
Automated 3D Labelling of Fibroblasts and Endothelial Cells in 
SEM-Imaged Placenta using Deep Learning 

Benita S. Mackay1 a, Sophie Blundell2, Olivia Etter3, Yunhui Xie1, Michael D. T. McDonnel1, 
Matthew Praeger1, James Grant-Jacob1 b, Robert Eason1 c, Rohan Lewis3 d and Ben Mills1 e 

1Optoelectronics Research Centre, University of Southampton, Southampton, U.K. 
2Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, U.K. 

3Faculty of Medicine, University of Southampton, Southampton, U.K. 

Keywords: 3D Image Processing, Deep Learning, SBFSEM Images, Placenta. 

Abstract: Analysis of fibroblasts within placenta is necessary for research into placental growth-factors, which are 
linked to lifelong health and chronic disease risk. 2D analysis of fibroblasts can be challenging due to the 
variation and complexity of their structure. 3D imaging can provide important visualisation, but the images 
produced are extremely labour intensive to construct because of the extensive manual processing required. 
Machine learning can be used to automate the labelling process for faster 3D analysis. Here, a deep neural 
network is trained to label a fibroblast from serial block face scanning electron microscopy (SBFSEM) 
placental imaging.  

1 INTRODUCTION 

The placenta is the interface between the mother and 
the fetus mediating the transfer of nutrients while 
acting as a barrier to the transfer of toxic molecules. 
Poor placental function can impair foetal growth and 
development and affect an individual’s health across 
the life course (Palaiologou, et al., 2019). Serial 
block-face scanning electron microscopy (SBFSEM) 
has emerged as an important tool revealing the 
nanoscale structure of the placenta in three-
dimensions. While this technique is revealing novel 
structures, as well as the spatial relationships between 
cells, it is limited by the time it takes to manually label 
the structures of interest in hundreds of serial 
sections. Developing a machine learning-based 
approach would dramatically speed up this process 
and enable more quantitative analytical approaches.  

Here, a deep neural network is trained on stacks 
of unlabelled, and their associated labelled, images of 
a fibroblast within placental tissue. The neural 
network is subsequently used to generate labels on 
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unlabelled images that were not used during training. 
Visual comparison between the automated labelling 
achieved via the neural network and manual labelling 
of the fibroblast shows excellent agreement, with 
quantitative analysis showing high pixel-to-pixel 
comparison accuracy. This machine learning 
approach also enables the labelling of different 
structures, in this case endothelial cells within the 
placenta, with the future possibility of other cell and 
tissue types, such as osteoblasts within bone. 

2 BACKGROUND 

The study of fibroblasts in the placenta is necessary 
for research in placental growth and development. 
Fibroblasts can be found alongside mesenchymal and 
mesenchymal-derived cells within the placenta 
villous core stroma, between trophoblasts and fetal 
vessels. Fibroblasts maintain the extracellular matrix, 
the scaffold on which the blood vessels grow and on 
which the trophoblast barrier lives. Trophoblast 

46
Mackay, B., Blundell, S., Etter, O., Xie, Y., McDonnel, M., Praeger, M., Grant-Jacob, J., Eason, R., Lewis, R. and Mills, B.
Automated 3D Labelling of Fibroblasts and Endothelial Cells in SEM-Imaged Placenta using Deep Learning.
DOI: 10.5220/0008949700460053
In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) - Volume 2: BIOIMAGING, pages 46-53
ISBN: 978-989-758-398-8; ISSN: 2184-4305
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



number and function affects placental development 
and function over the course of pregnancy, 
influencing lifelong health and risk of chronic disease 
in later life (Wang & Zhao, 2010) (Lewis, Cleal, & 
Hanson, 2012). 

3D images of placentas with nanoscale resolution 
can be obtained through labelling of serial block face 
scanning electron microscopy (SBFSEM) images 
(Denk & Horstmann, 2004). Due to the number of 
programmatical rules that would be required, 
alongside limited contrast achievable in SBFSEM 
imaging of placenta villi and multiple contextual 
parameters, simple computer automation of labelling 
has not yet been achieved, and all 2D images that 
make up the larger 3D block must be manually 
labelled. Conventional image segmentation for 3D 
medical image data and techniques such as fuzzy 
binarization can be combined to extract important 
details from images and reconstruct into 3D models, 
yet these approaches require intensive data 
processing and a contrast/distinction in features, 
which can be difficult to obtain in SBFSEM images 
of tissue, and data loss from, for example, 
binarization techniques can result in lower resolution 
(Zachow, Zilske, & Hege, 2007) (Pugin & 
Zhiznyakov, 2007). As the z-spacing between 2D 
images represent the z-axis resolution in 3D, typically 
30-100 nm, a typical 3D dataset will include hundreds 
to thousands of individual images. In general, the 
complexity of the labelling process and the pure 
number of pixels (~109 pixels for this dataset) can 
lead to a dedicated expert requiring weeks to months 
to label an entire stack of 2D images.  

However, as shown here, this challenge can be 
solved via a neural network that is trained to 
automatically label fibroblasts in SBFSEM images of 
placentas. 

We have recently shown that neural networks can 
be effective at a wide variety of image processing and 
image labelling processes for enhancing microscopy 
resolution (Grant-Jacob, et al., 2019). The versatility 
of deep learning has also resulted in computer-aided 
diagnosis in the thorax and colon (Suzuki, 2013), the 
liver (Chen, et al., 2013), the breast (Shan, Kaisar 
Alam, Garra, Zhang, & Ahmed, 2016) and for 
diseases such as Alzheimer’s (Yamashita, et al., 
2013). Here, we apply this technique, for the 
automated labelling of fibroblasts in SBFSEM 
images of placentas.  

As shown in Figure 1, the purpose of this work is 
to automate the labelling of fibroblasts across all 2D 
SEM images in a 3D stack (943 in total). Automation 
requires training a neural network to label the z-stack 
images without human involvement, such that the 

 

Figure 1: A 3D image consists of a stack of multiple 2D 
SEM images, which can then be automatically labelled by 
a neural network, which saves months of dedicated time in 
manual labelling. 

labels can then be isolated and converted using 
standard imaging software into 3D projections 
without requiring months of image processing. 
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3 METHOD 

SBFSEM produces a series of high-resolution images 
taken at sequentially deeper depths into a sample 
which allow its internal structure to be revealed in 
three-dimensions. This is achieved by placing an 
ultramicrotome inside a scanning electron 
microscope. The microscope creates an image of the 
top of the sample (the block face), and the microtome 
then cuts a thin layer (typically 50 nm) off the surface 
of the sample allowing the next image to be taken 
further into the tissue. This process is then repeated to 
create hundreds or thousands of aligned images.  

The deep neural network architecture for 
transforming a 2D SEM image into a labelled image 
is a variant designed specifically for image-to-image 
translation and henceforth referred to as the network 
(Isola, Zhue, Zhou, & Efros, 2018).  The 3D image 
consists of 943 images recorded at different z-
positions, which are named 001-943. All even 
numbered images are extracted, not used for training 
the network, and are instead used for testing the 
effectiveness of the network for the labelling of 
unseen images.  

The network operates at a resolution of 256 by 
256 pixels, so images are reduced via randomised 
cropping from 2000 by 2000 to 512 by 512 before 
being resized to 256 by 256. It is trained for 100 
epochs (where one epoch is defined as training on all 
training images exactly once, and one iteration is 
defined as training on a single image) with a learning 
rate of 0.001 and a batch size of 1, which takes 
approximately 6 hours. The network is based on an 
encoder-decoder architecture, with 17 layers, and 
stride of 2, a 4 by 4 kernel size, and uses rectified 
linear unit activation functions. This results in image 
size decreasing from 256 by 256 down to 1 by 1, then 
increasing back up to 256 by 256, as seen in Figure 2. 
The encoder-decoder is based on a U-net structure 
(Ronneberger, Fischer, & Brox, 2015), with skip 
connections between the mirrored layers. The 
discriminator is formed of 4 layers of convolutional 
processes with stride of 2, taking the image size from 
256 by 256 down to 32 by 32, leading to a single 
output, via a sigmoid activation function that labelled 
realistic or unrealistic. This architecture was chosen 
instead of a simpler convolutional neural network, 
typically used for image processing, as it can produce 
high resolution output images and train on relatively 
small datasets (Heath, et al., 2018). 

After a training iteration, outputs from the 
network are compared to real labelled images, leading 
to network improvements achieved via 
backpropagation. Figure 3 is an example of the whole 

 

Figure 2: A block diagram of the network architecture used 
for labelling SBFSEM images. Based on a U-Net encoder-
decoder framework, the image is downsized through 
convolutional layers until it is 1 x 1 before being resized to 
the original 256 x 256 input dimensions. 

 

Figure 3: The automation process from stack image to 3D 
projection. From the 3D stack (1), an unlabelled 2D SEM 
image of the placenta (2) is input into the network. These 
2D images are then labelled by the network (3). Here, an 
image from the near the middle of the stack, 452, is labelled 
blue where a fibroblast is present. The label is then 
extracted from the rest of the image (4) so that all labels can 
be collectively z-projected into a 3D image of a whole 
fibroblast, where the z-axis is perpendicular to the page (5). 

automation process. The input image, 2, is a 2D 
section of the larger 3D stack, 3 is an automated 
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labelled image and 4 is the extracted label without 
surrounding tissue imaged. This extracted label 
image, alongside all others in the z-stack, is then 
collectively computationally projected with readily-
available software (ImageJ) to produce a full 3D 
model of the labelled fibroblast structure.  

4 RESULTS 

After the network is trained on odd numbered images, 
the extracted unseen even numbered images are used 
for testing the network. For error calculation, a pixel 
is considered correct if the value in each position of 
the network output image exactly matches the pixel 
value in the corresponding position of the real 
labelled image. A pixel difference of only ±1 (or 
greater) in any of the three colour channels, out of a 
standard 0-255 value range, is considered incorrect. 
This is because a pixel is extracted as a label if it has 
the exact value [0,0,255] at any position in the three 
channel image, the blue colour seen in 4 and 5 of 
Figure 5. The images used in analysis are sixteen 256 
by 256 network output images combined to form a 
single 1000 by 1000 image, where resolution is 
limited by the GPU size available.  

The error is graphically depicted as a percentage, 
seen in Figure 4, and displayed visually, as seen in 
Figure 5. In regions close to the beginning and end of 
the stack, roughly positions up to 100 and then those 
over 700, the error is less than 0.1%. This is due to 
there being no labelled fibroblast in this region, which 
is easier for the network to determine. This explains 
why the error is largest in the central region around 
position 300, where the labelled section is at its 
largest. There is a larger boarder region around larger 
labelled areas, and it is in this region where there is 
most error. This is due to slight imperfections in the 
training data, where manual labelling has been less 
accurate around the edges of the fibroblast. This is 
due to the amount of time manual labelling takes, 
accuracy has been sacrificed in return for speed, and 
also the limitations of human labelling; the human 
eye cannot manage to contrast individual pixels at a 
standard screen resolution, nor easily label at this 
resolution with a standard computer mouse.  

However, this does not result in areas with no 
fibroblast to label being perfectly unlabelled by the 
network. While there are areas of 0% error, there are 
small fluctuations. This is due to there being only one 
labelled fibroblast in the training data, yet more than 
one fibroblast in the 3D stack. This conflicting data 
leads to confusion within the network and therefore 
an amount of error is unavoidable. While the  

 

Figure 4: Blue markers show the percentage of correct 
pixels, where a pixel value of the network labelled image 
matches the pixel value of the real labelled image, at the 
position of the 2D image within the 3D stack for each tested 
image. The red line is the mean and standard deviation 
across every 10% of images. 

percentage of incorrectly labelled pixels is never 
greater than 1%, showing the promise of this labelling 
technique, this confusion is easier seen when the two 
types of errors, falsely not labelling where the 
network should have labelled (false negative) and 
falsely labelling where it should not have labelled 
(false positive), are seperated. 

The vast majority of errors come from fasle 
negatives. In contrast, false positives occur in roughly 
less than 0.2% of unlabelled pixels. The central 
region has the lowerst percentage of false negatives 
as the changes of other fibroblasts being in this region 
dominated by the labelled fibroblast are smaller. 

Even though a value of [0,0,254] would not be 
distinguishable from [0,0,255] to the human eye, only 
pixels with the value [0,0,255] are extracted as labels. 
To more easily visualise the pixel error in labelling, a 
coloured error image is created for each of the tested 
z-stack images, seen in Figure 4. Blue pixels show the 
correctly labelled pixels, red pixels show false 
negatives (the network incorrectly did not label a 
pixel), green pixels show false positives (the network 
incorrectly labelled a pixel), and black pixels show 
correctly unlabelled areas.  

Differences between column 2 and 3 are difficult 
to see clearly, and the vast majority of column 4 
pixels are blue and black, which are the colours for no 
error. The large amount of black, correct negative, 
pixels is the reason that the overall error for the 
network is so low (less than 1% error). The majority 
of green pixels, false positives, are in regions 
surrounding labelled fibroblast, which could be down 
to uncertainty in the network and inaccuracies in 
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Figure 5: A visual error analysis for three positions within the stack, where A is frame 200, B is frame 400 and C is frame 
600. The first column is the input for the network, an unlabelled z-stack image; the second is the output from the network, a 
network labelled fibroblast; the third is the manually labelled fibroblast and the fourth column is a comparison between 
columns 2 and 3, where black is correctly negative, blue is correctly positive, red pixels are falsely negative and green are 
false positives. 

human labelling. The red pixels, false negatives, are 
similarly placed. This shows that, with the network 
matching 99% of manual labelling, the correct shape 
of the fibroblast is being labelled and provides the 
vital information required for a 3D model. 

5 ALTERNATIVE CELL TYPE 
AND ALTERNATIVE SAMPLE 

The labelling of endothelial cells requires a very 
small adaption to the fibroblast labelling. A similar 
network is used for endothelial labelling, which is 
also based on an encoder-decoder architecture, with a 
stride of 2, a 4 by 4 kernel size, and it uses rectified 
linear unit activation functions. However, it has 
double the number of layers, with 34 in total. This 
results in image size decreasing from 256 by 256 
down to 1 by 1, then increasing back up to 256 by 
256, and then this resizing process is repeated. 

Increasing the number of layers improves the 
accuracy of the network labelling and the ability to 
apply labelling to unseen samples. Unlike increasing 
filter numbers, this did not present an increase in 
necessary GPU size requirements in comparison to 
previous network architecture. 

The labelled endothelial data is also split in a 
similar way to the previous fibroblast data. Odd 
images within the range 001-327 are used for training 
the network and even images in the same range are 
used for testing. However, the range 328-367, both 
odd and even, is also extracted for additional testing, 
to make sure the network could extrapolate in areas 
of the stack beyond that which it has already seen. 

The images used in analysis are thirty-six 256 by 
256 network output images combined to form a single 
1500 by 1500 image, where resolution is once limited 
by the GPU size available. By using a larger number 
of 256 by 256 images, the resolution can be increased 
without larger GPUs being required.  
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Figure 6: A graph of correct pixels as a percentage of total 
pixels within the images vs the position of each image 
within the stack. Blue markers show the percentage of 
correct pixels, where a pixel value of the network labelled 
image matches the pixel value of the real labelled image, at 
the position of the 2D image within the 3D stack for each 
tested image. The red line is the mean and standard 
deviation across every 10% of images. 

The network is trained on this stack for 50 epochs 
before initial testing. Initial results for the automated 
labelling of endothelial cells by a neural network are 
extremely promising, with an accuracy of above 95% 
for all unseen even numbered test images and images 
within the range 158-187, which were also extracted 
from the training data, as seen in Figure 6.  

The mean pixel accuracy is between 98% and 
99% for all images across the stack, with a slight dip 
in the centre and towards the end of the stack. A drop 
in accuracy towards the end of the stack (mean 
accuracy of 98%) is due to the increase in labelled 
areas compared to unlabelled areas and, as with 
fibroblast labelling, the majority of error is in these 
regions due to, for example, manual labelling error. 
The central drop (mean accuracy of 98%) matches the 
region of extracted images, 158-187. This dense 
extraction of images provides an area where the 
network has not seen similarly labelled images, as the 
closest similar image is ± 15 images either side. The 
mean error dropped by less than 1% for this region 
compared to surrounding regions, showing that 
labelling only every 1 in 15 images, rather than 1 in 
2, would not impact the training and accuracy of the 
network severely. New stacks introduced to the 
training data in the future will therefore start at 1 in 
every 10 images, as this will not overly impair chances 
of correctly labelling the new stack. When the image 
with the largest error of 4%, frame 40, is visually 
analysed, as seen in Figure 7, it appears that the 
network has incorrectly missed a large section of 
labelled area, which is seen by the large area of red in 
column 3. However, the network has correctly labelled 

 

Figure 7: A visual comparison of automated labelling error 
in frame 40, the frame with the highest error among the test 
frames of this stack. Column 1 is the labelled output from 
the network, column 2 is the manually labelled image and 
column 3 is the difference between column 1 and 2, where 
black pixels are correctly unlabelled, blue pixels are 
correctly labelled, red pixels are falsely unlabelled and 
green pixels are falsely labelled areas. 

the endothelial cells and the manual labelling has 
been rough and inaccurate in that region: automation 
has outperformed manual labelling. As the network is 
trained from manually labelled data, the maximum 
prediction accuracy is therefore only limited by the 
average accuracy of manually labelled training data.  

To see how well the network can label data more 
varied from the training data, an unlabelled image 40 
frames away from the last seen training image 
position (the last image in the stack) and a frame from 
a completely unseen stack have been input to the 
network, as seen in Figure 8. The labelling produced 
by the network can be seen in. This is a manually 
unlabelled area of the previously seen stack and a 
different unlabelled stack, so no comparison is 

 

Figure 8: The output of and unseen region and an unseen 
stack from the network. The first column is the input to the 
network, while the second is the labelled output. 
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available for this figure. The blockish appearance of 
frame 367, input and output, shows the versatility of 
the automated process, as brightness and contrast may 
vary from stack to stack and this is not a limiting 
factor for successful labelling. It means many stacks 
can be stitched together post-labelling to create larger 
3D images without the need for retraining a new 
neural network. The image from the new stack is very 
different in appearance from previous stack images. 
While there are some patches of incorrectly labelled 
pixels, these are relatively small and the introduction 
of a few manually labelled images from this stack into 
the training data should provide enough information 
to the network to prevent these from occurring in 
future models. Importantly, the endothelial cell 
section in the bottom right is correctly fully labelled 
by the network, showing that the network can 
successfully apply automated labelling to stacks 
without the need for repeated extensive manual 
labelling for training.  

Recent advances in region-of-interest labelling, 
including arrow detection (Santosh & Roy, 2018), in 
medical images could be combined with this neural 
network labelling approach to both improve the mean 
accuracy of automated labelling and to increase the 
range of features which could be extracted, with the 
aim of a single manual arrow on a feature of interest 
leading to an accurate and complete labelled stack.  

6 CONCLUSIONS 

With an error of typically less than 2% across both 
fibroblast and endothelial labelling, this study 
demonstrates how deep neural networks can be used 
for the labelling of complex structures from SBFSEM 
stacks, allowing for accurate 3D projections with a 
significant reduction of up to several months of 
dedicated time required for image processing, 
therefore overcoming a current drawback to efficient 
3D imaging of micro and nanoscale cell structures.  

With necessary GPU size, alongside use of 
cropping instead of scaling to maximise the output 
resolution for the GPU, data and resolution need not 
be lost with this network labelling method. The use of 
this method to label endothelial cells as well as 
fibroblasts shows the possible scope of using neural 
networks in 3D image processing. Inclusion of 
region-of-interest labelling in future work could 
provide consistent maximum accuracy labelling with 
minimal manual data processing. 
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