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Abstract: Developing components that produce data representing simulated environments for spatial-aware simulations 
could be difficult and error-prone. Knowledges of the required outputs of these components and 
computational models of the environmental phenomena are often held by different roles in the development. 
Miscommunications may appear among involved roles due to their different perspectives to view 
environmental phenomena. Consequently, requirements of simulated environments in simulation scenarios 
may not be correctly preserved in the developed components.  This paper presents a domain-specific 
development framework to overcome this problem. It focuses on bridging the gap between human-view 
requirement descriptions of simulated environments and system-view component design models to produce 
digital representations of these environments. It specifies a CIM (Computation-Independent Model) -layer 
language which supports system of interest modelers to document required context of simulated environments 
in their simulation scenarios in a half-formal manner. Transformation rules from these CIMs are established 
to derive necessary data structures and computation flows as PIM (Platform-Independent Model) -layer 
models of simulated environment components. These transformations are further combined with general 
Model-Driven Development (MDD) solutions to create platform-specific component skeletons.

1 INTRODUCTION 

In a computer simulation, the system of interest is 
often modelled with the logic about how the system 
behaves in reaction to the influence from phenomena 
in its situated environment. At an execution step of 
this simulation, a component should feed the system 
model with data of these phenomena, which are 
needed by the system model to compute a new state. 
This component provides the simulated environment 
(Klügl, Fehler, & Herrler, 2004) in the simulation. 

The environment component may need to enclose 
realistic observation data or its own simulation 
models of the involved phenomena types. Due to the 
inherited complexity from their real-world 
counterparts, these data and models are not 
straightforward to be adjusted and integrated into the 
simulation by non-experts. Safety-critical simulations 
in the marine domain provide a typical example. 
Maritime systems situate in the environment with 
spatio-temporal varied phenomena such as other 
artificial systems, wind and ocean currents. The 
influences of these phenomena cannot be ignored in 
safety-critical simulations, while modelling such 

complex phenomena are likely beyond the expertise 
of the system of modelers. 

Thus, environment components in these 
simulations may have to be developed by experts 
other than the system modelers. However, for 
acquiring meaningful simulation outcomes, 
environmental data produced by such a component 
should match simulation scenarios that the system 
modelers want to execute. Thus, requirements about 
the simulated environments in the scenarios must be 
communicated between system modelers and experts 
who are able to develop this environment component. 
Mismatches may appear during the communication 
due to different perspective of involved roles to view 
the environmental phenomena. This could cause that 
the developed component does not correctly preserve 
requirements from system modelers. The produced 
data may miss some aspects that are required inputs 
of the system model. Further, the data values 
produced in an execution may not match the expected 
environmental conditions of the executed scenario. 

To overcome the above-mentioned problems, this 
paper proposes a language-driven framework to assist 
the development of environment components in 
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simulations. It focuses on bridging the gap between 
conceptual level requirements of simulated 
environments and design models of environment 
components, which is comparable to the view switch 
when transforming domain-oriented CIMs to system-
oriented PIMs in Model-Driven Architecture (MDA) 
(OMG, 2014). This framework follows the MDA 
principles. It uses Domain-Specific Languages 
(DSLs) (van Deursen, Klint, & Visser, 2000) to 
describe simulated environments as CIMs and 
environment component models as PIMs. 
Transformation rules are established between these 
two types of models, so that necessary elements of an 
environment component to produce a described 
environment can be derived from the description of 
the environment via transformations. 

The rest of the paper is organized as follows. 
Section 2 reviews existing works related to the 
presented framework. Section 3 gives an overview of 
this framework. Section 4 and 5 introduce modelling 
languages used in the framework and transformations 
among them. Section 6 shows a prototypical 
implementation of the framework, followed by a use 
case to demonstrate the transformation process. 
Section 7 summarizes the contributions of this 
framework and discusses open issues. 

2 RELATED WORK 

Most researches on CIM-PIM transformations focus 
on the business processes and requirements 
modelling. These works rely on OMG-managed 
modelling languages to describe CIMs and PIMs, as 
well as transformation languages to specify 
transformations among them. At the CIM layer, the 
business processes are often expressed by BPMN 
(OMG, 2011) or its specialization (Hahn, Panfilenko, 
& Fischer, 2010; Rodríguez et al., 2011; Bousetta, El 
Beggar, & Gadi, 2013; Kriouile, Addamssiri, & Gadi, 
2015; Rhazali, Hadi, & Mouloudi, 2015a). Some 
approaches also model functional requirements as use 
case diagrams. (Gutiérrez et al., 2008; Bousetta et al., 
2013; Kriouile et al., 2015) PIMs in these researches 
usually cover the structural aspect and the behaviour 
aspect of a system. The former is frequently 
expressed by class diagrams (Bousetta et al., 2013; 
Kriouile et al., 2014; Rhazali et al., 2015a), while 
activity diagrams (Gutiérrez et al., 2008), sequence 
diagrams (Bousetta et al., 2013) and state machines 
(Rhazali, Hadi, & Mouloudi, 2015b) have been used 
to express the latter. Some approaches also define 
specialized metamodels for describing PIMs, such as 
the  PIM4Agent  from  (Hahn et al., 2010)  and DSLs 

used by (De Castro, Marcos, & Vara, 2011).  
Transformations in existing researches are 

formulized using QVT languages (Gutiérrez et al., 
2008; Rodríguez et al., 2010; Kriouile et al., 2014; 
Kriouile et al., 2014) or ATL (Hahn et al., 2010; De 
Castro et al., 2011; Rhazali, Hadi, & Mouloudi, 
2016). Most of them have multiple steps. The overall 
transformation chains of these researches are usually 
performed in a semi-automatic manner with human 
interference between steps to improve the model 
quality. 

Similar researches can be found in other 
application domains, e.g., for the development of data 
warehouses (Mazón, Pardillo, & Trujillo, 2007) and 
Web applications (Kraus, Knapp, & Koch, 2007; 
Fatolahi, Somé, & Lethbridge, 2008). Existing 
researches provide the foundation on the components 
which our framework should have and references 
about how it may be built. However, they focus on 
other context domains. 

In the context domain we are interested in, 
human-oriented DSLs to express spatial phenomena 
based on common sense conceptualizations have 
been proposed,  such as database languages using the 
“moving objects” concept (Güting & Schneider, 
2005), the general type "field" to represent and 
operate on spatio-temporal data (Camara et al., 2014) 
and core concepts for spatial computations (Kuhn & 
Ballatore, 2015) etc. Their implementations are often 
embedded in spatial DBMS, GIS software or code 
libraries. They aim to raise the usability of spatial 
database and systems by hiding a fixed 
implementation behind cognitive level concepts. On 
the other side, various system-oriented models have 
been adapted as ISO/TC 211 (ISO, n.d.) and OGC 
(Open Geospatial Consortium, n.d.) standards to 
support to build and exchange spatial data or 
information services. Models of these standards focus 
on spatial data sharing and system interoperability. 
These researches provide fundamental terms of 
spatial representations that we can utilize. These 
models are defined at various abstraction levels and 
are not clearly aligned with the software development 
phases. The development of environment 
components in simulations with or without using 
some of these models is still solved in a case-by-case 
manner. 

3 THE PROPOSED 
FRAMEWORK 

Functional scenarios described at the conceptual level 

A DSL-Driven Development Framework for Components to Provide Environmental Data in Simulation based Testing

329



are determined in the requirement analysis phase 
when developing computer simulations. (Menzel et 
al., 2018). Our research classifies the context of 
description about environmental phenomena in the 
functional scenarios based on conceptual forms of 
phenomena and types of their exhibited changes. 
After that, necessary elements in the simulation 
program for producing the described context type are 
identified. The proposed framework in this paper is 
built on the research outcome and MDA as introduced 
below. 

First, a DSL Simulated Environment Description 
Language (SEDL) is specified to describe the 
required context of simulated environments as CIMs. 
A SEDL description corresponds to a simulation 
program. It is half-formal with application-specific 
requirements captured by free text and enclosed by a 
SEDL description item. A phenomenon expressed in 
SEDL corresponds to all possible phenomena 
instances of the same type that can be produced by a 
component under development.  

Then, mapping rules are established from SEDL 
descriptions to PIM-layer component models in 
UML. They enable automatic transformations which 
derive artefacts of environment components from 
SEDL descriptions. Three types of sub models are 
included in the PIMs: the configuration schema that 
describes the parameters to be set for running a 
component; the data structure that carries state values 
of computed phenomena during simulations; the 
computation flows that compute the states of 
phenomena at a simulation step. 

Further transformations from PIMs to models and 
code in a specific platform can utilize general MDA 
solutions, since they are rather technical refinement 
which does not involve the view switch or the domain 
knowledge. An implementation of the framework 
supports to describe simulated environments as 
SEDL descriptions, execute transformations of SEDL 
descriptions to derive component models and code 
skeletons. Application-specific requirements 
captured in the free text are preserved within model 
elements or code units to guide implementation. 

4 LANGUAGES FOR 
SIMULATED ENVIRONMENTS 

This section introduces modelling languages used in 
this framework at the CIM layer and the PIM layer. 

4.1 Simulated Environment 
Description Language (SEDL) 

Terms in the CIM-layer language SEDL classifies 
pieces of descriptions about simulated environments 
in simulation scenarios. All SEDL terms are made as 
subtypes of DescriptionItem which has an attribute 
description to capture application-specific 
requirements in the free text. Besides, each type has 
attributes to capture the type-specific context. 
 

 

Figure 1: The Description Structure of SEDL. 

SEDL uses an entity-property hierarchy to 
organize description pieces as show in Figure 1. An 
instance of the entry term SimulatedEnvironment 
encloses all description pieces about an environment 
component. Terms that describe environmental 
phenomena are subtypes of Configurable. Their 
instances may have ConfigurableParameter-s, each 
of which describe a modifiable condition about this 
Configurable for different executions. Two concrete 
types can be chosen to describe a type of 
environmental phenomena. SpatialIndividuality 
describes a type of phenomena which appear as an 
identifiable individual substance in space.  
FieldOfIndividualities describes a set of 
individuality from the same type with no significant 
member, such as a group of randomly moving ships. 
All members in this field together exhibit some 
spatial pattern. Which subtype to choose depends on 
the simulation scale, the way that system modelers 
view the phenomenon etc. It does not mean to reflect 
the “truth" of the real-world entities.  

SEDL supports to classify description of changes 
that environmental phenomena should exhibit in 
simulation scenarios. 

The CharacteristicVariation is used to describe 
the value variation of a characteristic index or several 
correlated indexes among a whole set of instances of 
a phenomenon type, e.g., some initial state. The 
described variation is a value distribution of these 
indexes. A CharacteristicVariation instance 
belongs to an EnvironmentalPhenomenon E. If E is  
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Figure 2: Change Types of SpatialIndividuality. 

the member of a FieldOfIndividualities F, when 
creating an instance of the phenomenon described by 
F, relevant index values of its members should be 
drawn from the distribution. Otherwise, when 
creating an instance of the type described by E, 
relevant index values of this instance should be drawn 
from the distribution. 

Change types about an individuality that shall be 
perceived by human are identified as shown in Figure 
2. An instance of them expresses a change pattern 
which a phenomenon type should exhibit during 
simulations. Essentially, it is the pattern of difference 
about one characteristic of a phenomenon P, when 
another characteristic of P is altered in a controlled 
way. It can be viewed as a relationship between states 
of this phenomenon in two value domains: A → B. 
Change types are identified based on rational 
combinations of the A’s type and B’s type. 

The types of the value domains can be spatial 
locations, temporal locations and thematic properties 
(Guttag & Horning, 1978). Further, location 
differences in high-level descriptions shall be 
approximately viewed as self-referenced and 
externally-referenced. E.g., the “Movement” in 
Figure 3 is the observed spatial location differences 
relative to an external reference (often the earth) over 
time. The application-specific pattern of a change 
description instance is informally captured by its 
description slot. 

4.2 PIM-Layer Metamodels of 
Environment Components 

In this framework, UML is used as the metamodel to 
describe PIMs. To facilitate the object-oriented code 
generation, PIMs are expressed in the class view. A 
computation flow is presented as a uml:Class and a 
uml:Operation in this class. Each of its computation 

units is presented in the class as a uml:Operation and 
statements within the body of the flow operation that 
invokes the unit operation. 
 

 

Figure 3: Stereotypes of Simulated Feature Types. 

The framework specifies a UML profile to 
provide a set of stereotypes for describing structural 
models of environment component more concisely as 
shown in Figure 3. It includes subtypes of 
SimulatedFeatureType which represent the data 
structure to hold state values about a phenomenon 
type during simulation executions. Each subtype 
restricts following aspects of a class: 1) how the 
geometry of a phenomenon type is represented by this 
class; 2) how property values representing the 
phenomenon's thematic characteristics are linked to 
its geometry. These types are introduced in a two-
dimensional context here.  Nevertheless, each of them 
has its three-dimensional counterpart. They are 
specified based on popular spatial computation 
paradigms. For instance, subtypes of 
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CollectiveFeatureType are used to represent 
phenomenon types that are computed as a set of units, 
each of which occupies a spatial location. Such 
representations are used in multi-agent spatial 
simulations.  Each subtype of the 
CollectiveFeatureType regulates a spatial 
representation of the units, including the type of their 
geometries and spatial relationships among them. 

Besides, SpatialFunction is a class which holds 
the function to represent the form of a spatially 
heterogeneous theme.  It shall appear as the attribute 
type of a GlobeFeature or a LocalFeature. 

5 CIM-PIM TRANSFORMATIONS 

This framework specifies three CIM-PIM 
transformations to derive design models of 
environment components from SEDL descriptions.  

First, the transformation SEDL2Config generates 
a configuration schema whose structure is aligned 
with the structure of the input SEDL description. In 
general, it transforms each Configurable to a 
uml:Class. The parameters of the Configurable are 
mapped to attributes of the output class. 

Then, the transformation SEDL2Structure derives 
data structure models of environment components 
based on following principles: 
1) A class stereotyped with a 
SimulatedFeatureType subtype is created for each 
EnvironmentalPhenomenon. The applied 
stereotype is derived from the type and the spatial 
form of Environmental Phenomenon and its change 
types. For instance, a FieldOfInvidualities whose 
members are 0-dimensional entities and have changes 
involving locations is transformed to a 
PointSetFeature. 
2) For each ThematicProperty of a 
SpatialIndividuality, an attribute is added to the 
output feature class, or the output unit class when this 
Spatial Individualties is the member of a 
FieldOfIndividualities. 
3) A SpatialFunction class is created for a 
ThematicValueDistribution to hold the distribution 
function that determines a value at a spatial location.  
This class is set to be the attribute type created from 
the ThematicProperty with this distribution. 

The transformation SEDL2Computation uses the 
output of the above two transformations and the input 
SEDL description to generate computation units and 
build computation flows with these units, which 
update states of simulated feature properties. 

First, it creates a uml:Class for each 
EnvironmentalPhenomenon Ep.  An uml:Operation 

is added to the class for each of its 
CharacteristicVariations and individuality changes.   

Then, a directed graph is derived based on 
individual changes of Ep, or of its member if Ep is a 
FieldOfIndividualities. Nodes of the graph represent 
properties of Ep.  Edges correspond to the relation 
between the connected nodes expressed by a change 
description, e.g., an edge t →  tp denotes a 
ThemeDynamics of its ThematicProperty tp.  A 
reference to the generated operation of this 
ThemeDynamics is stored with the edge. This graph 
implies the appropriate order to update properties of 
an instance phenomenon. Cycles in the graph are 
detected and replaced by a compound node. The 
compound node corresponds to a sub-computation 
that determines the values of the nodes in the cycle. 

An uml:Operation is generated, which executes 
the computation flow to update states of a simulated 
feature at a simulation step. It contains statements that 
invoke the operations to update the attributes of the 
feature data object held by the computation class, in a 
sequence based on the topological order of the 
generated graph. This flow applies to an individual 
feature. For a FieldOfIndividualities, the generated 
operation updates a unit of the 
CollectiveFeatureType generated from it. An 
iteration is also generated to execute this function 
over units of this CollectiveFeatureType. 

It is suggested to have a manual refinement on the 
intermediate output to bring in more details which is 
not derivable. For instance, the unit geometry of a 
TessellatedFeature is decided by the developers. 
The transformation generates a TessellatedFeature 
with denotation that the applied stereotype should be 
replaced by a subtype of the TessellatedFeature. 

6 USE CASE 

A prototype of the framework is implemented based 
on Eclipse Modeling Framework (EMF) (Steinberg et 
al., 2008) as summarized in Figure 4. 

The SEDL Abstract Syntax is encoded as an Ecore 
(Steinberg et al., 2008) model. The SEDL2Config 
and SEDL2Structure are implemented as ATL 
transformations. The data structure profile is encoded 
using the UML2 plugin (Eclipse, n.d.). The Platform-
Specific Translator can be varied in different 
implementations of the framework. In this prototype, 
they are three code generators which create Java files 
for developing Eclipse plugins. The EMF code 
generator is used to create code for configuration 
schemas. The other two generators are implemented 
as Acceleo (OBEO, n.d.) templates. PIMs from 
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SEDL2Computation are made implicit in the 
prototype. The generator for computation models 
uses SEDL descriptions as inputs and produced Java 
files. Operations on graphs are implemented by Java. 
The simulation library Mason (Luke et al., 2005) and 
its spatial extension GeoMason (Sullivan, Coletti, & 
Luke, 2010) are used in the output code to deal with 
simulation routines and spatial-related issues. 

 

 

Figure 4: Components of the Framework Prototype. 

The SEDL Toolset is implemented using 
EMFText(Heidenreich, Johannes, Karol, Seifert, & 
Wende, 2009). A textual SEDL Concrete Syntax is 
specified in a file with “.cs” extension and referenced 
to the SEDL Ecore model.  EMFText creates various 
language facilitates from this “.cs” file, which are 
customized afterwards. The prototype can be used to 
write SEDL descriptions in the concrete syntax and 
store them in files with the ".sedl" extension.  The 
transformations are integrated into the SEDL 
processor, which can be invoked to execute a file with 
this extension. 

 

 

Figure 5: Transformation Steps and Outputs. 

A demonstrative use case is presented, which uses 

the prototype to develop an environment component 
for a vessel simulation. This component is 
implemented as an Eclipse plugin. The functional 
scenario is that a cargo vessel executes a planned path 
under various weather conditions. During the 
simulation, the environment component should 
simulate environmental data required by the vessel 
model execution with desired conditions, e.g., force 
of wave, information of other ships etc. 

The required environment is documented in the 
“Sea.sedl” file using the implemented textual syntax. 
Various artefacts are generated from this file by the 
framework prototype. Figure 5 shows the 
transformation flows. Classes in the “seaCon” 
package are generated by EMF. 

 

 

Figure 6: SEDL Description of BackgroundTraffic. 

Figure 6 shows a description piece of a 
phenomenon type in the “Sea.sedl” file for 
illustration, in which the free-text descriptions are 
displayed in green. The key word “Dynamics” in the 
concrete syntax corresponds to the ThemeDynamics. 

Figure 7 shows a visualized diagram of the 
generated configuration schema for the 
“BackgroundTraffic” in Figure 6 (left) and the data 
class for a ship in the background traffic (right). 
Attribute access methods are omitted due to space 
limitation. The PIM layer data class for the 
“BackgrounTraffic” is mapped to a PointSetFeature 
as Section 5 introduced.  In the prototype, it is further 
transformed to a GeomVectorField object whose 
geometry is initialized as a set of points managed by 
the generated class “ComputeSea.java” in Figure 5. 
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Figure 7: Structural Models for BackgroundTraffic. 

Figure 8 shows a visualized diagram of the 
“ComputeShip.java” class. It is a Mason Steppable 
which is used to implement the computation model 
for a ship in the background traffic. It includes 
Mason-specific supportive structures such as 
“GeometryFactory fact”, objects to hold states of the 
computed ship and attributes to hold the ship indexes. 
The following methods are generated in this class: the 
constructor method “ComputerShip(…)” that is used 
to initialize an instance of this class with given ship 
indexes; the “step(SimState)” which holds the 
computation flow to update states of the “ship” 
object; method skeletons which should implement a 
computation unit or the combined effort of involved 
units to update an attribute of the “ship” object. The 
free-text descriptions of corresponding SEDL items 
are generated as Java comments near these methods 
to guide the implementation. Same as the 
GeomVectorField object that represents the whole 
traffic set, code for iterating over the ships are placed 
in “ComputeSea.java” class. 

 

 

Figure 8: Computation Class for BackgroundTraffic. 

A transformation step costs between 1~ 1×100 
seconds, which can be neglected compared with the 
total development time of this component.  

7 CONCLUSIONS 

A domain-specific framework is presented in this 
paper, which eases the development of environment 
components in computer simulations by following 
means. First, it provides a CIM-layer DSL SEDL as a 
communication tool to discuss and document the 
requirements of components under development. 
Second, it establishes mappings between conceptual 
contexts of simulated environments expressed in 
SEDL and necessary artefacts in computer programs 
in order to produce them. Thus, system-perspective 
design models can be derived from human-
perspective requirements. Third, it enables automatic 
generations of program models from the requirements 
descriptions. Architectural code can be further 
generated with only application-specific methods to 
be filled. The application-specific requirements are 
preserved within corresponding code units to guide 
the implementation. 

Our future work focuses on the optimization of 
transformations to the chosen technical platforms, the 
test of the implemented framework with our marine 
simulation development and the strategies to reuse 
programs of environmental phenomena developed 
within this framework in other simulations. 
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