EMG sensor 
designed to classify finger and hand movement in a 
patient. Through the use of an LPC824 based 
microcontroller system and the implementation of 
custom signal conditioning circuitry the developed 
non-invasive EMG wireless sensor is able to capture 
and process 8 multiplexed EMG signals. The pre-
processed EMG data is then trasmitted wirelessly 
over Bluetooth for the control and activation of a 
robotic manipulator. Such features makes this sensor 
suitable for various applications including muscle 
movement and myoelectric control at low-cost by just 
using commercial off-the shelf components. 
Classification of finger and hand movement is 
implemented through amplitude and time-domain 
analysis (Mert et al., 2018). 

Section 2 presents the circuit design for the 
wireless EMG sensor. Section 3 describes the adopted 
time-domain procedure for the classification and 
detection of hand or finger movement. A detailed 
description related with the measurement results is 
given in Section 4. 
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2 EMG SENSOR CIRCUIT 
DESIGN  

This section describes the design and implementation 
details related with the developed EMG sensory 
module. The acquisition of the 8-channel EMG 
signals is performed through the use of wet electrodes 
connected in uni-polar configuration and then to an 
instrumentation amplifier (IA) with a common-mode 
rejection ratio (CMRR) of 120 dB, followed by 
amplification and filtering stages. This arrangement 
contributes to the reduction of common mode noise 
which is present on both electrodes while retaining 
the signal of interest. Further reduction in circuit 
design is achieved through the use of a multiplexing 
circuit that allows the switching between the 8-
channel selectable electrode signals. The 
instrumentation amplifier circuitry shown in Figure 1 
(gain of 3300), yields a maximum output voltage of 
3.3 V peak to peak. A DC offset of 1.65 V is 
introduced so that the full range of the 3.3 V 
Analogue-to-Digital Converter (ADC) on the 
LPC824 microcontroller is used. The DC offset 
circuit is followed by an first order low-pass filter 
(bandwidth f3dB = 15 kHz) as shown in Figure 2. The 
adopted LPC824 ARM based Cortex M0+ 
microcontroller operates through an internal RC 
oscillator running at 12 MHz, pre-scaled to 30 MHz 
using an internal PLL. Additionally, this 
microcontroller supports Direct Memory Access 
(DMA), thus enabling the processing of 14th order 
band-pass digital filter at a sampling frequency of 1.5 
kHz. The dual rail supply voltage for instrumentation 
amplifier is ± 5.0 V. 

 
Figure 1: EMG Instrumentation Amplifier Circuit. 

The TPS6122 buck-boost DC-DC converter circuitry 
has a minimum input voltage of 0.7 V and output 
voltage range of 1.8 to 5.5 V with a quiescent current 
of 5.5 µA. 

The analog stage requires a dual rail supply, 
therefore a buck-boost convertor (negative supply) is 
used to achieve the required voltages of ± 5.0 V. The 
ADM8829 charge-pump voltage inverter changes the 
input voltage outputted from the TPS6122 device into  

 
Figure 2: DC offset and Low Pass Filter circuitry. 

 
Figure 3: Buck-Boost Converter. 

a negative voltage, creating a dual rail supply voltage 
for the IA and op-amps. 

The ADG708 multiplexer is used to switch 
between selectable 8-channel electrodes whose 
output is to be sampled by the ADC, and then filtered 
through the 14th order digital infinite-impulse 
response (IIR) band-pass digital filter using the 
LPC824 microcontroller (bandwidth f13dB = 25 Hz, 
f23dB = 225 Hz ). The filtered EMG data is then 
transmitted from the LPC824 device to the HC06 
bluetooth module and then received by a wireless 
client device. 

The maximum switching time in between 
multiplexer channels is 14 ns when running on 5 V 
and a typical power consumption of 1 µA. 

Figure 5 illustrates the top and bottom views for 
the manufactured system with a small form-factor of 
33 by 20 mm. Two switch push-buttons, are used to 
program the microcontroller. The internal LPC824 
direct Memory Access (DMA) module allows 
transfer of digital EMG data at a high transfer rate 
with the intervention of very few CPU cycles. Test 
pins were included in the module so to directly 
monitor and record the amplified and filtered EMG 
signals through an oscilloscope. 
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Figure 4: INA128 and multiplexing stage. 

 

 
Figure 5: Top and bottom view of the wearable EMG sensor 
with dimension 33mm by 20 mm. 

3 EMG SENSOR 
CLASSIFICATION 

Analysis of EMG signals was performed using two 
pairs of electrodes placed over the forearm muscle, 
which is mostly active when moving the arm wrist. 
The raw EMG signal was processed through root 
mean square calculation. Classification of wrist and 
hand movement was done through time-domain 
amplitude analysis. A system calibration procedure 
shown in Figure 6 allows the recognition of wrist or 
hand movement via amplitude analysis. The 
implementation for amplitude analysis identifies and 
configures the thresholds measured when certain 
hand gesture movements are made. Calibration 
process follows electrode placement. This process 
consisted of contracting the wrist in three different 
positions multiple times and one at a time. With each 
contraction, the amplitudes acquired from all 
electrodes being recorded. This process was repeated 
for a pre-defined amount of repetitions so to establish 
the required thresholds. The amplitude analysis is 

performed prior to the signal being filtered and then 
Root Mean Squared; a moving average can be applied 
to the signal if needed.  

 
Figure 6: Calibration Procedure for the classification of 
hand movement. 

4 MEAUREMENT RESULTS 

An illustration of the amplified raw, DC shifted EMG 
signal for various hand movements is shown in Figure 
7. This signal represents the electrical currents 
generated by the muscle activity being controlled by 
the nervous system and is also depended on the 
anatomical and physiological properties of the 
muscles. Additionally, the shown EMG signal in 
Figure 7 has been filtered from noise being generated 
from various tissues. For testing purposes, a 3D-
printed five degrees of freedom robotic manipulator 
is to be controlled through six analogue or PWM 
inputs located on the robot controller. 

The acquired EMG myoelectric signals from 4 
different channels are shown in Figure 8. The 
calibration procedure was performed for adaptively 
setting the required channel amplitude thresholds 
needed for the classification of three hand 
movements. Classification data is wirelessly 
transmitted to a bluetooth client device located on the 
robotic manipulator and controlled using an 
embedded controller.  
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Figure 7: Amplitude response of filtered and smoothened 
Raw EMG signal. 

Examples of three different classified hand 
motions are shown in Figure 9. The fist motion will 
control the opening and closing of the claw actuation, 
while two other hand movements rotates are used to 
control the angular position robotic arm that is 
clockwise or counter-clockwise. The same 
classification procedure has also been tested and 
adopted for the classification of finger movement. 
Through exstensive experimentation repetitive 
measurement and performance results were noted. 

5 DISCUSSION AND 
CONCLUSION 

In this work, the successful development of a low cost 
and wearable 8-channel sEMG data acquisition 
system was presented along with the implementation 
of an adaptive threshold setting algorithm for the 
classification and contraction detection of hand or 
wrist movement. A feature comparison of the 
proposed system with other similar sEMG sensors 
including commercially available products in terms 
of bandwidth, operating voltage, size, and contraction 
detection is shown in Table 1. Such comparison, 
illustrates that the developed non-invasive wearable 
sEMG sensor has the smallest form factor operates 
and operates at a low supply voltage of 1.0 V using 
just one single-cell AAA battery. The developed 
EMG sensor has also a very low weight of 6 grams, 
four times less when compared to other similar work. 

Additionally, through exstensive testing and from 
the illustrated measurement results the threshold 
setting amplitude analysis classification algorithm is 
satisfactorily detects contractions and recognizes 
wrist or finger movement. 
 

 
Figure 8: EMG measurements for four EMG channels (mV 
versus time ms). 

 
Figure 9: Control of robotic manipulator through developed 
EMG sensor.  

Table 1 : Comparison with other similar Systems. 

 This  
work 

sEMG 
Sensor 

(Seguna, 
2018) 

Myo 
Armband 

Hercules 
(Mert, 2018) 

Classification 
of 

Hand/Finger 
Movement

Yes Yes No No 

Contraction 
Detection Yes Yes No Yes 

Wearable Yes Yes Yes Yes 
Bandwidth 

(Hz) 1200 20-589 - 20-500 

Supply 
Voltage 1.0 V 2.5 V 3.7 V 3.7 V 

Dimensions 
L x W (mm) 20 x 33 45 x 25 190 x 340 - 

Weight 
(grams) 6 24 93 - 

Battery 
Type 

AAA 
(x1) - 

Built-in 
lithium 

Ion 

AA 
(x2) 
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