
An Architecture-independent Data Model for Managing Information
Generated by Human-chatbot Interactions

Massimiliano Luca1 a, Alberto Montresor1 b, Carlo Caprini2 and Daniele Miorandi2 c

1Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 5, Trento, Italy
2U-Hopper S.r.l., Via R. da Sanseverino, 95, 38122, Trento, Italy

Keywords: Chatbot, Data Modeling, Data Representation, Knowledge Representation.

Abstract: This paper introduces a data model for representing humans-chatbots interactions. Despite there are many
models that allow representing the usage and the behaviour of bots, a service that can store information from
any conversational agent regardless the architecture is still missing. With this work, we introduce a general-
purpose data model to store both messages and logs. To succeed, we raise the level of abstraction of the other
analyzed models and we focused on the core logic of chatbots: conversations and interactions with the users

1 INTRODUCTION

In the last few years, the development of new tech-
nologies such as Artificial Intelligence (AI) led to a
drastic change in the way people interact with ser-
vices and companies. In particular, chatbots have be-
come more and more popular, and they are redefin-
ing interactions in many different fields. Accord-
ing to Market Research Future, the usage of chatbots
will increase up to 37% between 2016 and 2023 (Fu-
ture, 2019). The first chatbot prototype, ELIZA, was
developed in 1966 by Joseph Weizenbaum (Weizen-
baum, 1966), with the goal of emulating a psychother-
apist. In Weizenbaum’s project, the bot creates the
answers by looking for specific patterns in the user
request. Now, bots create their responses using Ma-
chine Learning (ML) and Natural Language Process-
ing (NLP), leading to a significantly higher quality of
conversations. For this reason and due to the obses-
sion of the companies for customers, bots are now ev-
erywhere. This recent technology is now used for cus-
tomer service and marketing (Chakrabarti and Luger,
2015), (Verhagen et al., 2014), (Gnewuch et al.,
2017), healthcare (Kethuneni et al., 2009), (Brixey
et al., 2017), lifestyle (Fadhil and Gabrielli, 2017),
education (Heller et al., 2005), (Kerlyl et al., 2007),
tourism (Nica et al., 2018) and so on.

In the last few years, the number of platforms
for creating conversational agents increased as well.
Diederich, Brendel and Kolbe counted 51 different

a https://orcid.org/0000-0001-6964-9877
b https://orcid.org/0000-0001-5820-8216
c https://orcid.org/0000-0002-3089-977X

services within this scope (Diederich et al., 2019).
Some of them can be used to analyze the usage and
the performance of a chatbot hosted on a third-party
platform, while others provide all the tools needed to
create a bot (e.g., Dialogflow or IBM Watson Assis-
tant). The problem is that, at the moment, there is
not a common data model for representing the inter-
actions between users and chatbots. In other terms,
each platform represents messages and conversations
in different ways.

After an analysis of the existing models, in this
work we define a general-purpose and platform-
independent data model to represent the interactions
between users and chatbots. The final goal is to have
a representation that developers and researchers can
use to integrate data coming from different platforms.

In Section 2, we describe how other services faced
this issue and we analyze the proposed models. In
Section 3, we discuss our solution by focusing on the
messages (Section 3.1) and logs (Section 3.2). In Sec-
tion 4, we focus on how three different chatbots with
different architectures used our proposed data model
to store the interactions generated by their bots.

2 RELATED WORK

The spread of platforms that allow developers to ana-
lyze the behavior of a chatbot correlates with the num-
bers of data models proposed. The platforms listed
in (Diederich et al., 2019) usually do not provide the
data model used to store the interactions. This is
mainly because these platforms have their core busi-

344
Luca, M., Montresor, A., Caprini, C. and Miorandi, D.
An Architecture-independent Data Model for Managing Information Generated by Human-chatbot Interactions.
DOI: 10.5220/0008953703440351
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 344-351
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



ness in letting companies develop and deploy a bot.
Other platforms, instead, are focused on chatbot an-
alytics and usually share a way to integrate a bot in
their systems. We used such platforms to create a
general model and to compare the expressiveness of
the representations. In particular, we selected five an-
alytics platforms: Botanalytics, Botlytics, Botmetrics
Dashbot and Chatbase. For each of them, we discuss
their proposed models. There are also some services
that cannot be taken into account because their mod-
els are too tailored for specific chatbots (e.g. Face-
book Analytics for Messenger Bots).

Botanalytics1 is a platform that allows analyzing
chatbot data to get insights regarding the engagement
of the users. It supports 19 different platforms among
the most common ones such as Facebook Messen-
ger, Google RBM, Slack, Telegram an others. More-
over, it supports generic chatbots, webchats, SMS and
emails. Regarding the well-known supported plat-
forms, for each of them, Botanalytics uses a specific
data model. As stated in Section 1, the goal of this pa-
per is to provide a generic, platform-independent data
model that can fit with any service.

Therefore, the most interesting part offered by
Botanalytics are the models used for generic chatbots
and web chats. The two models are identical and con-
sist of three fields. is sender bot is a boolean value
that is true if the message is sent by the bot, false oth-
erwise. user is an object to identify the user in the
system while message is an object and can be used to
store the content of the message. We believe that in
such a model, there are some significant limitations.
First of all, some basic concepts are missing. For ex-
ample, there is no way to identify a conversation and
it is impossible to understand whether a message adds
values or a context to a message received before.

Moreover, there is no way to determine the order
of the messages (e.g., there is not a timestamp or a
field to understand which was the previous message).
Last but not least, all the modern chatbots use ML and
NLP to extract entities, intent, domain and sometimes
also the language of a message. In the model pro-
posed by Botanalytics, it is not possible to store such
information.

Botlytics2 partially solve the limits of Botanalyt-
ics. It allows to save data coming from any plat-
form and it does not have tailored models for each
of them. It only has a general representation for the
messages composed by six different fields. text is
the content of a message and kind is similar to the
is sender bot shown before. It can be filled with
”incoming” or ”outgoing” to understand whether the

1https://botanalytics.co
2https://botlytics.co

message is received or sent. Botlytics solves the ma-
jor problem of the conversation by using the field
conversation identifier, a unique string that or-
ganizes messages into conversations. With this field,
they partially solved the problem of the order of the
messages. The field sender identifier is used to
identify the sender of the message while platform
represents the name of the platform that the message
was sent on. An interesting feature introduced by Bot-
lytics is the design of the payload of a message. It is
defined as the payload from complex messages that
include than just text. In other terms, it is common
nowadays that bots answer to a question with com-
plex objects such images, carousels, maps or a set
of buttons representing suggested actions. Therefore,
it is important to model such responses. A critical
point of Botlytics concerns the issue with the meta-
information extracted with ML and NLP that cannot
be modelled.

Botmetrics3 is based on six fields: text,
message type, user id, platform similar
to those we saw in the other platforms; it adds
create at and metadata. The former gives the
possibility to represent the timestamp when the
message was sent or received, while the latter can
be used to store additional information. By using
metadata, domain-specific information can be easily
associated with a message. A metadata field is
defined also in the model proposed in Section 3; in
Section 4.1, we show how this field can be used to
store such additional information. Unfortunately,
neither information about ML and NLP nor data
related to conversations are included in Botmetrics.

The data model proposed by Dashbot4 differs
from the others. Apart from the text and the
user id, the other standard fields are missing (e.g.,
the id of the type of the message and the platform). It
contains a field intent that partially solve the NLP
and ML issue discussed above; unfortunately, fields
for the domain, the entities and the language of the
message are still missing. Optionally, the developer
can store a list of images and a list of buttons where
an image consists of a URL, and a button consists of
an identifier, a label and a text. It is also possible to
use postback: an object that contain the identifier of
the button clicked. It is an interesting way of design-
ing an eventual, complex message. As mentioned, it
is common to have carousels as responses and the one
proposed in Dashbot can be a way for representing
them. What is interesting is that there are two other
fields, platformJson and platformUserJson, that
can be used to store platform- and user-specific infor-

3https://bot-metrics.com
4https://www.dashbot.io

An Architecture-independent Data Model for Managing Information Generated by Human-chatbot Interactions

345



Table 1: Summary of the features supported by the platforms analyzed in Section 2.

Our solut. Bot Analytics Botlytics Dashbot Botmetrics Chatbase
Message type X X X X X

Platform X X X X
User identifier X X X X X X

Conversation identifier X X X
Timestamp X X X

Content - text X X X X X X
Other contents X Partially Partially

Domain X
Intent X X X

Entities X
Language X

Bot Version X X
Domain Specific Data X X
Platform Specific Data X

User Profile X
Message Handled X

mation. Regarding the model we propose, we decided
to model users and messages as two completely sepa-
rated entitities. Thus, the user profile and user-related
information should be saved and handled apart from
the messages.

Another data model that we analyzed is proposed
by Chatbase5. In their model, type, user id,
time stamp, platform, message, intent,
not handled, version, session id are defined.
What is interesting is that they use both the times-
tamp and the identifier of the session for handling
messages. Concerning the other services, they have
a not handled variable to understand whether the
chatbot handled a message or not. What is interesting
is that they only model the raw message of the body
regardless of the type of the original message, and
they partially collect the information coming from
NLP and ML modules.

Other platforms and frameworks such as LinTO
AI6 and Xakit7 but due to their complex pipeline, we
found it difficult to map the in Table 1.

3 PROPOSED SOLUTION

In this section, an overview of our proposed data mod-
els proposed is given. In particular, we introduce two
different models: one for messages and one for logs.
The general idea is to use the message data model
to store information about the conversations between

5https://chatbase.com
6https://linto.ai
7https://xatkit.com

users and chatbots, while the log data model should
be used to handle the interactions.

3.1 Messages

The data model proposed for the messages is summa-
rized in Figure 1. It shows three different kinds of
messages: requests, responses and notifications. All
types of messages share the following attributes:

• messageId: a mandatory field that uniquely rep-
resents a message entity into the system. In other
terms, it is not possible to have two messages with
the same messageId.

• channel: a mandatory string that represents the
channel in which the conversation is taking place.
For example, a channel can be ’MESSENGER’ or
’TELEGRAM’.

• userId: a mandatory string that is used to identify
a user. The user identifier can be handled at three

Figure 1: The fields of the three different types of messages.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

346



different levels. The userId can be either pro-
vided by the platform (e.g., Messenger can pro-
vide the id of the user you are chatting with), or
be generated locally. Note that if the userId is
provided by the platform on which the chatbot is
hosted, users can be tracked on multiple bots, a
feature not available otherwise.

• conversationId: an optional field that can be
used to identify a conversation. A conversation is
given by a non-empty set of messages. Most of
the platforms that host bots automatically provide
an id for the conversation.

• timestamp: it represents the instance in which the
message has been generated. Note that it can dif-
fer from the time when the message reach the log-
ging system. In general, it is interesting to save the
moment in which the interaction between the user
and the bot happened. The ISO Standard 8601 is
suggested here.

• botVersion: an optional field useful to distin-
guish different versions of the bot generating the
message (e.g., in A/B testing).

• metadata: a field that store any extra informa-
tion not modelled by the other fields. For instance,
in the Memorable Experience project (Section 4),
this field is used to associate with a message the
id of the hotel involved in the conversation, the
name of the hotel and the number of nights the
user stayed in the hospitality structure.

All the other attributes and the content depends on the
type of message. The value of the field type can be
REQUEST, RESPONSE or NOTIFICATION.

3.1.1 Request Messages

A request message is a message that, in the interaction
flow, goes from the user to the chatbot. In general, in
a request message, a user may ask the chatbot to per-
form an action, can send a comment or start a conver-
sation. The user may use different means to interact
with a chatbot, such as natural language (using voice
or text) or by using predefined actions (buttons). To
model these needs, we designed the field content of
a request message in two different ways: text contents
are the messages that involve natural language while
action content represents the interaction through but-
tons. The data models for text messages and action
messages are shown in Figure 2.

In modern chatbots, there is also the possibility to
interact using non-verbal communications. We iden-
tified two main cases: sharing location data (an exam-
ple is shown in Section 4) and sharing files. To fulfill

Figure 2: On the left, a representation for intents. On the
right, a representation for an entity. In a single message, it
is possible to have than one entity.

these needs, we designed two additional types of con-
tent. Regarding the location, we simply designed a
data model that support longitude and latitude; for the
attachment, we defined a model that contains the URI
of the file and an optional alternative text. The data
models proposed can be seen in Figure 3.

Figure 3: On the left, the characterization of a textual re-
quest. On the right, the description of an action-based re-
quest.

Our model fully supports the meta-information
generated by NLP and ML modules. In fact, as shown
in Figure 1, it is possible to associate a domain, an
intent and a list of entities to each request mes-
sage.

A domain can be defined as a way to organize in-
tents and entities in groups. Usually, a domain is a
general term representing the topic of a conversation
(e.g., travel, work). It is common to have bots with a
single domain, but it is possible to develop bots with
multiple domains. Therefore, we decided to track the
domain of the conversation and to represent it as a
string. The usage of this field may become helpful
also in terms of computing analytics. For instance, a
person may be interested in analyzing only the con-
versations within a certain domain.

For similar reasons, we decided to model the in-
tent, a string representing the goal that the user wants
to achieve. It is specific than the domain, and is usu-
ally associated with a confidence score – a metric of
accuracy that varies between 0 and 1, representing the
quality of the detection of the intent.

Finally, the NLP and ML modules provide also
information about the language of the messages and
a set of entities. An entity represents something the
users are likely to talk about and which has mean-
ing to the business. For example, if a user is looking
for a flight, a meaningful part of the text is the des-
tination. Once extracted, an entity is associated with
a confidence score and with a type. The confidence
works like the one introduced for the intent, while the

An Architecture-independent Data Model for Managing Information Generated by Human-chatbot Interactions

347



type is meta-information associated with the part of
the extracted text. Using the same example, suppose
that Boston is detected as the destination. The string
”Boston” may be associated with the type geo city
and, eventually, to a confidence score. From a sin-
gle message, it is possible to extract than one entity.
The data models for entities and intents are depicted
in Figure 4.

Figure 4: The characterization of two additional requests:
location on the left and attachment on the right.

3.1.2 Response Messages and Notifications

Response messages represent the answer of the bot to
the user. Thus, there is no need to take into account
metadata generated by ML and NLP modules. An im-
portant field to add is responseTo. Many bots tend
to send multiple messages to answer a specific ques-
tion. An example can be seen in Figure 8 where once
the user shared the location, the bot answered with
three messages: two text messages and a carousel. All
three messages are part of the same conversation, and
each of them should be represented as a single mes-
sage with a unique identifier. In this sense, having a
conversationId and a messageId is not enough to
catch the fact that the three messages are trying to an-
swer to a single message. This is why we designed
responseTo.

Another point that emerges from Figure 1 is that
the types of content associated to response messages
differ from the ones associated to requests. Figure 5
shows the possible types of contents for responses.
While text, attachment and location responses work
similarly to the ones of request messages, the are two
main novelties: multi-action and carousel responses.
Both of them can be seen in Figure 8. In particular,
a multi-action content consists in a set of buttons that
can be used to suggest actions to take to the users,
while carousel responses are set of cards that are used
to share a set of items with users.

A peculiarity of the buttons is that it is uncom-
mon to have messages containing only buttons (multi-
action responses). The designers tend to attach but-
tons to standard messages. For instance, the buttons
showed in Figure 8 are not part of a multi-action re-
sponse; they are attached to a text message. To fulfil
this need, we decided to add the field buttons to each
possible response and each card. Cards and buttons
are complex object that are represented in Figure 6.

Figure 5: The models for the possible contents of response
messages and notifications.

Figure 6: The description of buttons (on the left) and cards
(on the right).

A button is characterized by buttonText and
buttonId. While the first one corresponds to the text
that the users are going to find in the chat, the lat-
ter is used to identify the buttons in the system. For
instance, in the example in Figure 8, the text of the
button is ”find a bike” while an example of identi-
fier is ”button 1”. Cards are represented using title,
subtitle, imageUrl and buttons. By mapping the
features with the example of Figure 8, we find that the
title is the highlighted line (”Tiistinkallio”) while the
subtitle is the other lines of text (”39 available bikes”).
The buttons are ”Open map” and ”Add to favourite”.
Having an image on each card is highly suggested but
not mandatory. Whenever an image is present, the
field imageUrl can be used to link a resource. The
only difference between a response message and a no-
tification is that in the first one the communication
flow starts from the user, while in the latter, the chat-
bot send the first message. For this reason, the only
difference between them is the responseTo field that
is not present in the notifications. Regarding the con-
tents for a notification, the possibilities are the same
offered for response messages (Figure 5).

3.2 Logs

When we decided to model the interactions between
bots and humans, we discovered that logging mes-
sages was not enough. In particular, by modelling
the content of the message and the other attributes

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

348



described in Section 3.1, the interaction between the
user and the message is missing. To store actions such
as click on buttons; scroll over a carousel and others,
we propose a data model for logs. The model pro-
posed is shown in Figure 7.

What follows is the detailed description of each
field:
• logId: a string that uniquely represents the log

inside the system. In other terms, it is not possible
to have two logs with the same identifier.

• component: the name of the object that generated
the log.

• authority: the namespace of the component that
generated the log. A namespace can be defined as
a set of symbols that are used to organize objects
of various kinds, so that these objects may be re-
ferred to by name.

• severity: a field that takes values such as ER-
ROR, WARNING, INFO and DEBUG.

• logContent: a string that represents the message
of the log. This string can be arbitrarily long and
should be significant enough to let people under-
stand the situation and, possibly, the meaning of
the log. An example of the possible malformed
log is “ERR001” while an example of a simpler
log is “ERR001: Wrong password.”;

• timestamp: the instant in which the message has
been generated. Note that it may differ concerning
the moment in which the message reach the log-
ging system. In general, it is interesting to save
the moment in which the interaction between the
user and the bot happened. We suggest to use the
standard ISO 8601;

• botVersion: it contains the version of the bot
that generated the log;

• metadata: it is a field that represents any extra
information not modelled by the other fields.

4 USE CASES

In this section of the paper, we show how different
architecture can be mapped to the model proposed

4.1 Memorable Experience

The customization of the experience is fundamental
in today’s world and is a crucial factor in becoming
competitive on the market, even in the tourism sector.
The idea of this project sponsored by FESR fundings
is to create a chatbot providing a fully-customized ex-
perience for tourists.

Figure 7: Data models of possible contents of a request mes-
sage.

This chatbot is hosted on Facebook Messenger,
and the business logic has been developed from
scratch from a private company. For this reason, it
represents a challenge for the model proposed. More-
over, in this project emerged the need to associate
some domain-specific information to each message
such as the name of the hospitality structure and the
length of the stay. What follows is an example of how
they use our data model for storing messages.

{
"messageId": "M31938129",
"channel": "Facebook",
"userId": "U545940",
"conversationId": "C09532",
"timestamp": "2019 -10 -10:12.45.23T",
"botVersion": "1.0A",
"metadata": {

"hotelName": "Hotel Maria",
"numberNights": 4

},
"domain": "general"
"intent": {

"name": "greeting",
"confidence": 0.94

},
"content":{

"type": "TEXT",
"value": "Hi"

}
"type": "REQUEST"

}

Our model succeeds in fitting all the needs that
emerged from this project. Moreover, our model suc-
cessfully store data coming from a complex pipeline.

The companies involved in this project decided to
use also the logs for modeling the interaction between
the users and some items of the conversations. In par-
ticular, they decided to count the number of taps per
user per card. To succeed, they used the data model
proposed in Section 3.2 as follow.

"logId" : "LOG312312313",
"project": "memex",
"component": "dim.memex",
"authority": "detection.click",
"severity": "INFO",
"logContent": "button pressed",

An Architecture-independent Data Model for Managing Information Generated by Human-chatbot Interactions

349



"timestamp": "2019-07-04T08:33:48T"
"botVersion": "1.0",
"metadata":{

"buttonId": "BTN03021312",
"messageId": "MSG0312312",
"userId": "USR321321",
"link": "http://w3u.it"

}

4.2 BlueAlpaca

It is a chatbot developed in the context of the Syn-
chroniCity project funded by the European Union. It
uses our data model to store messages. Differently
from Memorable Experience, it is hosted on Face-
book Messenger, and the business logic is handled
with wit.ai, a service by Facebook to create chat-
bots. We believe it is a relevant case study to check the
validity of our data models for two main reasons. First
of all, as shown if Figure 8, this bot uses a complex
type of responses such as cards and buttons. More-
over, in their stack, there is a well-known and widely-
used service to extract knowledge from the messages.

Figure 8: Data models of possible contents of a request mes-
sage.

Considering the carousel response, what follows is
the mapping with our data model of the content of
the message.

"type": "CAROUSEL",
"cards": [

{
"title":"Tiistinkallio",
"imageUrl":"images/image.png",
"subtitle ":"39 available bikes",
"buttons ":[...]

}, ...
]

Concerning the other models, our one is the only
one that fully supports complex types of responses.
Moreover, with this project, we found out that our
model can also be used if services such as wit.ai
are used to compute ML and NLP metrics.

4.3 PathFinder

To further validate our model, we took into account
PathFinder: an Action on Google service that accepts
both text and voice-based requests. The bot is man-
aged using DialogFlow, and its goal is to provide di-
rections for any transports using multiple sources of
data. For instance, PathFinder can provide directions
for bicycle users in areas (e.g., Italy) where some map
providers do not support such kind of directions. Our
model was used to store messages in a structured and
organized way, and it fulfils all the needs of the devel-
opers that successfully mapped the information com-
ing from Google’s DialogFlow with the model pro-
posed.

5 CONCLUSIONS

After an analysis of other models, we described a
generic and architecture-independent model that, as
proven in Section 4, can be used with bots hosted
on several platforms, based on a large range of ser-
vices. We found that the most complete model is the
one offered by Chatbase. However, we found some
limitations. In particular, it partially covers the needs
of NLP and ML modules. Chatbase allows to rep-
resent the intent, but entities, domains and language
should also be considered. Another big limitation of
its model is that the only content type supported is
text. Whenever a message contains more than just
text, it must be converted into a string and only af-
ter this processing step, the message can be stored.
By looking at the case studies analyzed in Section 4,
we decided that modelling the content as text is not
enough. Our data model is the only one that sup-
ports a variety of different content types and only
Botlytics and Dashbot partially support other types of
messages. In particular, on Botlytics, a field called
payload can be used to represents all the content of
a message which is not text. Concerning Dashbot, it
gives the possibility to store a text, a list of images and
a list of buttons. In our opinion, this model presents
some limitations. First of all, it is not possible to rep-
resent complex responses such as location messages.
Moreover, the meta-information representing the type
of message is missing. In other terms, if a message
contains an image and a button, it is not possible to

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

350



establish whether it is a simple image or a card of
a carousel. Thus, we believe that having a unified
model for a type of message such as a card can im-
prove the quality of the data stored. Finally, having
a unified data model means that data from different
platforms can be saved in the same way, and thus,
data can be analyzed more efficiently. As described
in Section 1, it is and common for companies to pub-
lish their bot and offer their services on more than one
platform. Thus, we believe it is fundamental to have
a unique representation of data.

Another limit that we found is the possibility
of associate domain-specific information to the mes-
sages. For instance, we showed that by using
metadata, in Memorable Experience, the developers
could associate the name of the hospitality structure
to the message. As showed in Table 1, apart from
Botmetrics this kind of information cannot be stored
with the analyzed models. A similar approach is pro-
vided by Dashbot. They allow to store platform and
user-related data in two specific fields. We decided
to do not store user data in the messages because we
believe that the profile of a user should be managed
with a completely different data model and we think
that platform-specific information should be modelled
using the metadata field.

With the introduction of this model for repre-
senting interactions between human and chatbots, we
hope to contribute to the analysis and the manage-
ment of data coming from bots hosted on different
platforms and based on different services.

ACKNOWLEDGEMENTS

The project is carried out within the ERDF Re-
gional Operational Programme 2014-2020 of the Au-
tonomous Province of Trento, and it is co-financed by
the European Union through the European Fund for
Regional Development, for the Italian state and the
Province of Trento.

REFERENCES

Brixey, J., Hoegen, R., Lan, W., Rusow, J., Singla, K., Yin,
X., Artstein, R., and Leuski, A. (2017). SHIHbot:
A Facebook chatbot for sexual health information on
HIV/AIDS. In Proceedings of the 18th Annual SIG-
dial Meeting on Discourse and Dialogue, pages 370–
373, Saarbrücken, Germany. Association for Compu-
tational Linguistics.

Chakrabarti, C. and Luger, G. F. (2015). Artificial conversa-
tions for customer service chatter bots: Architecture,

algorithms, and evaluation metrics. Expert Systems
with Applications, 42(20):6878 – 6897.

Diederich, S., Brendel, A. B., and Kolbe, L. M. (2019).
Towards a taxonomy of platforms for conversa-
tional agent design. In In Proc. of the 14th Int.
Tagung Wirtschaftsinformatik - Human Practice. Dig-
ital Ecologies. Our Future., pages 1100–1114.

Fadhil, A. and Gabrielli, S. (2017). Addressing challenges
in promoting healthy lifestyles: The al-chatbot ap-
proach. In Proceedings of the 11th EAI Interna-
tional Conference on Pervasive Computing Technolo-
gies for Healthcare, PervasiveHealth ’17, pages 261–
265, New York, NY, USA. ACM.

Future, M. R. (2019). Chatbots market research report –
global forecast 2023.

Gnewuch, U., Morana, S., and Maedche, A. (2017). To-
wards designing cooperative and social conversational
agents for customer service. In Proceedings of the
38th International Conference on Information Sys-
tems (ICIS), Seoul, ROK, December 10-13, 2017.
Research-in-Progress Papers. AISeL, Seoul, ROK.

Heller, B., Proctor, M., Mah, D., Jewell, L., and Cheung, B.
(2005). Freudbot: An investigation of chatbot tech-
nology in distance education. In Kommers, P. and
Richards, G., editors, Proceedings of EdMedia + In-
novate Learning 2005, pages 3913–3918, Montreal,
Canada. Association for the Advancement of Comput-
ing in Education (AACE).

Kerlyl, A., Hall, P., and Bull, S. (2007). Bringing chatbots
into education: Towards natural language negotiation
of open learner models. In Ellis, R., Allen, T., and Tu-
son, A., editors, Applications and Innovations in Intel-
ligent Systems XIV, pages 179–192, London. Springer
London.

Kethuneni, S., August, S. E., and Vales, J. I. (2009). Per-
sonal health care assistant/companion in virtual world.
In Proc. of the 2009 AAAI Fall Symposium. AAAI.

Nica, I., Tazl, O. A., and Wotawa, F. (2018). Chatbot-based
tourist recommendations using model-based reason-
ing. In ConfWS.

Verhagen, T., van Nes, J., Feldberg, F., and van Dolen,
W. (2014). Virtual Customer Service Agents: Using
Social Presence and Personalization to Shape Online
Service Encounters*. Journal of Computer-Mediated
Communication, 19(3):529–545.

Weizenbaum, J. (1966). Eliza;a computer program for
the study of natural language communication between
man and machine. Commun. ACM, 9(1):36–45.

An Architecture-independent Data Model for Managing Information Generated by Human-chatbot Interactions

351


