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Abstract: Researchers commonly use myoelectric signals to study the electrical activity produced by skeletal muscles 
for the control of prosthetic arms, hands and limb replacement devices. Additionally, to the application in 
prostheses, a myoelectric control system for multiple finger movements has the potential to develop 
commercial products including advanced human-computer interfaces. The objective of this work is to 
implement a set of low-cost active electrodes for the decoding of finger movement via time-domain analysis, 
with an auto-gain adjustment technique. Different people will have different EMG amplitudes; therefore, it is 
difficult to determine the gain required prior performing further signal processing. In this work, an auto-
adjustable gain amplifier circuit processes the maximum EMG signal amplitude and adjusts the gain stage 
accordingly, without the need of any user interaction. This ensures that the gain is always automatically 
adjusted to get the most effective performance from the data acquisition or analogue to digital converter (ADC) 
module since the signal will be neither too low in amplitude to cause inefficient use of the ADC resolution, 
nor too high to cause saturation of the signal. Through extensive experiments, the developed  low-cost EMG 
data acquisition system achieves reproducible and repeatable results for the detection and classification of the 
five finger movements. 

1 INTRODUCTION 

This paper is an extension of the work originally 
presented in NGCAS conference (Seguna, 2018). 
Electromyography (EMG) signal acquisition is a 
medicine technique used for recording and analysing 
the electrical activity produced by skeletal muscles. 
EMG systems detect the electrical potential generated 
by muscles when they are neurologically activated 
(Tsuji, 2000). The EMG signal can be used to obtain 
several information related to muscle activity, such as 
detecting medical abnormalities, muscle activation 
levels, or to analyse the biomechanics of the human. It 
is also used as a research tool for studying kinesiology, 
which can then be used to control prosthetic devices 
such as prosthetic arms, hands and lower limbs. This 
is possible since muscles in the remaining part of the 
limb function in a normal way, enabling the EMG 
signals extracted from them to be used in limb 
replacement devices. The benefit of this technique is 
that the signal is acquired from the patient's remaining 
limb muscles, which after appropriate processing can 
be used to control motors. These motors can be used 
to control several applications, including the control of 

motorised wheelchairs and the control of prosthetic 
devices which can be worn by amputees and activated 
by their own EMG signals (Sudarsan, 2012),      
(Osamu, 2003), (Jingpeng, 2013), (Côté, 2015) 
provided. EMG studies in general are useful for 
assessing the health of the neuromuscular system, 
since certain diseases, such as multiple sclerosis, 
suppress or even slow down normal nerve and muscle 
firing. Surface EMG (sEMG) signal is the product of 
all the action potentials which are picked from the 
muscles below skin surface electrode. The amplitude 
of sEMG signals is stochastic (random) in nature and 
hence the reason why appropriate signal processing is 
required for interpreting and using the signal. 
Although the amplitude is random, it can be 
reasonably represented by a gaussian distribution 
function. The typical EMG amplitude varies from 
microvolts to the low millivolts range (with the 
maximum amplitude being around 10mV peak-to-
peak). The amplitude depends on the force applied 
since the bigger the force, the more action potentials 
will be stimulated which will trigger the contraction of 
more muscle fibres (Naeem, 2012).  

The more the action potentials are in reach of the 
surface electrodes, the bigger the product result and 
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therefore the higher the amplitude. The frequency of 
EMG signals can range from a few hertz up to the 
lower kilohertz range, but the frequencies below 20 Hz 
and above 200 Hz are usually not considered to 
contain any useful physiological information. For this 
reason, EMG acquisition systems normally filter these 
frequencies out. Since the 50 Hz power line frequency 
is within this range and can contribute to interference 
in the EMG data being analysed, it is sometimes 
recommended to set the cut-off frequency of the low-
pass filter at 50 Hz to attenuate most of the power lines 
interference, or else apply a notch filter at that 
particular frequency (Khoshaba, 1990), (Ahmad, 
2017). The EMG signal can also contain small DC 
contents producing an EMG signal with a non-zero 
baseline. The DC content is eliminated in the EMG 
acquisition circuitry, usually by using an 
instrumentation amplifier (IA) or a high-pass filter 
(Hong Quach, 2017). 

Table 1: Applications of EMG (Côté, 2015). 

Medical 
research Rehabilitation Ergonomics  Sports 

Science 

Orthopedic Post-surgery Analysis on 
Demand Biomechanics 

Surgery Neurological 
Disorders 

Risk 
Prevention 

Movement 
Analysis 

Functional 
Neurology 

Physical 
Therapy 

Ergonomics 
Design 

Athletes 
Strength 
Training

Gait & 
Posture 
analysis 

Active 
Training 
Therapy 

Product 
Certification 

Sports 
Rehabilitation 

Common EMG analysis techniques include amplitude 
analysis, time duration analysis, frequency analysis 
and time-frequency analysis. The amplitude of the 
EMG signal expresses the level of the muscle activity 
and it changes with the amount of electrical activity 
detected by the electrodes. EMG acquisition systems 
usually make use of techniques to smoothen the raw 
EMG signal amplitude and form a better 
representation with respect to time. The most common 
techniques are the Root Mean Square (RMS) followed 
by the Mean Absolute Value (MAV). The RMS 
technique is considered to be the most meaningful 
since it provides a measure of the power of the raw 
EMG signal (Tijssen, 2000).The ability to correlate 
EMG amplitude with muscle force allows one to 
determine whether the respective muscle is inactive or 
active. When a muscle is inactive, the EMG amplitude 
is effectively at 0 V and when the muscle is active, the 
amplitude gets greater than 0 V. When a muscle is 
active, one can also determine the time duration of the 
muscle being active. This is achieved by simply 

measuring the time when the amplitude exceeds a pre-
set threshold. Frequency analysis applies Fast Fourier 
Transform (FFT) technique to obtain meaningful 
frequency information, for a fixed stationary time-
domain data segment. This factor makes frequency 
analysis not the ideal method when fast data 
processing is required, such as for the use of prosthetic 
limbs. On the other hand, this type of analysis is ideal 
for studying muscle fatigue since in various studies it 
has been proven that the mean frequencies of the EMG 
signal will decrease with time during tasks that induce 
muscle fatigue. The frequency analysis can also be 
used for detecting interfering frequencies in the raw 
signal, such as power line frequencies. Time-
Frequency analysis comprises the study of EMG 
signal in both the time domain and the frequency 
domain simultaneously. As already discussed, both 
the time domain and frequency domain analysis can 
be used to extract specific muscle activity. For this 
reason, many researchers have combined the two to 
benefit from information the two types of domains can 
offer. This type of analysis is sometimes used to 
achieve multiple classifications from the same EMG 
signal, such as the angle and the force applied at a 
joint. This is because the muscle force show more 
change in the time domain, while any change in the 
joint angle is more visible in the frequency domain of 
the EMG signal (Clancy, 2008). During the process of 
EMG signal acquisition one must follow certain steps 
to prevent unwanted factors that may influence the 
process. Although the human body is a good 
conductor of electricity, there are still many aspects 
that effect the conductivity level. Tissue conductivity 
level can vary with the type, thickness, physiological 
changes and even with temperature. These conditions 
will vary from one person to another and sometimes 
may even vary within the same person when the test is 
performed at different time. Additionally, the human 
body has approximately 640 skeletal muscles which 
are close to one another, it is difficult to monitor 
signals originating from a single muscle when using 
surface electrodes. Neighbouring skeletal muscles 
may produce signals which will eventually be picked 
from the electrodes together with the wanted signals. 
This is known as cross-talk, and normally it does not 
exceed 15% of the overall signal contents. 
Electrocardiography (ECG) signals can also interfere 
the EMG signal recording. This is especially common 
when performing EMG monitoring near the upper 
trunk or the shoulder muscle. Another factor that may 
alter EMG reading is when the distance between the 
skeletal muscle belly (origin of the signal) and the 
surface electrode changes during the signal acquisition 
process. This normally happen when the patient 
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moves which causes the electrode to change position. 
To prevent this from happening, one must secure the 
surface electrodes and any wires that may cause them 
to move during signal monitoring. The EMG signal 
whose amplitude is between 0-10mV, when passing 
through various tissues, is contaminated by various 
noises (Amrutha, 2017), (De Luca, 2010), (Guohua, 
2009).Therefore, it is vital to understand the properties 
of various unwanted electric signals. EMG signals are 
very sensitive to external noise and artifacts, mainly 
due to the signal ranging from a few microvolts. 
Inherent noise present in all electronic equipment 
cannot be eliminated but can be reduced drastically 
through intelligent circuit design. Additionally, the 
silver/silver chloride electrode are electrically stable 
and as their size increases, the impedance decreases. 
Most of these interferences may be filtered out using 
active or digital filters, by preparing the skin and 
placing the electrodes properly. If proper skin 
preparation and proper electrode placing is not 
fulfilled signal quality is deteriorated. The electrode 
cable and interface will also cause movement 
artefacts, where such artifacts can be reduced 
significantly using recessed electrodes. Further to this, 
between the surface of the skin and the electrode- 
electrolyte interface, a conductive gel layer is applied. 
Electrical noise causes EMG interference since most 
of the electronic components generate electrical noise 
(known as Johnson–Nyquist noise) whose frequency 
can range from few hertz to thousands of hertz. Such 
electrical noise can be reduced drastically by using 
quality components and through the implementation 
of a well-designed circuit. Ambient noise is the main 
source of electromagnetic radiation whose amplitude 
is sometimes one to three times greater than the 
desired EMG signal.  

The surface of the human body is constantly 
flooded with electromagnetic radiation. To prevent 
these interferences, one must use an IA with a high 
CMRR. This will attenuate any common mode noise 
at the inputs of the electrodes. Another technique to 
reduce ambient noise is to use the shortest possible 
leads. If long leads are used, they will serve as an 
antenna which will pick any ambient noise in the 
vicinity. The leads should also be shielded to reduce 
the possibility of noise from being picked. If noise 
problems persist, the EMG acquisition circuit can be 
covered by a Faraday cage. This will shield the circuit 
from any Electromagnetic interference (EMI). When 
the Faraday cage is grounded, the electric field energy 
is drained away without affecting the circuit 
performance. EMG instrumentation can pick various 
types of influences that one may not even be aware of, 
which include emotions and thoughts. These factors 

can cause skeletal muscles to slightly contract since 
humans tend to tighten up with certain emotions or 
thoughts. These influences are better known as 
involuntary activities which are picked by an EMG 
measuring equipment (Bekir, 2014). There are 
various techniques used to process and classify EMG 
signals. Researchers make use from both the 
amplitude and the spectral properties of the raw EMG 
signals to supplement information on the muscle 
activity which is used to increase the classification 
accuracy. Following are some of the commonly used 
techniques for signal acquisition, processes used and 
algorithms for eliminating unwanted artefacts, 
process the raw EMG signals and for classifying 
different muscle movements. EMG signals can be 
picked up using surface electrodes in two different 
configurations, these being the monopolar and the 
bipolar. The monopolar configuration makes use of 
two surface electrodes, where one is placed on the 
belly of the muscle and the other electrode is placed 
as a reference on an electrically neutral tissue (such 
as joints or other bony areas). The difference of the 
two electrodes is then compared and processed for 
further filtering and smoothing (Hudgins, 1993). The 
other technique is the bipolar. This configuration 
makes use of two electrodes (known as the detecting 
electrodes) which are both placed on the belly of the 
muscle. The detecting electrodes are typically kept 
one to two centimetres apart. Another electrode is 
used as a reference and must be placed on an 
electrically neutral tissue. The advantage of using this 
configuration is that the common noise can easily be 
eliminated, something which is not possible to 
achieve with the monopolar configuration. When 
eliminating the common noise or any interference, 
one will achieve a better signal-to-noise ratio and 
hence a clear raw EMG signal can be obtained. The 
pre-amplification is one of the most important aspect 
when it comes to processing very low signals such 
that of EMG. This is because the components used in 
this stage must be of high precision and produce the 
minimum noise possible, or else the noise can be 
interpreted as the wanted signal. The most common 
pre-amplification component used in EMG devices is 
the instrumentation amplifier. Instrumentation 
amplifiers are used to amplify the difference between 
two inputs, which are connected to the two detecting 
electrodes. They are designed to reject any signals 
that are common to both inputs and therefore, are 
used where precision and gain accuracy must be 
maintained within a noisy environment, and where 
large common-mode signals are present. After 
reviewing the literature, it was found that the most 
commonly used instrumentation amplifiers for EMG 
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devices are the INA126P, INA128, INA141, AD8221, 
AD8421, AD623 and the AD642. Some papers 
suggest that the IA gain must not be set too high or 
else it may amplify the noise components together 
with the wanted signal. Most of the EMG devices set 
the instrumentation amplifier reference pin to half the 
supply voltage (virtual grounding), while other 
devices keep the output of the IA at a zero volts 
baseline and then rectify the EMG signal prior 
entering the ADC input. An experiment conducted by 
the University of Utah includes the use of precision 
rectifiers (super diodes) to rectify the raw EMG signal 
prior inputting it to the IA. Other techniques were 
used in other studies, which include the use of three 
separate operation amplifiers that form the IA which 
permits more flexibility in the selection of parameters. 

After the pre-amplification stage, most devices 
perform filtering to remove unwanted signal prior 
further processing. Different EMG devices divide this 
section into different stages, with some using separate 
circuit for the low-pass and high-pass filtering, others 
make use of a band-pass filter circuit and other 
devices perform this task either on a microcontroller 
or desktop computer. Digital filtering is usually 
performed using Infinite Impulse Response (IIR) 
filtering structure or Finite Impulse Response (FIR) 
filtering structure, with the latter being the most 
popular since it is more stable and less likely to 
introduce non-linear phase distortions. 

Most of the existing devices which make use of 
hardware filtering, achieve this by using active filters 
based on operational amplifiers or by using dedicated 
filter ICs. Some EMG data acquisition 
implementations make use of a combination of a low 
order hardware filtering stage, which is then followed 
by a higher order software filter. This is usually done 
so that the hardware filtering can perform the first 
stage filtering, prior the signal is inputted to an 
analogue to digital converter (ADC). Another 
technique would be the use of an adaptive noise 
cancellation. Such technique can be implemented 
using the Least Mean Square algorithm and has been 
proved to be reliable and efficient (Phinyomark, 
2012). 

This will contribute to better ADC processing 
since it will eliminate any major baseline drift and 
high amplitude noise. Further filtering of the EMG 
signal is then achieved by a second stage digital filter. 
Some existing devices also make use of notch filters 
to attenuate any frequencies that may interfere with 
the wanted signal, with the most common being the           
50 - 60 Hz power line frequency. This type of filtering 
is not suggested by some researches since the 
frequencies in the 50-60 Hz range can contain useful 

information on the muscle contraction. They suggest 
that a high-end instrumentation amplifier with a high 
CMRR should be used instead. This should attenuate 
any common power line distortion picked up by the 
human body.  

Although many studies agreed that the low-pass 
filter (LPF) cut-off frequency should be set to around 
15 to 50 Hz, it was noted that when it comes to the 
high-pass filter (HPF) cut-off frequency, different 
papers used different values with the range varying 
from 150 Hz up to 800 Hz. Some of the papers 
recommend that a high cut-off frequency for the HPF 
is preferred so that any rapid on-off bursts of EMG 
activity will not be filtered out. EMG devices which 
perform hardware smoothing need to first rectify the 
signal. Some existing devices use half-wave 
rectification, but the most popular is the full-wave 
rectification. Devices that use full-wave rectification 
have the advantage of maintaining all of the raw EMG 
signal information, unlike half-wave rectification 
where the negative cycles are completely blocked. The 
common technique used for the signal rectification is 
through the use of a precision rectifier (also known as 
a super diode) which is a circuit that acts as an ideal 
rectifier.  

The stage following the EMG rectification, is 
usually the signal smoothing stage which is normally 
achieved through an integrator circuit or a low-pass 
filter. A similar technique which is also commonly 
used is the envelope detector circuit, which gives a 
similar output effect as the integrator and the low-pass 
filter circuits. There are other techniques which are 
sometimes used instead of root-mean square (RMS), 
these being the Absolute Mean Value (AMV), the 
Difference Absolute Mean Value (DAMV) and the 
Variant Value (VAR) (Garavito, 2016). A study 
entitled “Evaluation of EMG processing techniques 
using Information Theory” shows that the RMS 
technique provides the most meaningful information 
out of the EMG signal. 

More complex EMG processing devices can make 
use of different algorithms to achieve better results. 
Some of the commonly used algorithms are the Neural 
Network, the Support Vector Machine and the 
Euclidean Distance. The last two algorithms are 
typically used when monitoring and recording finger 
movements. They are used to isolate individual finger 
movements to be able to control individual outputs, 
such as prosthetic limbs. On the other hand, Neural 
Networks (Subasia, 2006), (Gutiérrez, 2011) 
algorithms are artificial intelligence networks that can 
acquire any non-linear mapping of trained data 
through learning. This algorithm is normally used to 
achieve successful classification for non-stationary 
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EMG signals. Euclidean distance is used to determine 
the distance of the input data points from a set of 
predefined target points. Based on the distance 
acquired, the system will check if the new data input 
lies within a pre-defined target border and is used to 
classify the data related to a particular muscle activity 
into the desired group of channels. 

The concept of autoregressive modelling is to 
assume that the real EMG can be approximated by 
what is known as the AR process. With this 
assumption settled, the order and parameters of the 
appropriate autoregressive model are chosen in a way 
to fit the acquired EMG signals as closely as possible. 
In turn, for every particular autoregressive model, the 
power spectrum of the corresponding AR process can 
be analytically determined. Thus, the AR method 
provides an alternative way for EMG spectral 
properties estimation. The work entitled “Real-Time 
Computer Control using Pattern Recognition of the 
Electromyogram” claimed a 95% accuracy in 
classification was achieved when using the 
Autoregressive modelling technique. 

2 ANALYSIS OF EMG SIGNALS 

Analyses of various EMG signals was done using a 
pair of electrodes placed over the palmaris longus 
muscle, which is mostly active when the ring finger 
is contracted.  The raw EMG signal was processed 
through root mean square calculation. Figure 1 
illustrates the result of the processed signal where it 
is observed that the amplitude increases relatively 
proportional with every 10 N of extra force applied. 
This signal feature can be utilized in prosthetic hands 
to apply variable force depending on the EMG 
amplitude.  

 
Figure 1: RMS of the EMG bursts with different forces, 
starting from a force of 1 kg and increasing the force by 1 kg 
with every burst. 

The amplitude and frequency components of the ring 
finger being closed at different angles were analysed. 
Figure 2 illustrates the EMG signals obtained at 

different angles, starting from 0 degrees (finger fully 
opened) up to an angle of 180 degrees (fully closed), 
with intervals of 45 degrees. The rectified EMG signal 
amplitude increases quasi-proportional with the angle 
of the finger. This feature can be utilised for prosthetic 
hands for adjusting individual finger angle. A test was 
conducted to analyse the EMG signal pattern with 
respect to muscle fatigue. The setup used is shown in 
Figure 3.  
 

 

Figure 2: Rectified EMG amplitude signal at various finger 
angles, starting from angle 0 degrees (finger fully opened) 
up to an angle of 180 degrees (fully closed). 

 
Figure 3: Setup for analysing EMG signal pattern with 
respect to muscle fatigue. 

The EMG signal for this test is shown in Figure 4. The 
RMS equivalent is illustrated in Figure 5 showing the 
profile of an EMG signal obtained for the ring finger 
when a constant force of 5 kg for a period of 60 
seconds was exerted. As shown in Figure 5 the 
amplitude of the EMG signal increases slightly with 
muscle fatigue when applying a constant force of 5 kg. 
Therefore, since the difference in amplitude is 
minimal the signal was then analysed in the frequency 
domain where it was noticed that the frequency of the 
EMG signal shifts to the lower side with muscle 
fatigue as shown in Figure 6.  

The amplitude frequency spectrum was performed 
on a raw EMG signal at various angle position of the 
finger. Figure 7 illustrates the magnitude frequency 
spectrum plots obtained for four different ring finger 
angles. From the results obtained, the magnitude of the 
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100 Hz frequency bin increased with angle position. 
Frequency domain analysis could be challenging to 
apply with accuracy due to problems such as 
frequency resolution, magnitude accuracy at steady 
state, and more generally, due to data processing.  

 
Figure 4: EMG signal pattern with ring finger exerting a 
constant force of 50 N.  

 
Figure 5: RMS of the EMG signal with the ring finger 
exerting a constant force of 50 N. 

The time domain feature analysis is concerned with 
the extraction of various EMG signal features in time 
domain. Time domain features such as mean absolute 
value, root mean square and wavelength were the most 
popular in EMG pattern recognition because of high 
processing speed in classification. The mean absolute 
value of an EMG signal is defined as the average of 
the total absolute value, while root mean square is the 
amplitude modulated Gaussian random process 
related to muscle force and contraction Time domain 
features can easily and efficiently be used for the 
recognition of an EMG pattern recognition. On the 
other hand, frequency domain features can be used to 
estimate the EMG power spectrum in frequency form. 
In addition, the frequency domain spectrum is 
commonly used in muscle fatigue and muscle force 
estimation. Therefore in this work the classification of 
finger movement was performed through the time 
domain analysis rather than frequency spectrum.  
 

 
                            (a) 

 
                          (b) 

 
                            (c) 

Figure 6: Frequency spectrum shifting to the lower side of 
the spectrum with muscle fatigue for various time durations 
(a) 5-15 (b) 15-25 (c) 35-45 seconds. 

3 CLASSIFICATION OF FINGER 
MOVEMENT 

H124SG muscle sensor surface electrodes were 
placed at a particular area on the hand as shown in 
Figure 8. The forearm has nineteen major muscles 
responsible for the flexion, extension and other 
movements of the fingers, wrist and elbow. 
Reviewing the anatomy of the muscles, it was 
concluded that the muscles used for the contraction of 
the fingers are mostly exposed at the lower part of the 
forearm Muscles responsible for finger movement 
include the flexor digitorum superficialis (responsible 
for flexing all  fingers -primarily at proximal 
interphalangeal  joints),  flexor  digitorum  profundus  
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Figure 7: Frequency magnitude spectrum of an EMG signal for (a) 0°, (b) 90°, (c) 135°, and (d) 180° ring finger angle position.

(responsible   for   flexing   the   distal  and  proximal 
interphalangeal joints)  and flexor pollicis longus 
(responsible for flexing the thumb). 

This work covered two different experiments. In 
the first experiment the electrodes were placed along 
various muscles as shown in Figure 8a, while in the 
second experiment six electrodes were placed on the 
lower part of the forearm. The first experiment did not 
show repeatable results from person to person. This 
was mainly caused by the fact that not every person 
has the same muscle anatomy and not every person 
has the same amplitude peaks for the same muscle. 
The physical factor of the person also played a big role 
in the lack of consistency. When the system was used 
on overweight people, it was noticed that it is difficult 
to get finger movement classification.   This is due to 
the constantly changing physical distance between the 
surface electrodes and the muscles being monitored.   

To avoid the use of complex algorithms and other 
additional signal processing for isolating finger 
movements from other unwanted muscle activities, 
such an area was selected. Calibration process 
followed electrode placement. This process consisted 
of contracting each finger multiple times one at a time.  

With each contraction, the amplitudes acquired 
from all electrodes being recorded. This process was  
repeated for a pre-defined amount of repetitions so to 
establish the required thresholds. EMG bursts were 
monitored and processed so to  evaluate the upper and 

lower thresholds for each finger contraction, with the 
highest monitored amplitude being set as the upper 
threshold and the lowest amplitude being set as the 
lower threshold. The maximum and minimum 
amplitudes detected at each electrode after the raw 
square algorithm.  

 
(a) First Experiment 

 
(b) Second Experiment 

Figure 8: Electrode placement for (a)1st and (b) 2nd 
Experiment. 

Ten EMG bursts were recorded during this 
calibration procedure. From the plots shown in Figure 
9, it is observed that the thresholds for each finger 

(c) (d) 
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contributed to a unique pattern thus enabling EMG 
signals were processed using the root mean- the 
possibility of classifying various finger movements. 

4 ACTIVE ELECTRODES FOR 
ECG 

Most EMG devices use of passive electrodes. In this 
work active electrodes were used because they tend 
to perform better for applications where very low 
signals need to be acquired. Active electrodes 
contribute to a have high input impedance with 
minimal stray-capacitances at the inputs and low 
output impedance contributing to a low cable 
movement artifact. As shown in Figure 10 the main 
front-end component for the developed active 
electrode module is the LT1167 instrumentation 
amplifier (IA). The LT1167 operates with a single or 
dual rail supply voltage of ±2.3 V, common-mode 
rejection ratio (CMRR) of 126 dB, and input 
impedance of 1000 GΩ, thus contributing to less 
attenuation in the input signal. Such parameters 
satisfy the Surface Electromyography for the Non-
Invasive Assessment of Muscles (SENIAM) standard. 
To minimize the gain error and achieve best CMRR 
the REF pin of the LT1167 was connected to a 1.25 
V supplied by the REF3312AIDBZT voltage 
reference IC. This IC required low supply current 
(typically 3.6 μA), has low temperature drift and has 
an internal accuracy of ±0.15%. The maximum output 
impedance does not exceed 0.1Ω, assuming the 
output of the REF3312 is not switching at high 
frequencies. This integrated circuit is also suggested 
for use in medical applications. A 4.7 μF and 1.5 μF 
supply bandpass capacitors are connected to the input 
and output of the REF3312 respectively for better 
stability of the input and output signal. A 604 Ω 
resistor is used to set a fixed gain of 83. Note that this 
gain will only amplify the raw EMG signal to around 
500 mV peak-to-peak as per requirement. The two  
5.1 kΩ resistors connected in series to each input of 
the instrumentation amplifier input. These resistors 
are made from carbon composition which can 
withstand large short-term pulses and high voltages 
when compared to other resistor types. Although 
these resistors will contribute to higher noise at the 
inputs of the IA, they are necessary to protect the IC 
from any ESD. 

The filtering stage consists of a 2nd order 
Butterworth high-pass filter with a cut-off frequency 
of 15 Hz, a 5th order low-pass filter with a cut of 

frequency of   500 Hz. A digital amplifier followed 
the filtering stage.  

 

 

 

 

 
Figure 9: RMS and threshold plots for various finger 
movements. 

The high-pass filter is required so that the baseline 
drift will not affect the ADC performance. The 
operational amplifier for the active high-pass filter 
selected is the MCP604, which is a single supply, rail- 
to-rail, unity gain stable CMOS quad op-amp IC. 
Such component has a Butterworth response and can 
operate at 3.3V, while consuming maximum current 
of 1.2mA. The input of the filter comes directly from 
the electrode, which pre-amplifies the raw EMG   gain 
accordingly. DS1804-050 is a 50kΩ potentiometer 
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that has 100 tap-points. The DS1804-050 can operate 
from 3V or 5V.  

 
Figure 10: Schematic diagram for the front-end component 
interfaced with active electrodes. 

 

Figure 11: Low-pass filtering stage based on the MAX7414 
5th order LPF. 

 

Figure 12: Baseline drift causing the EMG signal to be 
saturated by the ADC references. 

 
Figure 13: Digital Potentiometer. 

This digital potentiometer also has a built in 
EEPROM to store the wiper position even when the 

supply is disconnected. This is useful so that the 
system will not have to be re-calibrated every time the 
supply is turned off. The DS1804 is specified to 
provide an absolute linearity of ±0.60 LSB, which is 
irrelevant for this application. It has a -3dB cut-off 
frequency of 200 kHz. Since the EMG frequencies are 
low, 200 kHz are enough for this application. 
Developed software monitors the signal amplitudes 
from each electrode and adjust the gain accordingly 
through the digital potentiometer. Such technique will 
not require the user interaction. The digital amplifier 
circuitry consists of the DS1804-050 and the 
MCP604 operational amplifier (same op-amp IC used 
for the high-pass filter). The op-amp is configured as 
an inverting amplifier, which can vary the gain from 
1 (unity) up to 25. The MCP604 can be supplied with 
a single rail supply between 2.7 V to 5.5 V. The 
inverting configuration was used, so to implement a 
linear gain amplification, by incrementing the 
feedback resistance at equal intervals. The non-
inverting input of the op-amp is connected to a 1.65V 
reference supply to offset the output by half the 
supply voltage. 

5 CONCLUSION  

In this work, we proposed the successful 
implementation of an active, noise cancelling, 
affordable and wearable 6-channel sEMG data 
acquisition system for the detection and classification 
of finger movement. Such classification feature can 
be combined with other systems for myoelectric 
control applications. Additionally, unlike other 
systems the gain is auto-adjusted using a digital 
amplifier. Finger movement can be detected and 
classified easily via EMG time domain rather than 
frequency domain analysis. The most basic and 
effective algorithm for enveloping the raw EMG 
signals was found to be root-mean-square (RMS) 
with a wide averaging window of 3000 instead of 
1000. RMS only requires basic mathematical 
calculations, which sums up in a system that requires 
less processing power. As a result, a wider selection 
of microcontrollers could be used for processing 
EMG signals. The classification of finger movement 
was done through the placement of six electrodes at 
the lower part of the forearm. For this experiment, 
there was no need for the electrodes to be placed 
precisely in a specific area. The forearm was selected 
because it has thin layer of fat, thus reducing the 
problem of baseline drift drastically. After studying 
the anatomy of the muscles, it was also concluded that 
the muscles used for the contraction of the fingers are 
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mostly exposed at the lower part of the forearm. The 
developed active electrodes with integrated IA placed 
as close as possible to the input electrodes contributes 
a better signal to noise ratio. The use of an auto-
adjustable gain stage contributed to a practical user-
friendly system.  This circuit monitors the maximum 
EMG signal amplitude and adjusts the gain stage 
accordingly, without any user interaction. This 
ensures that the gain is always adjusted to get the most 
effective performance from the ADC module since 
the signal will be neither too low in amplitude to 
cause inefficient use of the ADC resolution, not too 
high to cause saturation of the signal. A comparison 
of our active electrode sEMG processing system with 
other systems available in the literature and 
commercial products in terms of frequency, weight, 
supply voltage, wearable and other classification 
features is shown in Table 2. Through extensive 
experimentation system was tested by ten different 
people of various weights, size and genders with 
classification results observed to be repeatable and 
reproducible. 

6 FUTURE WORK 

A small footprint prototype board is currently under 
development and planned to be finalized by 2020. 
This new prototype will enable the extraction of more 
finger muscle movement features including finger 
angle and muscle fatigue. Additionally, such a 
wearable module will enable the processing of EMG 
signals wirelessly over the cloud so to help of patients 
suffering from conditions such as Carpal Tunnel, 
Diabetic Peripheral Neuropathy, Ulnar Neuropathy, 
Chronic fatigue syndrome, and Fibromyalgia, among 
others. 

Table 2: Comparison with other similar systems. 

 This 
work 

Myo 
Armband 

Biometrics 
Datalog 

Hercules 
(Mert, 2018) 

Classification 
of Finger 
Movement 

Yes No No No 

Contraction 
Detection Yes No No Yes 

Wearable Yes Yes No Yes 

Bandwidth (Hz) 20-589 - 20-460 20-500 

Supply Voltage 2.5V - 3V 3.7V 
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