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Abstract: The Cancer Genome Atlas (TCGA) is a collection of freely available data of several human cancer types. 

TCGA contains over 2.5 petabytes of data, which includes, among others, clinical and genomic data. However, 

the visualization of such data is cumbersome and tiring for non-expert users. VisualMLTCGA is an intuitive 

and easy-to-use web tool that allows the automatic download and visualization of TCGA data and the 

processing of genomic data using GATK. Additionally, the tool allows to create comprehensive decision trees 

(DT) for prediction of outcomes from clinical and genomic TCGA data and other external datasets. 

VisualMLTCGA offers a simple web tool to download, process and visualize TCGA data, suitable for 

researchers and clinicians without any bioinformatics background.    

1 INTRODUCTION 

The Cancer Genome Atlas (TCGA) is a collaborative 

project (http://cancergenome.nih.gov) that has 

molecularly characterized over 20,000 primary 

cancer and matched normal samples among 33 cancer 

types. It is a joint initiative between the National 

Cancer Institute and the National Human Genome 

Research Institute born in 2006 that joined together 

researchers from several fields of study from all over 

the world.  

The TCGA contains over 2.5 petabytes of 

genomic, epigenomic, transcriptomic and proteomic 

data. All this information can be accessed for anyone 

to use, although some of the raw files require to apply 

for consent. There are 33 types of cancer to study 

chosen based on their poor prognosis, public health 

impact and availability of samples meeting certain 

standards (patient consent, quality and quantity, 

among other criteria). Due to all the reasons, TCGA 

is an excellent source of data for exploring clinical or 

genomic information and characterizing relevant 

genes or variations on disease. 
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Machine learning (ML) provides methods, 

techniques and tools to solve diagnostic and 

prognostic problems in healthcare. ML is widely 

implemented to learn from input data and extract 

relevant findings from health information. The 

knowledge obtained from the ML algorithms can be 

then represented in a decision tree. Decision trees are 

tools for graphical decision analysis, that help 

identify the conditional statements visually. In this 

flowchart-like structure, each internal node represents 

a condition (a test on a variable), each leaf node 

represents the outcome and the branches from root to 

leaf represent classification rules.  

The information within reach in the TCGA can be 

downloaded manually from the Genomic Data 

Commons Data Portal (‘GDC’, n.d.) and analysed 

using advanced data analysis tools such as R (R Core 

Team, n.d.) or Python (Python Software Foundation, 

n.d.). However, in order to perform ML on all the 

data, they require programming skills and it can be 

challenging for non-expert users.  

Here, we present VisualMLTCGA, an easy-to-use 

web tool for downloading, pre-processing, 

visualization, processing and analysis of TCGA. 
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Additionally, external data can also be uploaded and 

analysed. Users can pre-process clinical and genomic 

data, call variants from genomic raw data using 

GATK pipelines and extract the relevant features 

using decision trees created from clinical and 

genomic datasets for classification purposes. This 

tool is suitable for researchers and clinicians without 

any bioinformatics background.  

2 RELATED WORK 

Due to large amount of data ready for use in the 

TCGA, there are several available tools that have 

been developed to support data access and 

visualization. Many of them are based on R, one of 

the most popular programming languages among 

bioinformaticians. TCGAbiolinks (Colaprico et al., 

2016), TCGA Assembler (Zhu, Qiu, & Ji, 2014) and 

RTCGA Toolbox (Samur, 2014) are three of them, 

being TCGAbiolinks the most versatile. However, 

they do not include a graphical interface, which may 

hamper their usability for non-experts. For this 

reason, many webs that allow to explore TCGA data 

have proliferated.  In Zhang et al. (Zhang et al., 2018), 

web-based tools for TCGA variant analysis are 

surveyed. It includes a detailed list of main resources 

divided into three main categories: global analysis, 

target analysis and auxiliary analysis. However, many 

of them analyse only genomic information. Web-

TCGA (Deng, Brägelmann, Schultze, & Perner, 

2016) allows the molecular profiling of available 

tumours performed in a web environment. However, 

it does not allow to perform machine learning 

analysis to data.  

To our knowledge, there is no available tool to 

download, pre-process, analyse, create decision trees 

and evaluate patients based on TCGA clinical and 

genomic data. Additionally, there are not any 

available tools to create decision trees from clinical 

and genomic data and classify patients based on this 

models, desired features when formulating the TCGA 

analysis solution presented in this paper. Therefore, 

there is an acceptable niche to develop this solution 

in the field of cancer research tools.  

3 VisualMLTCGA 

For the implementation of VisualMLTCGA, the 

Angular IO (‘Angular’, n.d.) web application 

framework was chosen due to its robust components 

that allow developers write readable, maintainable 

and easy-to-use code. Regarding the user interface, 

PrimeNG (‘PrimeNG’, n.d.) and ngx-admin 

(Akveo/ngx-admin, 2016/2019) have been used. 

PrimeNG is a set of rich UI components for Angular 

and Ngx-admin is a frontend application template that 

includes Bootstrap and TypeScript, among others. 

For the backend, Python and R were used due to their 

advantages in data processing and TCGAbiolinks (the 

previously mentioned R package) was used to 

automatically download and access TCGA data.  

VisualMLTCGA solution has five main features: 

(1) load TCGA data, (2) load clinical data, (3) load 

genomic data, (4) build ML model and (5) classify 

patient.  

In the following subsections, each feature is 

explained in detail. 

 Load Tcga Data 

Using this functionality, users can explore the TCGA 

projects along with the available data categories and 

the file and case count. Once they choose one project, 

they can download the clinical or genomic (simple 

nucleotide variation) data (Figure 1). The download 

and visualization of other types of data will be 

developed in the immediate future.  

When clinical data is downloaded, the raw data is 

saved in the server. However, in order to create a 

reliable dataset for machine learning and the 

subsequent visualization, the data is cleaned. The 

clinical data usually contains a high number of 

variables but in many cases, they are not complete. 

Therefore, they usually require prior pre-processing 

in order to prepare the data for analysis. The filtering 

of clinical data is done transparently to the user. The 

cleaning processing discards the following 

information:  

▪ Variables that have more than 10% of null or 

erroneous values,  

▪ Patients that contain less than 50% of the 

variables.  

In addition, all the clinical data that exist for the 

same patient is combined: demographic, diagnosis, 

treatment, drug, radiation, etc. The filtering of clinical 

data is done transparently to the user. Additionally, 

for better visualization, only few features are 

displayed (Figure 2). Users can now select to save the 

pre-process data using the floppy disk icon or to 

create a decision tree using the brain icon.  

TCGA includes raw and processed genomic data 

files, however raw sequencing files are not available 

for public download. Mutation Annotation Format 

(MAF) files are the only open access files containing 

single nucleotide variant  data. Therefore, in  
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Figure 1: The TCGA Data Loader. All the data categories 

available for each project are displayed. 

 

Figure 2: TCGA BRCA Clinical  Data Visualization. 

 

Figure 3: TCGA BRCA Genomic Data Visualization. 

VisualMLTCGA MAF files can be downloaded. 

MAF is a tab-delimited text file with aggregated 

mutation information extracted from variant call 

format (VCF) files.  

Once the user has selected to download the MAF 

files from the TCGA project of interest, the tool starts 

downloading and pre-processing the files. MAF files 

generated following the four existing pipelines are 

downloaded: varscan2 (Koboldt et al., 2012), muse 

(Fan et al., 2016), somaticsniper (Larson et al., 2012), 

mutect2 (Cibulskis et al., 2013). All the information 

is combined and cleaned, and the clinical information 

of the patients is included. The cleaning process is the 

same as the one done to the clinical data. During pre-

processing, the data is prepared for the machine 

learning process. To do so, in the case of genomic 

data, instead of saving all the mutations associated for 

a patient, we only select the 20 most frequent 

mutations for the project to be displayed, as shown in 

Figure 3. As mentioned before, the user can now select 

to save the processed MAF files along with the 

clinical information or to use the processed dataset to 

create a decision tree.  

 Load External Clinical Data 

Along with the TCGA data, we can load external data 

into our tool. Therefore, users can use 

VisualMLTCGA to pre-process and visualize any 

clinical dataset stored in tabular text files. This 

functionality may be of interest for non-expert users 

to automatically clean and inspect data easily before 

further processing. By way of example, we have 

downloaded a public dataset from Kaggle and upload 

it to VisualMLTCGA using the uploading icon. 

Uploaded datasets can be removed from the server 

anytime using the garbage-can icon.  

The Kaggle dataset is a liver cancer (HCC, 

hepatocellular carcinoma) dataset uploaded by the 

University Hospital of Coimbra (Portugal)9. It 

contains several demographic data, risk factors, 

laboratory and overall survival features from 165 real 

patients diagnosed with HCC. The dataset contains 49 

features selected according to the EASL-EORTC 

Clinical Practice Guidelines(‘EASL-EORTC Clinical 

Practice Guidelines’, n.d.), which are the current 

state-of-the-art on the management of HCC. Figure 4 

shows the visualization of the dataset. At this point, 

the user can create a decision tree using the brain icon 

and use the generated model to classify new patients. 

 Load External Genomic Data 

In addition to clinical data, users can load external 

genomic data to VisualMLTCGA. They can either 

load previously uploaded files or processed MAF 

files downloaded from the TCGA, as well as new 

files. VisualMLTCGA filters all the genomic files 

available in the server to show them in the dropdown 

menu. The tool supports raw file formats such as FQ 

and processed file formats such as VCF or MAF.  

Raw files are processed using the Genome 

Analysis Toolkit (GATK) following the Best 

Practices for Variant Discovery (‘GATK | BP Doc 

#24216 | Pipeline Index’, n.d.). The GATK is a well-

known toolkit developed by the Broad Institute and 
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its Best Practices provide step-by-step 

recommendations for performing variant discovery 

analysis (‘GATK | BP Doc #11145 | Germline short 

variant discovery (SNPs + Indels)’, n.d.). This 

pipeline, after all the processing, returns a VCF file as 

output.   

Whether the user loads a raw or variant file 

(VCF), the tool visualizes the variants in a table 

format. An example table is shown in Figure 5. As 

explained in the previous subsections, users can 

create decision tree from the variant data using the 

brain icon.  

 

Figure 4: External clinical data loader. 

 

Figure 5: External genomic data loader. 

 Build Ml Model 

The previously explained features are used to 

download or load data to the platform. However, in 

order to exploit these data to obtain relevant 

information, it can be analysed using machine 

learning. For this purpose, we selected decision trees, 

a supervised machine earning technique that can be 

used for classification. They allow to predict the value 

of a target variable based on the input data. The 

prediction values are represented in a tree where each 

leaf shows the probability of the target variable value 

and the number of instances that support it.  

For the creation of decision trees, we use the 

“Build ML Model” option of the main menu or the 

brain icon that is enabled after loading a dataset. In 

the case of accessing from the main menu, there is a 

dropdown menu to choose from all the datasets 

available. The user can select from all the 

downloaded datasets from the TCGA or the external 

datasets loaded to the VisualMLTCGA. In order to 

create the model, users need to select the relevant 

variables for the classification and the outcome 

variable to predict.  

Five classification algorithms were implemented: 

1. Generalized Linear Model Trees(Nummi, 2015): 

It does a recursive partitioning based on the well-

known Generalized Linear Model (GLM) 

method. It uses the variable with the highest 

parameter instability to make the split. This 

method was implemented in R using the 

‘partykit’ package(Hothorn & Zeileis, 2014). 

2. Ctree: This method uses a significance test to 

select the variable for partitioning(Hothorn, 

Hornik, Strobl, & Zeileis, 2019). The R ‘partykit’ 

package(Hothorn & Zeileis, 2014) was used.  

3. CART: A gini index(Rutkowski, Jaworski, 

Pietruczuk, & Duda, 2014) based function is 

used for the tree partitioning. It was implemented 

using the ‘rpart’ package(‘rpart’, n.d.) from R.  

4. C4.5/J48: The partitioning is done selecting the 

variable that maximizes the information gain 

ratio(Salzberg, 1994). The method, named J48 in 

WEKA, was implemented using 

‘RWeka’(Hornik  [aut et al., 2019) R package.  

5. C5.0: This is an extension from the previous 

method, made by introducing new features such 

as boosting for improving the accuracy rate and 

the construction of cost-sensitive trees(Quinlan, 

1996). The R ‘C50’ package20(p50) was used.  

In order to select the most appropriate method for 

each dataset, the tool assesses the methods based on 

evaluation metrics using the “Tree Statistics” option 

in the dropdown menu. We can either choose one or 

multiple methods to be tested, and the resulting 

statistics are displayed. For each method, the AUC, 

precision, recall, f-1 score and support are shown. 

AUC (area under curve) is a bidimensional 

representation of a classifier’s performance. 

However, it can represent the performance as a 

numerical value, and it is useful to compare 

objectively the different methods. Precision is the 

ratio of correctly predicted positive observations to 

the total predicted positive observations. On the other 

hand, recall (also known as sensitivity), is the ratio of 
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correctly predicted positive observations to all the 

observations in an actual outcome. The F1 score is the 

weighted average of precision and recall. Finally, 

support is the number of true instances for each label. 

Based on all the information, users can select the most 

appropriate algorithm among the five implemented to 

generate the decision tree.  

Once we select the most suitable algorithm for the 

dataset, we can generate the tree. By way of example, 

we selected the Brain Lower Grade Glioma (LGG) 

project of TCGA. First, we calculated the evaluation 

metrics for the five algorithms. CART method has the 

highest AUC (0.58) along with glmtree (0.56) and 

C4.5/J48 (0.56). Table 1 shows the metrics for CART 

method.  

Table 1: Evaluation metrics for CART method using the 

LGG genomic data.  

level AUC 
f1 

score 
precision recall support 

Dead 0.57 0.72 0.76 0.68 171 

Alive 0.57 0.41 0.36 0.46 68 
 

Therefore, the CART algorithm was used to 

generate the tree. In Figure 6, the generated tree is 

shown along with the tree edition tools. The colours 

describe the outcome value for each node of the tree, 

ranging from green (alive) to red (dead). By clicking 

in each node, we can visualize and edit the node 

(either partially or completely) and update the model 

accordingly. The probability that outcome will 

happen based on each condition is shown. The 

features shown in the tree are the ones relevant to 

predict the outcome. For example, if a patient has 

IDH1 mutated, there is a 77% probability for the 

patient to remain alive. However, if, in addition to this 

feature, the patient’s tumour site is C71.9 (Brain, 

NOS), the age of initial diagnosis is more than 37 

years and the tumour histology is 9401/3 (anaplastic 

astrocytoma) or 9450/3 (oligodendroglioma, NOS), 

the probability to remain alive decreases to 33%.  

The tree can be easily modified using the tools 

provided. This feature is useful for domain experts, 

which could improve the automatically generated 

classification based on their experience. Users can 

create new branches, delete existing ones, edit the 

conditions that are evaluated, edit the outcome of the 

nodes (the probability of the outcome at a given 

node).  

 

 

 

 

 

Figure 6: The generated tree using the CART method for the LGG genomic TCGA data. 
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Figure 7: Users can classify patients based on previously created models. In the example, the results for an LGG patient are 

shown. 

 Classify Patient 

Once you create the ML model, new patients can be 

classified according to the model. Therefore, we can 

predict the outcome and classify the new patients 

based on the information contained in the ML model. 

To do so, users must enter the values of the relevant 

variables, which are then considered according to 

their pre-defined weight to predict the outcome of 

patients based on the model. In our case, we have 

selected the survival as outcome. Therefore, the tool 

shows the probability of survival of the new patient 

according to the model. The generated decision tree 

is shown again, but in this case, the fulfilled 

conditions are highlighted in blue.  

We have used the LGG TCGA model and when 

building the ML model, the following features were 

selected as relevant to predict to outcome: IDH1, 

ATRX and TTN genes, icd_o_3_site, 

icd_o_3_histology and age_at_initial_pathologic 

diagnosis. We introduced the data from two patients, 

the first one with the following features: IDH1 YES, 

ATRX YES, TTN NO, icd_o_3_site C71.9, 

icd_o_3_histology 9401/3 and 

age_at_initial_pathologic_diagnosis 40 (YES 

meaning that the gene is mutated). This patient has a 

33% probability to remain alive and, as shown in 

Figure 7, the user can view the fulfilled conditions in 

the tree. However, if the same patient had been at least 

three years younger, the probability to remain alive 

would be 83% according to the chosen model. 

Finally, the pie charts shown in the Figure 7 represent 

the probabilities for the outcomes for each of the 

nodes executed in the tree for the classified patient. 
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4 CONCLUSIONS 

In this paper, we propose VisualMLTCGA, an easy-

to-use web tool for download, pre-processing, 

visualization, processing and analysis of TCGA data. 

Along with TCGA data, external data can also be 

uploaded and analysed. Finally, relevant features can 

be extracted from clinical and genomic datasets using 

decision trees for classification purposes.  

After analysing different TCGA processing and 

visualization applications, we did not find any 

existing tool that combined downloading, pre-

processing, processing and visualization of clinical 

and genomic data, such as the VisualMLTCGA does. 

Additionally, VisualMLTCGA includes the creation 

of decision trees as a usable feature. Due to all these 

reasons, this tool is suitable for researchers and 

clinicians without bioinformatics background.  

Nevertheless, the tool is currently being validated 

and the potential modifications that arise from the 

feedback captured on this phase will be the first part 

of the future work. Additionally, we will include the 

possibility of downloading other type of data from the 

TCGA such as Copy Number Variation or DNA 

Methylation data. Furthermore, we expect to include 

several machine learning algorithms such as Random 

Forest, K-Neighbours or SVC.  
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