
CLARVA: Model-based Residual Verification of Java Programs

Shaun Azzopardi a, Christian Colombo and Gordon Pace
Department of Computer Science, Faculty of ICT, University of Malta, Msida, Malta

Keywords: Verification, Model-based Analysis, Residual Analysis, Static Analysis.

Abstract: Runtime verification (RV) is an established approach that utilises monitors synthesized from a property lan-
guage (e.g. temporal logics or some form of automata) to observe program behaviour at runtime, determining
compliance of the program with the property at runtime. An issue with RV is that it introduces overheads at
runtime, while identifying a violation at runtime may be too late. This can be tackled by introducing light
analyses that attempt to prove parts of the property with respect to the program, leaving a residual property
that induces a smaller monitoring footprint at runtime and encodes some static guarantees. In this paper we
present CLARVA as a tool developed for this end for the RV tool LARVA. CLARVA transforms Java code
into an automaton-based model, and allows for the incorporation of control-flow analyses that analyse this
model against Dynamic Automata with Timers and Events or DATES (the property language used by LARVA)
to produce residuals that produce an equivalent judgement at runtime.

1 INTRODUCTION

Verification methods can be applied on an program
before or after its deployment. Ideally verification is
done pre-deployment to ensure a misbehaving pro-
gram is not deployed, however precise formal ver-
ification before deployment can be expensive while
parts of the program may be dynamic or unknown
pre-deployment. Runtime verification (RV) (Leucker
and Schallhart, 2009) is one approach to performing
post-deployment verification by instrumenting an ap-
plication with a monitor that attempts to give a verdict
about the program’s compliance by analysing an exe-
cution prefix. However using only RV means no static
guarantees about the program can be given, while
RV introduces time and memory overheads at runtime
when performed synchronously with the program. In
this paper we present a tool addressing both of these
problems for LARVA, an established tool for the run-
time verification of Java programs.

The LARVA (Colombo et al., 2009) approach ex-
pects specifications in the form of dynamic automata
with timers and events, or DATEs. This language al-
lows the developer to identify a set of program events
using AspectJ pointcuts (Kiczales et al., 2001), and an
automaton that captures the prohibited event traces.
These events are symbolic with parameters that are
only bound at runtime (Havelund et al., 2018). Tran-

a https://orcid.org/0000-0002-2165-3698

sitions are triggered by such events, while they are
guarded by a condition on the program and monitor
variable state while possibly acting on the monitor
state (e.g. the monitor may keep a counter of the
times a certain method is called, prohibiting a cer-
tain number of subsequent calls). Moreover DATEs
allow for time-triggered events, and also for commu-
nication between multiple DATEs through channels,
making them more succinct and modular than simple
finite-state automata.

The runtime overheads induced by the LARVA ap-
proach is thus proportional to the number of times
DATE transitions are triggered at runtime and to the
expense of executing transition guards and actions.
There are several options for reducing runtime over-
heads then:

(i) reducing the number of times a program triggers
an event;

(ii) reducing the number of DATE transitions; and

(iii) reducing or optimising DATE transition guards
and actions.

Previous work considers sound approaches to per-
forming these reductions (Azzopardi et al., 2017),
with residual analyses ensuring that the reduced mon-
itor observations are equivalent to those of the origi-
nal, at least with respect to the program in question.

In this paper we introduce CLARVA (Azzopardi,
2019), a tool that is able to incorporate analyses that

352
Azzopardi, S., Colombo, C. and Pace, G.
CLARVA: Model-based Residual Verification of Java Programs.
DOI: 10.5220/0008966603520359
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 352-359
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

effect such sound reductions based on a control-flow
model of a Java program. CLARVA is thus intended
to be used for relatively inexpensive pre-deployment
analyses that produce a residual of a DATE and a pro-
gram with residual instrumentation that can be pre-
pared for deployment by LARVA. This was inspired
by CLARA (Bodden et al., 2010), a tool for similar
analyses but limited to finite-state automata and re-
ductions of instrumentation.

In Section 2 we discuss briefly the background and
theoretical framework underpinning CLARVA, while
in Section 3 we discuss the architecture and process
of the tool. We illustrate the tool using a case study
in Section 4, discuss related work in Section 5, and
conclude in Section 6.

2 BACKGROUND

In this section we discuss some of the theoretical and
practical background behind CLARVA, introducing
briefly LARVA (Colombo et al., 2009), how we model
programs, and a brief description of residual analyses.

2.1 The LARVA Approach

Common languages for specifications in the RV com-
munity can largely be classified as either logic- or
automata- based, with automata being also commonly
used behind the implementation of logic-based ap-
proaches, or as event- or state-based (Falcone et al.,
2018). LARVA falls under the event-based approaches
that use automata directly as the main specification
language. Figure. 1 illustrates a high-level view of
the process LARVA undertakes to produced a moni-
tored program. Here we discuss how LARVA handles
monitoring for program events and how the specifica-
tion logic is represented using dynamic automata with
events and timers (DATEs). Listing. 1 is an example
of the LARVA specification language, which we use
throughout this section.

2.1.1 Program Events

LARVA uses AspectJ pointcuts to allow the specifica-
tion engineer flexibility in specifying program events
of interest independent of the program implementa-
tion. These event definitions currently correspond to
Java method calls, with different matching modalities
(e.g. before the call, after, upon returning, or upon
throwing). For example, the LARVA event declaration
on lines 7-9 in Listing. 1 matches any return from a
call to a method named login and that has an integer
id parameter.

Monitored
Program

Code

DATE compiler

Event and
Business Logic

Advice

DATE
Script

AspectJ
compiler

Java
Program

Code

Figure 1: LARVA process.

1 GLOBAL{
2 VARIABLES{
3 i n t l i m i t = 250 ;
4 }
5 FOREACH(User u) {
6 EVENTS{
7 l o g i n (User u1)
8 = {* . l o g i n (i n t i d) u p o n R e t u r n i n g

() }
9 where {u1 = u s e r s . g e t (i d) ; u = u1 ;}

10 . . .
11 }
12 PROPERTY u s e r B e h a v i o u r {
13 STATES{
14 ACCEPTING {good}
15 BAD {bad}
16 NORMAL { l o g g e d I n }
17 STARTING { l oggedOut }
18 }
19 TRANSITIONS{
20 l ogged In−>l oggedOut [l o g i n (u1) \u1 .

a c t i v a t e d \]
21 . . .
22 }}}}

Listing 1: Partial view of a LARVA script.

The left-hand side of this declaration represents
the event as will be used in the DATE. Note how this
event is symbolic in that it is instantiated at runtime
with some program data (see Line 9). The right-hand
side syntax is close to that used by AspectJ for point-
cuts. The syntax also allows for a single DATE event
(left-hand declaration) to correspond to multiple pro-
gram events.

CLARVA: Model-based Residual Verification of Java Programs

353

2.1.2 DATEs

Finite-state automata are traditionally parametrised
by a finite set of events, with transitions tagged by
these events and the automaton representing the ac-
ceptable set of event traces. As discussed in the pre-
vious section, events here are instead symbolic in that
they may have attached certain information about the
program. The event set here effectively is not finite —
note how for arbitrary n∈N then login(n) is an indi-
vidual event. The automata used by LARVA, DATEs,
are then forms of symbolic automata that are able to
deal with this infinite set of events with a finite set of
states and transitions. Moreover DATEs allow us to
maintain some internal monitoring variable state, ef-
fectively allowing for a more succinct representation
than finite-state automaton.

A DATE transition is of the form: q−> q′ [e\c\a],
where q and q′ are automata states, e is a symbolic
event, c is a predicate on the event parameters (which
are bound at runtime) and the monitoring variable
state, and a is a transformation of the monitoring vari-
able state. For example, Line 20 in Listing. 1 defines
a transition that allows a user to login only when the
user account’s activated attribute is true.

2.1.3 Typestate

A concern in RV is that of typestate, where a monitor
is intended to be replicated for each object of a certain
type. For example, given a Stream object one may
want to ensure that each such object is not used after
it is closed. In this case typestate logic is used to en-
sure that a monitor is instantiated for each such object
at runtime, where the monitor only listens to events of
the object they are associated with. This functionality
is also present for DATEs, through the FOREACH con-
struct. In Listing. 1 Line 5 illustrates how the property
defined by the script is parametrised by a User types-
tate, with each event identifying the relevant user (see
Line 9).

2.2 Modeling Programs

DATEs abstract away from program details through
DATE events. In the same manner when perform-
ing static analysis of a program it is ideal to work
at this level of abstraction rather than at the level
of program code. Moreover, since our specifica-
tions are automata-based, representing programs in
an automata-based formalism allows us to exploit the
rich theory behind automata in performing verifica-
tion and analysis. In CLARVA we choose to inter-
nally represent Java methods as non-deterministic au-
tomata with states representing Java statements and

transitions tagged with DATE events. A program is
thus represented as a set of such automata.

These automata in effect represent an over-
approximation of the possible execution traces of the
program. This is only sound and not complete be-
cause we are ignoring program data-flow. In Section 4
we illustrate an example of such automata and their
corresponding Java methods.

2.3 Residual Analysis

CLARVA is essentially a tool for what we call residual
analysis. Here we give a brief semi-formal introduc-
tion to this approach.

The verification problem is essentially whether a
program P satisfies a property π, which we denote by
P ` π. Residual analysis, given a program P, is con-
cerned with the reduction of the property π to a prop-
erty π′ such that π and π′ are interchangeable for the
purposes of verification, i.e.

P ` π ⇐⇒ P ` π
′.

This reduction does not occur blindly but by con-
sidering the known properties of the system, in effect
in the form of a model of the system (Azzopardi et al.,
2016). Then, a residual operation can take into ac-
count this model when producing a residual property.
This can be represented as follows, where the residual
operation is denoted by the symbol \:

P `M =⇒ (P ` π\M ⇐⇒ P ` π).

This notion allows us to use π\M instead of π for
the purposes of verification, with the guarantee that
the result is equivalent to verifying π, for any pro-
gram satisfying M. One question is how to acquire the
model M. An option is through analysis (which we do
in CLARVA by creating an automaton representation
of the program), while in other cases the program P
may be synthesized from an existing model M.

This condition is however too wide for the pur-
poses of RV. Consider that RV is concerned with the
compliance of single execution traces, while our ver-
ification operator here (`) is concerned with the com-
pliance of the whole program. Then, the residual con-
dition here does not guarantee that an event trace of
P will be given the same verdict by π \M as by π.
Instead we can refine this by considering the event
traces (with events from an alphabet A1) induced by
a program using an operator: T (P) : 2A∗ , and a trace

1Note that here A represents a set of events. These events
can also be symbolic, e.g. the events may be associated with
a snapshot of the program variable state.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

354

compliance operator 2:

P `M =⇒ (∀t ∈ T (P) · t π\M ⇐⇒ t π).

This correctness condition is what we require
out of any property residual analysis included in
CLARVA, to ensure any reduced property can be used
for RV without any unexpected behaviour.

The overheads of RV are not associated only
with the property being monitored, but also with the
amount of instrumentation inserted into the program
to trigger property events. To model this consider that
a program P can be represented by a set of executions
(where STMT is the type of statements) Ex ⊆ 2STMT

∗
,

and then instrumentation can be modeled as a func-
tion from executions to event traces instP : STMT∗ 7→
A∗. Finally an instrumentation reduction of a program
with respect to a property, i.e. the function instP\π, is
correct only if the event trace induced by an execution
prefix by both instrumentation functions is given the
same verdict by π (using pre for a function that gives
all the prefixes of a set of traces):

∀e ∈ pre(Ex) · instP(e) π ⇐⇒ instP\π(e) π.

This correctness condition for instrumentation re-
ductions finalises our brief treatment of the residual
analysis CLARVA incorporates. For a more in depth
treatment see (Azzopardi et al., 2017).

3 ARCHITECTURE

The CLARVA process is made up of three different
phases (Figure. 2): (i) the abstraction phase where the
Java code and LARVA script are abstracted into au-
tomata models; (ii) the residual analysis phase where
different residual analyses are applied in succession;
and (iii) the concretisation phase where the internal
representations are transformed into executable for-
mat.

During the abstraction phase the input program
and LARVA script are abstracted respectively by a
control-flow model (as described in Section 2.2) and
a DATE (as described in Section 2.1.2). In the ab-
straction of programs the Java bytecode analyser Soot
(Vallée-Rai et al., 1999) is used to analyse the pro-
gram code and structure to create appropriate au-
tomata models of the program methods while the
DATE events are used to instrument these automata
with events. The resulting automata represent an
over-approximation of the execution traces of the pro-
gram at runtime with respect to the given DATE.

2We require the condition that a program is compliant
with a property iff all its traces are also compliant with the
property: P ` π ⇐⇒ ∀t ∈ T (P) · t π.

DATEProgram Model

Residual
DATE

Program Model
with Residual
Instrumenation

Residual
Program

Code

Residual
Larva
Script

Optimised
Monitored
Program

Code

Program
Code

Larva
Script

Abstraction

Absent
Event

Analysis

Typestate
Absent
Event

Analysis

Control-Flow
Analysis

Residual Analysis

Concretisation

Figure 2: CLARVA process.

The residual analysis phase incorporates a number
of residual analyses, as described in (Azzopardi et al.,
2017), obeying the conditions defined in Section 2.3.
These analyses compare the program model with the
DATE to produce reduced version of each. For ex-
ample, absent event analysis analyses the model to
identify events used by the DATE but not actually
triggered by the program and reducing the DATE ap-
propriately. The subsequent analyses introduce more
precision, e.g. typestate absent event analysis projects
the same analysis for every possible runtime typestate
object, and control-flow analysis uses composition of
program and property automata to identify transitions
in the DATE that are never activated for any typestate.

CLARVA: Model-based Residual Verification of Java Programs

355

Dually these can be used to identify instrumentation
points in the program that can be silenced (i.e. such
that they do not trigger events at runtime). These anal-
yses are subsequently more precise, using imprecise
and cheaper analyses to possibly reduce the expense
of the next stage. These analyses are performed mul-
tiple times until a fix-point is reached. New residual
analyses can be introduced at this stage to create finer
residuals.

The concretisation phase is the dual of the abstrac-
tion phase, using the internal abstractions to output a
Java program with optimised instrumentation and an
optimised monitor. The instrumentation identified as
unnecessary by the residual analysis phase is used to
transform the original Java code such that function
calls triggering events unnecessarily do not trigger
events after LARVA instrumentation. This transforma-
tion does not change the program behaviour although
it does introduce a new Java class through which calls
which should be instrumented pass through. The
residual LARVA script instruments methods in this
class instead of the original methods, while the mon-
itoring logic may also be reduced, when the analysis
phase proves the program cannot explore parts of the
DATE, and those parts of the DATE can be pruned.

4 CASE STUDY

Here we consider a case study to illustrate the
CLARVA approach. Listing. 2 illustrates the code of
a simple transaction menu that allows a user to lo-
gin, logout, transact, deposit, and delete their account,
while upon the user requesting deletion, their account
is removed from the list of users. Figure. 3 illustrates
a specification for this program, where if the user is
logged out they are not allowed to delete account or
withdraw any funds, while they have a transaction
limit when logged in. Moreover during the process
of user deletion no deposits into the user’s account
are allowed.

CLARVA processes the program Listing. 2 to pro-
duce automata for each method similar to those illus-
trated in Figure. 4. For illustration purposes these au-
tomata are more concise than those actually produced
by CLARVA, however they are equivalent language-
wise. Note also how the states of these automata are
annotated by the relevant program statement.

By analysing the DATE in Figure. 3a against the
models in Figure. 4 CLARVA’s analyses manage to:

(i) identify that the withdraw event is never actually
triggerable in the methods (note how it is never
called) and thus the withdraw transition in the
DATE can be safely removed;

q1start

q2 q3

X

delete enter(u)

withdraw(u)

login(u) | u.activatedlogout(u)

delete enter(u)

deposit(u, val)delete exit(u)

(a) Deletion and withdrawal only allowed after login of
an activated user, while no deposits are permitted during
deletion.

q1start q2
transact enter(u,val)

transact exit(u,val)

*(u)

(b) transact is atomic.

q1start q2

transact enter(u,val)

delete enter(u) transact enter(u,val)

(c) No transactions allowed after delete started.

q1start

transact enter(u,val)
| val +bal ≤ lim
7→ bal+= val;

transact enter(u,val) | val +bal > lim

(d) transact respects limits.

Figure 3: Several properties expected out of Listing. 2,
with dashed transitions representing transitions removed af-
ter residual analysis.

(ii) that the delete method does not call the deposit
method and thus the respective transition can be
removed from the DATE;

(iii) since the deposit event is no longer used in the
residual DATE, the deposit event instrumented in
the menu method can be silenced (see Figure. 4a);
and

(iv) by analysing the DATE CLARVA identifies that
the delete exit event does not need to be mon-
itored, since the residual DATE cannot violate
when at state q3 and thus we can remove the re-
spective DATE transition and event instrumenta-
tion in the program. Similarly for Figure. 3b we
can determine that no other event occurs during a
transaction.

This purely control-flow analysis however fails
for properties that require information about the pro-
gram’s variable state after an event occurs, e.g. to

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

356

1 Map<I n t e g e r , User> u s e r s ;
2
3 p u b l i c vo id menu () {
4 i n t o p t i o n ;
5 User u ;
6 boolean open = t rue ;
7 . . .
8 whi le (open) {
9 s w i t c h (o p t i o n) {

10 c ase 0 : i n t i d = /* get from input */ ;
11 u = l o g i n (i d) ;
12 break ;
13 c ase 1 : i f (u != n u l l) l o g o u t (u . i d) ;
14 break ;
15 c ase 2 : i f (u != n u l l) {
16 f l o a t v a l = /* get from input

*/ ;
17 i n t t o = /* get from input

*/ ;
18 i n t from = u . i d ;
19 i f (u . b a l a n c e >= v a l)
20 t r a n s a c t (from , to , v a l) ;
21 }
22 break ;
23 c ase 3 : i f (u != n u l l) {
24 f l o a t v a l = /* get from input

*/ ;
25 i n t t o = u . i d ;
26 d e p o s i t (to , v a l) ;
27 }
28 break ;
29 c ase 4 : i f (u != n u l l) d e l e t e (u) ;
30 break ;
31 c ase 5 : open = f a l s e ;
32 }
33 }
34 }
35
36 p u b l i c vo id d e l e t e (User u) {
37 u s e r s . remove (u) ;
38 }
39
40 p u b l i c vo id t r a n s a c t (i n t from , i n t to ,
41 double v a l) {
42 i f (u s e r s . g e t (from) . b a l >= v a l
43 && u s e r s . c o n t a i n s K e y (t o)) {
44 u s e r s . g e t (from) . b a l −= v a l ;
45 u s e r s . g e t (t o) . b a l += v a l ;
46 }
47 }

Listing 2: Example Java Program.

prove Figure. 3c we need to be able to determine that
after a delete the deleted user is no longer present
in the system and thus can no longer be acted upon.
However we can optimise the DATE by removing the
looping transition on the initial state, since it does not
have any effect. Another challenge is the variable
state of the DATE, e.g. consider Figure. 3d where
transitioning in the DATE depends on a bal variable
maintained by the DATE.

8start

26 11132029

33

log
in(

u)

lo
go

ut
(u

)deposit(u,val)

(a) menu method, with states 20 and 26 being call states,
respectively calling the transact and delete methods.

33start 34 35
delete enter(u) delete exit(u)

(b) delete method.

37start 38−42 43
transact enter(u,val) transact exit(u,val)

(c) transact method.

Figure 4: Non-deterministic models of Listing. 2 methods,
with shaded states representing call states, and faded events
representing instrumentation silenced after analysis.

Table 1: Evaluation data of Figure. 3 monitored with and
without residual analysis, compared to without monitoring.

Users No. Original Monitored Residual. Savings
seconds % of orig. % of orig. % of mon.

500 30.86s 313.12% 261.31% 16.55%
600 35.11s 335.06%% 266.56% 20.44
700 40.98s 339.85% 262.57% 22.74%
800 47.17s 333.178% 275.98% 17.17%
900 53.04s 334.30% 272.61% 18.4%
1000 58.91s 334.19% 266.71% 20.19%

This case study was evaluated with a test harness
that creates a number of users with some initial de-
posit, that perform a number of transactions during
their lifetime, after which they are deleted. As a range
we chose to look at between 500 to 1000 users, with
increments of 100. We measured the time taken for
the test scenarios to execute:

(i) without monitoring;

(ii) with monitoring the original properties; and

(iii) with monitoring the residual properties.

We then computed the percentage of time saved
by the residual analysis by computing the difference
between time taken with the original monitoring as a
percentage of the latter time overheads.

CLARVA: Model-based Residual Verification of Java Programs

357

Table. 1 shows the results of this benchmarking,
showing the increase in load to the transaction sys-
tem on the number of users increasing. However the
results show the monitoring overheads to remain rel-
atively stable even given the increase in load. The
residual analysis reduced the monitoring overheads
significantly in this case (around 20%), however the
remaining overheads remain large. We do not mea-
sure the time taken for CLARVA to produce the resid-
uals since this was negligible.

We conclude that residual analysis can be useful in
reducing the overheads associated with runtime verifi-
cation. This is however conditional on what the resid-
ual analysis manages to prove and prune. This exper-
iment’s artifacts, along with other case studies, can be
found in the CLARVA repository (Azzopardi, 2019).

5 RELATED WORK

CLARVA was inspired by CLARA (Bodden et al.,
2010), CompiLe-time Approximation of Runtime
Analyses, a tool for reducing the runtime overheads
required for monitoring properties representable as a
finite-state automaton. CLARA is a framework for
static analyses that optimise the program event instru-
mentation required to monitor a property by analysing
the control-flow of the program. The first two analy-
ses included in CLARVA, see Figure. 2, in fact are
inspired by existing CLARA analyses, while the third
analysis is novel. Unfortunately CLARA is no longer
maintained, while it uses an aspect weaver, abc (Al-
lan et al., 2005), that is also no longer maintained.
This motivated us to develop our own tool rather than
extending CLARA with DATEs. Moreover CLARA
only deals with residual instrumentation and does not
analyse properties in any meaningful manner to en-
code the static guarantees given by its analyses, unlike
CLARVA.

CLARVA currently only incorporates control-flow
analysis for DATEs, since the program model (non-
deterministic automata) does not maintain any knowl-
edge about the program data-flow. Work already ex-
ists to analyse the data-oriented aspects of a DATE
(i.e. transition guards) against the program, namely
that of STARVOORS (Chimento et al., 2015) (unified
STAtic and Runtime Verification of Object-Oriented
Software) (Chimento et al., 2015). This tool uses
a syntactic superset of DATEs, namely ppDATEs,
that extend DATEs by allowing states to be tagged
by Hoare triples over method calls. However, a pp-
DATE is semantically equivalent to a set of DATEs;
in fact they are translated into DATEs for monitoring.
STARVOORS uses the Java theorem prover KEY

(Ahrendt et al., 2016) to prune these Hoare triples or
to make the conditions weaker, reducing what must
be proven at runtime by reducing the property. How-
ever STARVOORS does not consider attack program
instrumentation reductions directly, unlike CLARVA.

There is other work that uses a similar notion of a
property residual. (Dwyer and Purandare, 2008) anal-
yses the control-flow of a program against a finite-
state automaton to identify sequences of statements
that always trigger the same behaviour in the prop-
erty. A summary-based approach here is used where
the instrumentation of such sequences is replaced by
new event symbols representing entry and exit into it
and appropriate transitions added to the automaton.
This is different from our approach where we simply
reduce the property and do not transform it.

Different work by (Lal et al., 2007; Beyer et al.,
2018) creates a residual program, in effect the part
of the program that was not proven safe by the anal-
ysis. In CLARVA we simply reduce instrumentation
and do not change program behaviour, while in this
other work the program is transformed into a smaller
program.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have introduced a tool, CLARVA,
for the static analysis of monitors based on symbolic
automata. This tool gives static guarantees by both
reducing the monitor logic left to prove at runtime
and by reducing the event instrumentation required of
the program. CLARVA currently incorporates control-
flow analyses of the program by analysis of properties
against non-deterministic automata representations of
program methods.

Future iterations of the tool are planned to ex-
tend the process to be able to deal with communi-
cation between different DATEs. This is envisioned
to be possible through composing these communi-
cating DATEs. Another area for improvement is the
incorporation of data-flow analysis by extending the
program model with data-oriented aspects, allowing
for more precise analysis and smaller residual proper-
ties. We explored this theoretically in another pub-
lication (Azzopardi et al., 2020), however we have
yet to implement this in CLARVA. We also plan
to apply the same approach to different program-
ming paradigms, including the LARVA variant for the
Ethereum blockchain (Azzopardi et al., 2018).

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

358

REFERENCES

Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt,
P. H., and Ulbrich, M., editors (2016). Deductive Soft-
ware Verification - The KeY Book - From Theory to
Practice, volume 10001 of Lecture Notes in Computer
Science. Springer.

Allan, C., Avgustinov, P., Christensen, A. S., Hendren,
L., Kuzins, S., Lhoták, J., Lhoták, O., de Moor, O.,
Sereni, D., Sittampalam, G., and Tibble, J. (2005).
abc: The aspectbench compiler for aspectj. In Glück,
R. and Lowry, M., editors, Generative Programming
and Component Engineering, pages 10–16, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Azzopardi, S. (2019). CLARVA. https://github.com/
shaunazzopardi/clarva/.

Azzopardi, S., Colombo, C., and Pace, G. J. (2016). A
model-based approach to combining static and dy-
namic verification techniques. In Leveraging Applica-
tions of Formal Methods, Verification and Validation:
Foundational Techniques - 7th International Sympo-
sium, ISoLA 2016, Imperial, Corfu, Greece, October
10-14, 2016, Proceedings, Part I, pages 416–430.

Azzopardi, S., Colombo, C., and Pace, G. J. (2017).
Control-flow residual analysis for symbolic automata.
In Francalanza, A. and Pace, G. J., editors, Proceed-
ings Second International Workshop on Pre- and Post-
Deployment Verification Techniques, Torino, Italy, 19
September 2017, volume 254 of Electronic Proceed-
ings in Theoretical Computer Science, pages 29–43.
Open Publishing Association.

Azzopardi, S., Colombo, C., and Pace, G. J. (2020). A
technique for automata-based verification with resid-
ual reasoning. In Model-Driven Engineering and
Software Development - 8th International Conference,
MODELSWARD 2020, Valletta, Malta, February 25-
27, 2020.

Azzopardi, S., Ellul, J., and Pace, G. J. (2018). Monitoring
smart contracts: CONTRACTLARVA and open chal-
lenges beyond. In The 18th International Conference
on Runtime Verification.

Beyer, D., Jakobs, M.-C., Lemberger, T., and Wehrheim,
H. (2018). Reducer-based construction of conditional
verifiers. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, pages
1182–1193, New York, NY, USA. ACM.

Bodden, E., Lam, P., and Hendren, L. (2010). Clara: A
framework for partially evaluating finite-state runtime
monitors ahead of time. In Barringer, H., Falcone,
Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.,
Roşu, G., Sokolsky, O., and Tillmann, N., editors,
Runtime Verification, pages 183–197, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Chimento, J. M., Ahrendt, W., Pace, G. J., and Schneider,
G. (2015). Starvoors : A tool for combined static and
runtime verification of java. In Bartocci, E. and Ma-
jumdar, R., editors, Runtime Verification, pages 297–
305, Cham. Springer International Publishing.

Colombo, C., Pace, G. J., and Schneider, G. (2009). Larva
— safer monitoring of real-time java programs (tool
paper). In Proceedings of the 2009 Seventh IEEE In-
ternational Conference on Software Engineering and

Formal Methods, SEFM ’09, pages 33–37, Washing-
ton, DC, USA. IEEE Computer Society.

Dwyer, M. B. and Purandare, R. (2008). Residual checking
of safety properties. In Havelund, K., Majumdar, R.,
and Palsberg, J., editors, Model Checking Software,
pages 1–2, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Falcone, Y., Krstić, S., Reger, G., and Traytel, D. (2018). A
taxonomy for classifying runtime verification tools. In
Colombo, C. and Leucker, M., editors, Runtime Verifi-
cation, pages 241–262, Cham. Springer International
Publishing.

Havelund, K., Reger, G., Thoma, D., and Zălinescu, E.
(2018). Monitoring Events that Carry Data, pages
61–102. Springer International Publishing, Cham.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). An overview of as-
pectj. In Proceedings of the 15th European Confer-
ence on Object-Oriented Programming, ECOOP ’01,
pages 327–353, London, UK, UK. Springer-Verlag.

Lal, A., Kidd, N., Reps, T., and Touili, T. (2007). Abstract
error projection. In Nielson, H. R. and Filé, G., edi-
tors, Static Analysis, pages 200–217, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Leucker, M. and Schallhart, C. (2009). A brief account of
runtime verification. The Journal of Logic and Alge-
braic Programming, 78(5):293 – 303. The 1st Work-
shop on Formal Languages and Analysis of Contract-
Oriented Software (FLACOS’07).

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam,
P., and Sundaresan, V. (1999). Soot - a java byte-
code optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’99, pages 13–.
IBM Press.

CLARVA: Model-based Residual Verification of Java Programs

359

