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Abstract: This study investigates the dynamic lot-sizing problem integrated with Condition-based maintenance (CBM) 
for a stochastically deteriorating production system. The main difference of this work and the previous 
literature on the joint optimization of lot-sizing and CBM is the relaxation of the constant demand assumption. 
In addition, the influence of the lot-size quantity on the evolution of the equipment degradation is considered. 
To optimally integrate production and maintenance, a stochastic dynamic programming model is developed 
that optimizes the total expected production and maintenance cost including production setup cost, inventory 
holding cost, lost sales cost, preventive maintenance cost and corrective maintenance cost. The algorithm is 
run on a set of instances and the results show that the joint optimization model provides considerable cost 
savings compared to the separate optimization of lot-sizing and CBM. 

1 INTRODUCTION 

Preventive maintenance operations aim to keep the 
equipment in operating condition and reduce the 
chance of having failures. Under Condition-based 
maintenance, they are performed based on the current 
condition of the equipment obtained through 
Condition monitoring (Jardine, 2005). It can 
significantly reduce maintenance cost by eliminating 
unnecessary scheduled preventive maintenance 
operations (Jardine, 2005).  

To not interrupt the production, preventive 
maintenance actions should be conducted in 
accordance with the production plan in deteriorating 
production systems. Since machine deterioration 
depends on the amount of usage, the production 
planning decisions directly affect degradation of the 
systems. Thus, degradation of the equipment should 
be considered in determining production amounts. To 
address this issue, integrated optimization models of 
Economic Production Quantity (EPQ) and CBM were 
developed under the assumption of constant demand 
rate. Producing same quantity in each lot, leads to the 
same expected degradation path in those systems. 
Therefore, applying a static maintenance policy is 
convenient.  

In a dynamic lot-sizing problem, however, 
production time and thus equipment usage within 
each period may differ, leading to different 
degradation paths. Using a static preventive 
maintenance threshold may not be optimal in this 
case. Therefore, for each period, a dynamic 
maintenance policy that considers future degradation 
paths with respect to different production quantities 
should be utilized.  

This paper proposes a model to consider the 
current equipment condition and the evolution of the 
degradation with respect to production quantity in 
making production and maintenance decisions. 
Demanded quantities of the remaining periods, 
current condition of the equipment, and inventory 
level are the states that determine the production and 
maintenance policies for each period. The main 
difference of our work with the previous papers is the 
adaption of CBM to the multi-period lot-sizing 
problem under dynamic demand. In addition, in our 
work, the influence of the quantity of the lot-size on 
the degradation level is taken into account in 
determining production decisions which has not been 
considered in this problem setting. We construct a 
stochastic dynamic programming model to minimize 
production setup cost, inventory holding cost, lost 
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sales cost, preventive maintenance and corrective 
maintenance costs over finite and infinite horizons. 

2 LITERATURE REVIEW 

The joint optimization of lot-sizing and maintenance 
problem has been extensively studied under 
breakdown, time-based and age-based maintenance. 
Groenevelt et. al (1992) investigates the effect of 
machine breakdowns and corrective maintenance on 
the optimal production lot-sizes. They examine the 
effect of the failure rate on the optimal lot-size 
quantity. Ben-Daya and Makhdoum (1998) consider 
an integrated production and quality model for 
different inspection policies and they model the 
deterioration process using hazard rate function. They 
investigate the impact of different preventive 
maintenance policies on the EPQ. Ben-Daya (2002) 
proposes an integrated optimization model for lot-
sizing and imperfect preventive maintenance which 
adopts age-based maintenance policy. El-Ferik 
(2008) considers economic production lot-sizing for 
an unreliable machine under constant production and 
demand rates. Preventive maintenance actions are 
carried out when the age of the system reaches a 
predetermined level. After each preventive 
maintenance, the system becomes as good as new 
with a high failure rate. Thus, the system is replaced 
after a certain amount of production cycles are 
completed. Jafari and Makis (2015) study optimal lot-
sizing and preventive maintenance policy where the 
deterioration is modeled by a proportion hazards 
model which considers information gathered from 
condition monitoring and age of the system. They 
model and solve the problem as a semi-Markov 
decision process.  

Stochastic dynamic programing models are also 
developed to optimize production and maintenance 
costs. Boukas and Liu (2001) propose a stochastic 
dynamic programming model to minimize 
maintenance and inventory holding costs by 
optimizing production and maintenance rates. Iravani 
and Duenyas (2002) consider an integrated 
maintenance and production control for a single item 
single machine production system with increasing 
failure rate. The demand is distributed as a stationary 
Poisson process. They formulate the problem as a 
Markov Decision Process (MDP) where the states are 
degradation and inventory levels, and the actions are 
producing, idling and maintenance at each decision 
epoch. Sloan (2004) and Xiang et al. (2014) consider 
integrated production and maintenance planning 
subject to random production yield that changes with 

respect to the condition of the equipment. The 
maintenance and production planning decisions are 
made according to the degradation status of the 
equipment and yield. However, the influence of the 
production amount on the machine deterioration is 
not taken into account. 

The joint optimization problem of Economic 
Production Quantity (EPQ) and CBM is studied under 
the assumption of constant production and demand 
rates. Peng and Van Houtum (2016) propose a joint 
optimization model of EPQ and CBM in which 
degradation is modeled as Gamma Process.  Khatab 
et al. (2017) develop an integrated optimization 
model for production quality and CBM. The 
preventive maintenance threshold and inspection 
interval are the decision variables. However, the lot-
size is not optimized. Cheng et. al (2017) propose a 
joint optimization model for production lot-sizing and 
CBM for a multi-component production system. 
Degradation of the components are modeled by 
Gamma process. They use Birnbaum importance 
measure to determine the preventive maintenance 
threshold of the components. Monte Carlo simulation 
technique is used to calculate the costs and genetic 
algorithm is utilized to find the optimal lot-size and 
preventive maintenance threshold. 

Maintenance scheduling has been incorporated in 
the multi-item lot-sizing problems in which cyclic or 
non-cyclic maintenance actions are performed. 
Aghezzaf et. al (2007) propose an integrated 
production and preventive maintenance model for a 
capacitated multi-item production system in which 
the overall capacity of the system is reduced when a 
preventive or corrective maintenance is conducted. 
They consider capacity reduction of the production in 
case of failure or preventive maintenance. Preventive 
maintenance actions are carried out at periodic time 
points. Shamsaei and Van Vyve (2017) also develop 
an integrated model for multi-item lot-sizing and 
maintenance under time-varying demand. 
Additionally, they adapt non-cyclic maintenance 
schedules to their model which reduces the overall 
costs. However, preventive maintenance actions are 
performed without considering the health status of the 
component. 

3 SYSTEM DESCRIPTION 

We consider a production system in which the 
degradation of the machine is monitored 
continuously. Its level ܺሺݐሻ increases with respect to 
the length of the production run-time. When the 
machine fails during the period, and thus the 
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degradation having reached the “failure level” ܨ,  the 
production stops, and corrective maintenance is 
conducted. Note that in case of a failure during a 
period, the remaining units of production cannot be 
produced, although it was planned. To reduce the 
possibility of the failures, preventive maintenance 
actions are performed while the equipment is still in 
working condition.  
 

Nomenclature 
 

 

ܺሺݐሻ degradation level with respect to 
time 

ܺ௡ degradation level at the beginning of 
period ݊ 

ܼ௞ state of Markov chain right after the 
production of ݇௧௛  unit within a 
period 

 ௡  inventory level at the end of periodܫ
݊ 

ிܶ
ሺ௜ሻ	 first passage time to failure from 

state ݅ 
ܳ௡  production lot size in period ݊ 
ܳሺ݅, ,ݕ ݊ሻ  optimal production lot size in period 

n for states ݅ and ݕ 
૚௡ሺܳ௡ሻ  indicator variable taking value 1 if 

there is production in period ݊ 

૚௡ ቀܫ௡ିଵ ൅ ிܶ
ሺ௜ሻ

െ  ௡ቁܦ

indicator variable taking value 1 if 
there is enough inventory and 
production to cover the demand up 
to the failure 

 production rate per unit time ߩ
݀௡ constant demand rate per unit time 

during period ݊ 
 ݊ ௡ total demand in periodܦ
߬ fixed time length of a period 
ܰ finite number of periods 
ܿ௛ inventory holding cost per unit of 

time 
ܿ௟ lost sales cost per unit 
ܿ௦ production setup cost per lot 
ܿ௣ predictive maintenance cost 
ܿ௖ corrective maintenance cost 
ܪ ௖ܰሺܳ௡,  ௡ିଵሻ  inventory holding as a function ofܫ

ܳ௡ and ܫ௡ିଵ in case of no failure 

௖ܨܪ ቀ ிܶ
ሺ௜ሻ,  ௡ିଵቁ inventory holding as a function ofܫ

ிܶ
௜  and ܫ௡ିଵ in case of failure 

௖ܮ ቀ ிܶ
ሺ௜ሻ, ௡ିଵቁ lost sales cost as a function of ிܶܫ

௜  
and ܫ௡ିଵ 

௡ܸሺܺ௡,  ௡ିଵሻ total minimum expected cost fromܫ
time ݊  to the end of the planning 
horizon 

 discount factor ߛ
 

At the beginning of each period ݊ with a fixed 
length ߬, a preventive maintenance decision is made 
and quantity of the production lot size ܳ௡  is 
determined according to the current degradation level 

ܺ௡, the ending inventory of the previous period 	ܫ௡ିଵ, 
and known demand values of the remaining periods. 
The production rate ߩ is constant so the maximum 
amount of production in a period is limited to ߬ߩ. If 
there is no failure within the production lot and thus 
the production plan is met for that period, there are 
two cases: (1) no maintenance is carried out so the 
starting degradation state of the next period is equal 
to the ending degradation state of the current period; 
(2) preventive maintenance is carried out at the 
beginning of the next period; in this case, starting 
degradation state of the next period becomes as good 
as new. Because maintenance duration is assumed to 
be negligible, carrying out maintenance at the end of 
the production time within a period or at the 
beginning of the next period does not make a 
difference for the model. To be comprehensible, it is 
assumed that maintenance actions are conducted at 
the beginning of the periods. 

 

Figure 1: Sample degradation path with respect to 
production time. 

Figure 1  shows an example of a sample 
degradation path starting from as good as new state 
with respect to the production time where preventive 
maintenance is carried out right after the completion 
of ݇௧௛  item’s production. The health status of the 
machine becomes as good as new after that point. A 
failure occurs after the production of the ݊௧௛	item so 
corrective maintenance is performed starting from 
this point. The corresponding graph of the inventory 
level with respect to the total time including the 
production and idle times are illustrated in Figure 2. 
During the idle times when the production capacity is 
not fully utilized, the degradation remains in the same 
level.  

In the example shown, corrective maintenance is 
conducted in the ݉௧௛ period, starting right after the 
production of the ݊௧௛ item. Since there is not enough 
inventory to cover the demand at the ݉௧௛ period, lost 
sales occur. Figure 3 shows the case where sufficient 
amount of inventory is accumulated up to the failure, 
so no lost sales occurs. In the example shown in 
Figures 1 and Figure 2, up to the ݉௧௛  period, total 
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amount of production is equal to ݊ ሺ∑ ܳ௞
௠ିଵ
௞ୀଵ ൏ ݊ ൏

∑ ܳ௞
௠
௞ୀଵ ሻ; which is less than the planned production 

amount due to the failure. 

 

Figure 2: Inventory level with respect to total time 
including production and idle times. 

 

Figure 3: Inventory level with respect to total time 
including production and idle times. 

4 MODEL FORMULATION 

The evolution of the degradation during production 
time is modeled as a discrete-time stochastic process. 
The ݇௧௛ epoch corresponds to the planned completion 
epoch of the ݇௧௛ unit. As a result, the time in between 
two planned production epochs within the same 
period equals 1/ߩ, with ߩ the production rate. The 
degradation level at epoch ݇	is denoted by ܼ௞. Within 
a period, the process ሼܼ௞, ݇ ൌ 0,1, … ሽ, behaves as an 
absorbing Markov chain with state space ሼ0,1, … ,  ,ሽܨ
absorbing state ܨ, and transition probabilities ௜ܲ௝  of 
degradation level transitioning to state ݆ at the next 
epoch if the degradation level is equal to ݅  at the 
current epoch. It is given by  

௜ܲ௝ ൌ ܲሼܼ௡ାଵ ൌ ݆|ܼ௡ ൌ ݅ሽ	, 
݅	ݎ݋݂	 ൑ ݆ ൑  ܨ

(1)

As degradation cannot decrease during a period, 
௜ܲ௝ ൌ 0  if ݆ ൏ ݅ ࡼ .  denotes the matrix of one-step 

transition probabilities ௜ܲ௝. It can be expressed as 

ࡼ ൌ ቂࢀ ࢚
૙ 1

ቃ, (2)

where ࢀ  is the probability transition matrix of the 
transient states of ࡼ (first ܨ row and columns of	ࡼ), 
and ࢚ is the column vector showing the probabilities 
from each state ݅ ൏ ܨ to the failure state	ܨ  (first ܨ 
rows of the last column of ࡼ). 

The ݊-step transition probability of the Markov 
chain from state ݅ to	݆ corresponds to the probability 
that the degradation is at level ݆  right after the 
production of the ݊௧௛ item within the same period. It 
is given by  

௜ܲ௝
ሺ௡ሻ ൌ ܲሼܼ௡ ൌ ݆|ܼ଴ ൌ ݅ሽ 

ݎ݋݂ ݅ ൑ ݆ ൑  .ܨ
(3)

Since ܨ is the absorbing state of the Markov chain, 

ிܲி
ሺ௞ሻ ൌ ܲሼܼ௡ା௞ ൌ ௡ܼ|ܨ ൌ ሽܨ ൌ 1 

∀ ݇ ∈ ሼ1,2, … ሽ. 
(4)

௜ܲ௝
ሺ௡ሻ  is equal to the entry at the ݅௧௛  row and ݆௧௛ 

column of the ݊ െ  transition probability matrix ݌݁ݐݏ
  .௡ࡼ

If ܳ௡	items are planned to be produced in period 
݊ and the degradation level at the beginning of the 

period is ݅, then ௜ܲ௝
ሺொ೙ሻ is the probability that state	݆ ൏

 will be observed at the end of the production run. If	ܨ
a failure occurs right after the production of the 
݇௧௛unit (݇ ൏ ܳ௡ሻ, before the production of the ܳ௡

௧௛ 
unit, the production is stopped. The first passage time 

ிܶ
ሺ௜ሻ, from state ݅	to the failure state ܨ,  has the phase-

type distribution ݄ܲ(݁௜,ࢀ), that is 

ܲቄ ிܶ
ሺ௜ሻ ൌ ݇ቅ ൌ ݁௜. .૚ି࢑ࢀ (5) ,࢚

ܲቄ ிܶ
ሺ௜ሻ ൑ ݇ቅ ൌ 1 െ ݁௜. ࢀ௞. ૚, (6)

where ݁௜  is the ݅௧௛  unit vector. Note that ிܶ
ሺ௜ሻ  takes 

values in terms of units of quantity produced up to the 
failure.  

In case of no failure, the inventory holding cost in 
period 	݊ , where the production lot-size and initial 
inventory level are ܳ௡ and ܫ௡ିଵ, is given by 

ܪ ௖ܰሺܳ௡, ௡ିଵሻܫ ൌ 

ܿ௛ ቈ
௡ିଵܳ௡ܫ
ߩ

൅
ሺܳ௡ ⁄ߩ ሻଶሺߩെ݀௡ሻ

2
 

൅
ሺܳ௡ሺߩെ݀௡ሻ ⁄ߩ െ ܳ௡ ൅ ௡ሻሺ߬ܦ െ ܳ௡ ⁄ߩ ሻ

2
 

൅ሺܫ௡ିଵ ൅ ܳ௡ െ ௡ሻሺ߬ܦ െ ܳ௡ ⁄ߩ ሻሿ, 

(7)
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where ܿ௛ is the inventory holding cost per item per 
unit time, ܦ௡ is the total demand of the period ݊ and 
݀௡ is the demand rate during period ݊ that is equal to 
௡ܦ ߬⁄ . The equation is obtained by the integration of 
the inventory level with respect to total time as 
illustrated in Figure 2; it is equal to the area under the 
curve within a period ݊. 

At the beginning of a period, if the degradation is 
observed to be in state ݅, inventory level is ܫ௡ିଵ and a 
failure occurs during production, then the inventory 
holding cost is expressed as 
 

௖൫ܨܪ ிܶ
ሺ௜ሻ, ௡ିଵ൯ܫ ൌ ܿ௛ 

ቀ1 െ ૚௡൫ܫ௡ିଵ ൅ ிܶ
ሺ௜ሻ െ  ௡൯ቁܦ

ൈ ቎
௡ିଵܫ ிܶ

ሺ௜ሻ

ߩ
൅
൫ ிܶ

ሺ௜ሻ ൗߩ ൯
ଶ
ሺߩെ݀௡ሻ

2
 

൅
൫ܫ௡ିଵ ൅ ிܶ

ሺ௜ሻሺߩെ݀௡ሻ ൗߩ ൯
ଶ
݀௡ൗ

2
቏ 

൅ܿ௛૚௡൫ܫ௡ିଵ ൅ ிܶ
ሺ௜ሻ െ  ௡൯ܦ

ൈ ቎
൫ ிܶ

ሺ௜ሻ ൗߩ ൯
ଶ
ሺߩെ݀௡ሻ

2
 

൅
൫ ிܶ

ሺ௜ሻሺߩെ݀௡ሻ ൗߩ െ ிܶ
ሺ௜ሻ ൅ ௡൯ܦ

2
 

ൈ ൫߬ െ ிܶ
ሺ௜ሻ ൗߩ ൯ 

൅൫ܫ௡ିଵ ൅ ிܶ
ሺ௜ሻ െ ௡൯൫߬ܦ െ ிܶ

ሺ௜ሻ ൗߩ ൯൧, 

(8)

 
and the indicator variable is given by 

 
૚௡൫ܫ௡ିଵ ൅ ிܶ

ሺ௜ሻ െ  ௡൯ܦ

ൌ ൜	1						݂݅		ܫ௡ିଵ ൅ ிܶ
ሺ௜ሻ െ ௡ܦ ൐ 0

.݁ݏ݅ݓݎ݄݁ݐ݋									0	
 

(9)

 
In case of a failure, two cases can occur: (1) the 

total demand is covered ( ிܶ
ሺ௜ሻ ൅ ௡ିଵܫ ൒ ௡ሻܦ	 ; (2) 

demand is not met and lost sales cost is incurred 

( ிܶ
ሺ௜ሻ ൅ ௡ିଵܫ ൏  ௡). The equations for calculating theܦ	

area under the inventory level differs in these cases so 

indicator variable ૚௡ሺܫ௡ିଵ ൅ ிܶ
ሺ௜ሻ െ ௡ሻܦ  is used. In 

case of a failure, the lost sales cost is given by 
 

௖൫ܮ ிܶ
ሺ௜ሻ,  ௡ିଵ൯ܫ

ൌ ܿ௟ max൫0, ௡ܦ െ ௡ିଵܫ െ ிܶ
ሺ௜ሻ൯, 

(10)

 
where the initial degradation level is ݅  and the lost 
sales cost per item is ܿ௟ as in the ݉௧௛ production lot 

(Figure 2). The dynamic programming equation in 
period ݊ for states ݅ ൏  ௡ିଵ is expressed asܫ and ܨ

 
௡ܸሺܺ௡ ൌ ݅,  ௡ିଵሻܫ

ൌ ݉݅݊
୫ୟ୶	ሺ஽೙ିூ೙షభ,଴ሻஸொ೙ஸ୫୧୬	ሺ஼,∑ ஽ೖሻ

ಿ
ೖస೙

 

ቈ݉݅݊ ቈ෍ ௜ܲ௝
ሺொ೙ሻሺ

ிିଵ

௝ୀ௜
૚௡ሺܳ௡ሻܿ௦

൅ ܪ ௖ܰሺܳ௡,  ௡ିଵሻܫ
൅ߛ ௡ܸାଵሺ݆, ௡ିଵܫ ൅ ܳ௡ െ  ௡ሻܦ

൅෍ ܲቄ ிܶ
ሺ௜ሻ ൌ ݇ቅ

ொ೙

௞ୀଵ
ሺܿ௦ ൅	ܨܪ௖ሺ݇,  ௡ିଵሻܫ

൅ܮ௖ሺ݇,  ௡ିଵሻܫ
൅ߛ ௡ܸାଵሺݔܽ݉,ܨሺ0, ௡ିଵܫ ൅ ݇ െ  ,௡ሻሻ൯ܦ

ܿ௣ ൅෍ ଴ܲ௝
ሺொ೙ሻሺ

ிିଵ

௝ୀ଴
૚௡ሺܳ௡ሻܿ௦ 

൅ܪ ௖ܰሺܳ௡,  ௡ିଵሻܫ
൅ߛ ௡ܸାଵሺ݆, ௡ିଵܫ ൅ ܳ௡ െ  ௡ሻܦ

൅෍ ܲቄ ிܶ
ሺ଴ሻ ൌ ݇ቅ

ொ೙

௞ୀଵ
ሺܿ௦ ൅	ܨܪ௖ሺ݇,  ௡ିଵሻܫ

൅ܮ௖ሺ݇,  ௡ିଵሻܫ
൅ߛ ௡ܸାଵሺݔܽ݉,ܨሺ0, ௡ିଵܫ ൅ ݇ െ  .௡ሻሻ൯൧ቃܦ

(11)

 
 ,denotes the production capacity in terms of units ܥ
that is equal to ߬ߩ. The feasible production lot-size 
ܳ௡  in state ሺܺ௡, ௡ିଵሻܫ , must be in ሼmax	ሺܦ௡ െ
,௡ିଵܫ 0ሻ,min	ሺܥ, ∑ ௞ሻܦ

ே
௞ୀ௡ ሽ. 

If a failure occurs in the previous period, then the 
initial degradation state at the beginning of the period 
݊  is ܨ , and the dynamic programming equation is 
given by, 

 

௡ܸሺܺ௡ ൌ ,ܨ  ௡ିଵሻܫ
ൌ ݉݅݊

୫ୟ୶	ሺ஽೙ିூ೙షభ,଴ሻஸொ೙ஸ୫୧୬	ሺ஼,∑ ஽ೖሻ
ಿ
ೖస೙

ሾܿ௖ 

൅෍ ଴ܲ௝
ሺொ೙ሻሺ

ிିଵ

௝ୀ଴
૚௡ሺܳ௡ሻܿ௦ ൅ ܪ ௖ܰሺܳ௡,  ௡ିଵሻܫ

൅ߛ ௡ܸାଵሺ݆, ௡ିଵܫ ൅ ܳ௡ െ  ௡ሻሻܦ

൅	෍ ܲቄ ிܶ
ሺ଴ሻ ൌ ݇ቅ

ொ೙

௞ୀଵ
ሺܿ௦ 

൅ ,௖ሺ݇ܨܪ ௡ିଵሻܫ ൅ ,௖ሺ݇ܮ  ௡ିଵሻܫ
൅ߛ ௡ܸାଵሺݔܽ݉,ܨሺ0, ௡ିଵܫ ൅ ݇ െ  .௡ሻሻ൯൧ܦ

(12)

 
In this case, corrective maintenance is done and its 

cost ܿ௖  is incurred. In the dynamic programming 
equations, the indicator variable ૚௡ሺܳ௡ሻ  takes 1  if 
there is production in period ݊. It can be expressed as 

 

૚௡ሺܳ௡ሻ ൌ ቄ 1 ݂݅		ܳ௡ ൐ 0
0 .݁ݏ݅ݓݎ݄݁ݐ݋

 (13)
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௡ܸሺܺ௡,  ௡ିଵሻ is the total minimum expected costܫ
between ݊	 and ܰ  and 0 ൑ ௡ିଵܫ ൑ min	ሺሺ݊ െ 1ሻܥ െ
∑ ௜ܦ
௡ିଵ
௜ୀଵ , ∑ ௞ܦ

ே
௞ୀ௡ ). The ending value ேܸሺܺே ൌ

݅, ,ேିଵሻܫ  is 0  for all ܺே  and ܫேିଵ  and the final 
inventory level ܫே ൌ 0. To find the optimal production 
and maintenance policy, enumeration is done over all 
feasible values of ܳ௡  in case of preventive 
maintenance and no preventive maintenance. Thus, the 
optimal policy for each period ݊, degradation level ݅ 
and initial inventory level ௡ିଵܫ	  is found. ଵܸሺ ଵܺ ൌ
0,  ଴ሻ is the total minimum expected cost value for theܫ
whole horizon where the initial degradation level ଵܺ is 
0  and the initial inventory level is ܫ଴ ܥ .  is the 
production capacity that is equal to the ߬ߩ . The 
discount factor ߛ is used for the infinite horizon case; 
it is taken as 1 for finite horizon problem. 

5 NUMERIC STUDY 

In this example, the degradation is modelled as a 
discrete-time Markov chain having	8 states. State	0 is 
the as good as new state and state 7 is the failure state. 
The mean time to failure from state 0 is 8.85 in terms 
of units produced. The inventory holding cost per 
item per unit time is ܿ௛ ൌ 1, the production setup cost 
is ܿ௦ ൌ 150, the cost of the preventive maintenance is 
ܿ௣ ൌ 500, the cost of the corrective maintenance is 
ܿ௖ ൌ 1000	and the cost of lost sales per item is ܿ௟ ൌ
500 . The problem is solved for changing demand 
values (Table 1) which are randomly generated 
integers in ሼ0,10ሽ  for finite horizon ܰ ൌ 10 . The 
production rate and fixed time length of one period 
are ߩ ൌ 2 and ߬ ൌ 10 respectively. 

The optimal production and maintenance plan for 
the periods between 6 and 10 are shown in Table 2 
for the specified degradation and inventory states. For 
the degradation state	݅ and the initial inventory level 
ݕ  in period ݊ , ܳሺ݅, ,ݕ ݊ሻ  shows the optimal 
production quantity; optimal maintenance decision is 
shown by either performing preventive maintenance 
“P” or not “N”. Since preventive maintenance is 
always carried out when degradation level is greater 
than or equal to 3, same production quantities are 
optimal as in the	degradation state 0. Infeasible states 
are indicated by “-“. It can be seen from the Table 2 
that if a preventive maintenance action is not carried 
out in a period, then optimal production quantity is 
non-decreasing with the degradation level for the 
same inventory level ݕ . For instance, optimal 
production lot sizes for period ݊ ൌ 8  and initial 
inventory level ݕ ൌ 5 are:	ܳሺ0,5,8ሻ ൌ 1, ܳሺ1,5,8ሻ ൌ
9, ܳሺ2,5,8ሻ ൌ 9, ܳሺ3,5,8ሻ ൌ 4. 

Table 1: Demand values for each period. 

Period 1 2 3 4 5	 6	 7	 8	 9 10

Demand 5 8 4 3 3	 5	 9	 8	 6 2

Table 2: Optimal production and maintenance policies for 
each state and period. 

Periodሺnሻ 	 	

State 6 7 8	 9	 10
ሺ0,2,nሻ 13,N 15,N 12,N	 6,N	 0,N
ሺ1,2,nሻ 12,N 11,N 12,N	 6,N	 0,N
ሺ2,2,nሻ 8,N 10,N 7,N	 6,N	 0,N
ሺ3,2,nሻ 6,N 15,P 12,P	 4,N	 0,N
ሺ0,3,nሻ 13,N 14,N 13,N	 5,N	 ‐
ሺ1,3,nሻ 12,N 11,N 11,N	 5,N	 ‐
ሺ2,3,nሻ 11,N 10,N 11,N	 5,N	 ‐
ሺ3,3,nሻ 6,N 14,P 5,N	 5,N	 ‐
ሺ0,4,nሻ 12,N 13,N 12,N	 4,N	 ‐
ሺ1,4,nሻ 11,N 13,N 10,N	 4,N	 ‐
ሺ2,4,nሻ 10,N 9,N 10,N	 4,N	 ‐
ሺ3,4,nሻ 5,N 6,N 4,N	 4,N	 ‐
ሺ0,5,nሻ 0,N 12,N 11,N	 3,N	 ‐
ሺ1,5,nሻ 0,N 12,N 9,N	 3,N	 ‐
ሺ2,5,nሻ 9,N 8,N 9,N	 3,N	 ‐
ሺ3,5,nሻ 5,N 6,N 4,N	 3,N	 ‐

5.1 Sensitivity Analysis and 
Performance Evaluation 

In this part, the objective function values of the joint 
optimization model are compared with the separate 
optimization model. In the separate optimization 
model, first, the production plan is found by 
minimizing the production costs without considering 
maintenance. Then, optimal preventive maintenance 
decision for each state ሺܺ௡, ௡ିଵሻܫ is found; the 
production quantities are known from the first stage. 

The model is tested for different levels of the 
production setup cost ܿ௦, the preventive maintenance 
cost ܿ௣ and the inventory holding cost ܿ௛. The value 
of each parameter is changed while other parameters 
are kept at their initial values: ܿ௦ ൌ 150, ܿ௛ ൌ 1, ܿ௟ ൌ
500, ܿ௣ ൌ 250 , ܿ௖ ൌ 1000,ܰ ൌ 10		  and the total 
demand of each period is generated as a random 
integer in ሾ0,10ሿ  for each instance. The beginning 
and the ending inventory levels, ܫ଴  and ܫே  are both 
chosen as zero, and the initial degradation level ଵܺ is 
0.  

The cost savings are calculated for five 
independently generated demand values, and they are 
shown in the following tables. Cost savings 
percentages are calculated by  
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൫ܥ ଵܵሺ ଵܺ	, ଴ሻܫ െ ଵܸሺ ଵܺ	, ଴ሻ൯100ܫ
ܥ ଵܵሺ ଵܺ, ଴ሻܫ

, (14)

 
where ܥ ଵܵሺ ଵܺ,  ଴ሻ is the total expected minimum costܫ
of separate optimization model.  

As shown in Table 3, the cost saving percentages 
of the joint optimization model are mostly at the 
highest level for the production setup cost 	ܿ௦ ൌ 50 
and it decreases with the increasing values of 	ܿ௦ for 
each instance. When the setup cost is high, the joint 
optimization model proposes higher production lot 
sizes which leads to higher risks of having failure. 
Thus, the percentage of cost savings are low in this 
case. The optimal production lot-sizes are relatively 
low when the setup cost is lower, so the machine 
degrades less in each lot. Therefore, the possibility of 
having failures and lost sales are lower that leads to 
higher cost savings. 

Table 3: Percentage of Saving (SP) for different values of 
setup cost cୱ. 

	 cୱ	

Instance	 50	 150	 400

1	 15.59% 16.94%	 5.57%

2	 14.45% 10.88%	 5.94%

3	 7.67%	 5.93%	 4.32%

4	 19.04% 12.8%	 6.05%

5	 24.44% 17.97%	 10.89%

Average	 16.24% 12.90%	 6.53%

 
For higher levels of preventive maintenance cost 

values, the amount of the percentage of savings are 
observed to be less for each instance since changes in 
the production plans are less effective for reducing 
the overall costs (Table 4).  

Table 4: Percentage of Saving (SP) for different values of 
preventive maintenance cost ܿ௣. 

	 	 c୮	

Instance	 250	 500	 750

1	 18.12% 8.21%	 5.80%

2	 16.72% 5.66%	 3.25%

3	 7.62%	 4.17%	 5.79%

4	 13.96% 5.34%	 2.99%

5	 15.06% 5.86%	 3.59%

Average	 14.29% 5.84%	 4.28%

 
Table 5 shows the cost savings of the separate and 

joint optimization models for three different levels of 

the inventory holding cost. When ܿ௛ is low, optimal 
lot-sizes tend to be higher in the separate optimization 
model minimizing only production setup and 
inventory holding costs. Because keeping more 
inventory and having a smaller number of production 
runs minimize the total production costs, separate 
optimization model proposes higher quantities of 
production for low inventory holding cost values; 
therefore, there is a higher risk of having corrective 
maintenance and lost sales. 

Table 5: Percentage of Saving (SP) for different values of 
inventory holding cost ܿ௛. 

c୦	

Instance 0.5 1	 2

1 12.95% 9.30%	 9.88%

2 15.47% 7.39%	 5.52%

3 12.09% 5.57%	 4.12%

4 15.73% 14.63%	 9.36%

5 10.15% 8.50%	 8.89%

Average 13.28% 9.08%	 7.55%

6 CONCLUSIONS 

In this study, joint optimization of lot-sizing and 
CBM is studied under time-varying demand for a 
deteriorating production system. The effect of the lot-
size on the machine degradation is considered. A 
stochastic dynamic programming model is 
constructed to find the optimal policy to minimize 
production setup cost, inventory holding cost, lost 
sales cost, preventive maintenance and corrective 
maintenance costs for finite horizon. The proposed 
optimal policy is dynamic; it gives the optimal 
production and maintenance decisions for each 
degradation state, inventory level and period so it 
minimizes overall costs from the current period to the 
end of the planning horizon.  

Numeric study is conducted to present the optimal 
results of the model. Total costs of the joint and 
separate optimization models are calculated, and the 
cost savings are shown for the different levels of the 
cost parameters. The parameters in the numeric 
example are randomly selected to test the model. To 
test the applicability of the proposed model, it could 
be solved for the cases motivated by practice. 

For future research, uncertain demand could be 
considered for the integrated optimization of lot-
sizing and CBM. Adapting the imperfect maintenance 
to our model, which relaxes the assumption that the 
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machine is as good as new after each maintenance 
action, will be investigated. Multi-item production 
systems may be studied for the future research as 
well. 
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