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Abstract: With the emergence of photometric surveys in astronomy, came the challenge of processing and understanding
an enormous amount of image data. In this paper, we systematically compare the performance of five popular
ConvNet architectures when applied to three different image classification problems in astronomy to deter-
mine which architecture works best for each problem. We show that a VGG-style architecture pre-trained on
ImageNet yields the best results on all studied problems, even when compared to architectures which perform
much better on the ImageNet competition.

1 INTRODUCTION

Traditionally, astronomers relied on spectroscopy to
gather data from objects in the sky, which is very
accurate, since it can collect data from thousands of
frequency bands in the electromagnetic spectrum, but
very time-consuming, since it usually works for a
single object at a time and requires longer exposure
times. In recent years, with advances in telescope
and sensor technology, there was a shift towards pho-
tometric surveys, where a trade-off was made: data
from only a few frequency bands are collected, typi-
cally less than a dozen, but for many objects at a time.

With this huge amount of data available, came the
problem of making sense of all of it, and this is where
machine learning (ML) comes into play. There are
many works on how to use ML in astronomy, like
(Ball and Brunner, 2010; Ivezić et al., 2014), but
many of them focus on processing astronomical cata-
log data, which is pre-processed data in table format
based on features extracted from photometric data. In
particular, there are quite a few works that address the
problem of object classification, which can be of dif-
ferent types, such as star/galaxy classification (Moore
et al., 2006) or galaxy morphology (Gauci et al.,
2010).

More recently, with the growing popularity of
Deep Learning techniques applied to images, fu-
eled by the development of the AlexNet architec-
ture (Krizhevsky et al., 2012), some works based on
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Deep Learning for astronomy started to appear. Ex-
amples include star/galaxy classification (Kim and
Brunner, 2016), galaxy morphology (Dieleman et al.,
2015) and merging galaxies detection (Ackermann
et al., 2018), all based on images, and galaxy classifi-
cation based on data from radio telescopes (Aniyan
and Thorat, 2017). However, as we understand it,
Deep Learning techniques have not yet been system-
atically explored in astronomy. This might have to do
with the fact that typically a large amount of labeled
data is required to train deep neural networks. Label-
ing astronomical data is costly, as it requires expert
knowledge or crowdsourcing efforts, such as Galaxy
Zoo (Lintott et al., 2008).

To help alleviate the lack of labeled data inher-
ent to many fields, the idea of Transfer Learning (Pan
and Yang, 2009) was applied to Deep Learning (Ben-
gio, 2012). Deep neural networks trained with huge
datasets such as ImageNet (Deng et al., 2009), which
contains millions of images, can be used as generic
image feature extractors, or be fine-tuned for particu-
lar, much smaller datasets.

In this paper, we present a systematic study of
Deep Learning models applied to different image
classification problems in astronomy. We compare
the accuracy obtained by five popular models in the
literature, when trained from scratch or pre-trained on
ImageNet and fine-tuned for each problem. The prob-
lems we consider are star/galaxy classification, detec-
tion of merging galaxies, and galaxy morphology, on
different datasets. Our aim is to answer the following
questions:
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• Which of the five models is more appropriate to
each classification problem?

• Which set of hyperparameters is the best for each
model and for each problem?

• When is ImageNet pre-training beneficial?

• How do the number of classes and observations
affect model performance?

The structure of this paper is as follows. Section 2
discusses related work on astronomical object clas-
sification. Section 3 details our experimental setup.
Section 4 presents our results, which are next dis-
cussed in Section 5. Section 6 concludes the paper.

2 RELATED WORK

Related work can be split into astronomical object
classification and Deep Learning, as follows.

Astronomical Object Classification: There are
some recurring classification problems in astronomy,
which we describe next. Star/galaxy classification, as
implied by the name, is the identification of an object
from a set of images as a star or as a galaxy. This is
fairly straightforward for bright objects, but becomes
challenging as astronomical surveys probe deeper into
the sky and fainter galaxies begin to appear as point-
like objects. Separating stars from galaxies is impor-
tant for deriving more accurate notions of true size
and true scale of the objects. Detection of Merging
Galaxies from a set of galaxy images is the identifi-
cation of two or more galaxies that are colliding. It
is important for understanding galaxy evolution, as it
can give clues about how galaxies agglomerated over
time. Galaxy Morphology is the study and categoriza-
tion of the shapes of the galaxies. It provides infor-
mation on the structure of the galaxies and is essen-
tial for understanding how galaxies form and evolve.
Galaxies may be separated into four classes – ellip-
tical, spiral, lenticular and irregular – or into multi-
ple sub-classes. The classification problem becomes
harder as more fine-grained sub-classes are consid-
ered. It is worth noting that merging galaxies are in
fact a subclass of irregular galaxies.

The use of Machine Learning techniques for ob-
ject classification in astronomy is well established,
with many works based on neural networks (Ode-
wahn, 1995; Bertin, 1994; Moore et al., 2006) or other
well-known classifiers, such as decision trees (Gauci
et al., 2010), and with most works being based
on hand-crafted feature extraction techniques, typi-
cally by using specific tools, created for and by as-
tronomers (Bertin and Arnouts, 1996; Ferrari et al.,

2015).
More recently, there have been works that suc-

cessfully used Deep Learning techniques, such as
Convolutional Neural Networks (ConvNets), to clas-
sify astronomical objects (Kim and Brunner, 2016;
Dieleman et al., 2015; Aniyan and Thorat, 2017).
These networks take raw pixel values as input and
learn how to extract features during training.

Also, there are works which leverage the fact
that ConvNets are good feature extractors to do
so-called Transfer Learning, that is, taking a Con-
vNet trained to solve one problem and applying it to
images of different domains. Regarding astronomical
data processing, we are aware of works which
implement this idea for the detection of merging
galaxies (Ackermann et al., 2018) and for galaxy
morphology (Sanchez et al., 2018) with good results,
but to the best of our knowledge, our work is novel
in that it presents a systematic comparison of how
different architectures perform in Transfer Learning
setups with various settings, and when presented with
different classification problems.

Deep Learning: The ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) (Russakovsky
et al., 2015) is a competition where different image
classification techniques are evaluated over a very
large dataset, and it was a main driving factor for the
development of ConvNets and Deep Learning in gen-
eral. Since the development of AlexNet (Krizhevsky
et al., 2012), many network architectures have been
proposed, with the twofold objective of improving ac-
curacy on ImageNet and reducing model complexity,
in terms of number of parameters. In Table 1 we show
the number of parameters for a few selected models
over the years, and the improvement is dramatic in
some cases.

Table 1: Selected CNN architectures for ImageNet.

Model Year Top-1 Acc Parameters
AlexNet 2012 0.570 62,378,344
VGG16 2014 0.713 138,357,544

InceptionResNetV2 2016 0.803 55,873,736
InceptionV3 2016 0.779 23,851,784
ResNext50 2017 0.778 22,979,904

DenseNet121 2017 0.750 8,062,504

We next describe how each selected model im-
proved on AlexNet: VGG16 (Simonyan and Zisser-
man, 2014) introduced the idea of using more layers
with smaller receptive fields, which improved train-
ing speed. InceptionV3 (Szegedy et al., 2016b) in-
troduced factorized convolutions, which is a mini-
network with smaller filters, also called Inception
block, which reduced the number of total parameters
in the network. InceptionResNetV2 (Szegedy et al.,
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2016a) added residual or skip connections (He et al.,
2016) to the Inception architecture, with the goal of
solving the problem of vanishing gradients, which can
occur on very deep networks. ResNext50 (Xie et al.,
2017) introduced the ideas of aggregated transforma-
tions and cardinality, which are respectively a net-
work building block and the number of paths inside
each block, which showed improvements in accuracy.
DenseNet121 (Huang et al., 2017) took the idea of
residual connections further and connected each layer
to every other following layer, which reduced signifi-
cantly the number of parameters in the network with-
out losing too much accuracy. This area is in active
development, but the aforementioned ideas are the
ones that had the most significant impact so far.

3 METHOD

3.1 Datasets

For this experiment, we select three datasets, each
representing a different problem in astronomy that
can be addressed by image classification: Star/Galaxy
classification, detection of Merging Galaxies and
Galaxy Morphology. Since the selected Galaxy Mor-
phology dataset has many classes and is highly im-
balanced, we grouped its classes into three differ-
ent views, which enables the evaluation of prob-
lems of Galaxy Morphology of varying difficulty:
easy (2 classes), medium (4 classes) and hard (15
classes). The number of observations varies among
those dataset views because we only included classes
with more than 100 observations. Another challenge
imposed by those datasets is the number of observa-
tions vs. the number of classes: the higher the number
of classes, the smaller the number of observations in
each class.

Each dataset is described next in detail:
Star/Galaxy (SG): 50090 images divided into two
classes: Stars (27981) and Galaxies (22109), ex-
tracted from the Southern Photometric Local Uni-
verse Survey (S-PLUS), Data Release 1 (Oliveira
et al., 2019). Since this dataset is quite large, classes
are balanced and Stars and Galaxies tend to be more
easily identifiable, we consider it to be the easiest
among the evaluated (See Figure 1);
Merging Galaxies (MG): 15766 images divided into
two classes: Merging (5778) and Non-interacting
(9988) galaxies, extracted from the Sloan Digital Sky
Survey (SDSS), Data Release 7 (Abazajian et al.,
2009). This dataset is reasonably large, but the ob-
jects are not as clearly identifiable as in the case of
Star/Galaxy classification (See Figure 2);

Galaxy Morphology, 2-class (EF-2): 3604 images
divided into two classes: Elliptical (289) and Spiral
(3315) galaxies, extracted from the EFIGI (Baillard
et al., 2011) dataset. This dataset is highly unbalanced
towards images of Spiral galaxies;
Galaxy Morphology, 4-class (EF-4): 4389 images
divided into four classes: Elliptical (289), Spiral
(3315), Lenticular (537) and Irregular (248) galax-
ies, extracted from the EFIGI dataset. The additional
classes makes the classification problem harder, since
the objects are not as clearly identifiable as in the 2-
class subset (See Figure 3) and classes are highly un-
balanced as well;
Galaxy Morphology, 15-class (EF-15): 4327 im-
ages divided into fifteen classes: Elliptical:-5 (227),
Spiral:0 (196), Spiral:1 (257), Spiral:2 (219), Spi-
ral:3 (517), Spiral:4 (472), Spiral:5 (303), Spiral:6
(448), Spiral:7 (285), Spiral:8 (355), Spiral:9 (263),
Lenticular:-3 (189), Lenticular:-2 (196), Lenticular:-
1 (152), and Irregular:10 (248) galaxies. The num-
bers after the names come from the Hubble Se-
quence (Hubble, 1982), which is a standard taxonomy
used in astronomy for galaxy morphology. This is the
hardest dataset among the evaluated, since it has only
a few hundred observations for each class.

The images from all datasets were reduced to
76x76 pixels, for implementation simplicity, and the
datasets were split into train (80%), validation (10%)
and test sets (10%).

Star

Galaxy

Figure 1: Sample images from the SG dataset.

Merging

Non-interacting

Figure 2: Sample images from the MG dataset.
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Table 2: Effect of training setup: training from scratch vs. using networks pre-trained with ImageNet on validation accuracy
for all models and all datasets, with λ = 0.1, γ = 0 and the ADAM optimizer. Bold shows best values for each dataset and
model.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.329 0.408 0.350 0.373 0.249 0.303 0.282 0.333 0.126 0.459
EF-4 0.782 0.878 0.802 0.869 0.756 0.830 0.772 0.841 0.756 0.878
EF-2 0.958 0.994 0.958 0.989 0.945 0.992 0.952 0.983 0.919 0.994
MG 0.918 0.857 0.875 0.799 0.634 0.784 0.913 0.826 0.634 0.948
SG 0.986 0.961 0.562 0.951 0.782 0.912 0.972 0.951 0.562 0.990

Table 3: Effect of different regularization settings on validation accuracy for all models and all datasets, with optimal values
for λ and γ inside parentheses and the ADAM optimizer. Bold shows best values for each dataset and model.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.350 (0,2) 0.408 (0.1,0) 0.350 (0.1,0) 0.373 (0.1,0) 0.249 (0.1,0) 0.303 (0.1,0) 0.301 (0.1,2) 0.333 (0.1,0) 0.422 (0,2) 0.459 (0.1,0)
EF-4 0.835 (0,2) 0.881 (0.1,2) 0.802 (0.1,0) 0.869 (0.1,0) 0.756 (0,0) 0.830 (0.1,0) 0.786 (0.1,2) 0.841 (0.1,0) 0.883 (0,2) 0.883 (0.1,2)
EF-2 0.961 (0,0) 0.994 (0.1,0) 0.962 (0,2) 0.989 (0.1,0) 0.945 (0.1,0) 0.992 (0.1,0) 0.962 (0 ,0) 0.986 (0.1,2) 0.950 (0,2) 0.994 (0.1,0)
MG 0.918 (0.1,0) 0.892 (0,2) 0.901 (0,0) 0.799 (0.1,0) 0.883 (0,2) 0.792 (0 ,0) 0.935 (0 ,0) 0.826 (0.1,0) 0.634 (0,0) 0.952 (0 ,0)
SG 0.989 (0,0) 0.973 (0,2) 0.959 (0,0) 0.952 (0.1,2) 0.914 (0,2) 0.921 (0 ,0) 0.990 (0 ,0) 0.952 (0.1,2) 0.989 (0,0) 0.990 (0.1,2)

Table 4: Effect of different regularization settings: difference between validation accuracy showed in Table 2 and in Table 3.
Bold indicates differences greater than 0.1.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.021 0.000 0.000 0.000 0.000 0.000 0.019 0.000 0.296 0.000
EF-4 0.053 0.002 0.000 0.000 0.000 0.000 0.014 0.000 0.127 0.005
EF-2 0.003 0.000 0.004 0.000 0.000 0.000 0.010 0.003 0.031 0.000
MG 0.000 0.036 0.026 0.000 0.250 0.008 0.022 0.000 0.000 0.004
SG 0.003 0.012 0.397 0.002 0.133 0.009 0.019 0.001 0.428 0.000

Elliptical Spiral

Irregular Lenticular

Figure 3: Sample images from the EF-2, EF-4 and EF-15
datasets.

3.2 Training Setup

We select five popular ConvNet architectures for this
experiment, namely VGG16, InceptionV3, Incep-
tionResNetV2, ResNext50 and DenseNet121, as our
starting point. We only use the convolutional part,
i.e., the feature extraction part of each architecture,
and add one 2048-unit dense layer with Glorot weight
initialization (Glorot and Bengio, 2010), constant
bias initialization of 0.01, Leaky ReLU activation
with default settings (Maas et al., 2013), followed
by a Dropout layer (Srivastava et al., 2014) with
0.5 probability of dropping connections, followed
by the softmax layer for classification. Given this
setup, we explore the following directions with the

goal of assessing their effect on the overall network
performance:

Training Setup: we train the networks in two distinct
ways:

• From scratch, based on the data alone – we train
the entire network for up to 200 epochs with
Early Stopping, so the training stops automati-
cally if validation loss diverges from training loss
for more than 10 epochs;

• Fine-tuning based on weights from pre-training
on ImageNet – we first train the newly added top
layers of the network for 10 epochs, with the con-
volutional part frozen, meaning only the weights
from the top layers are updated, and then we un-
freeze the last 7 layers from the convolutional
part, and train the entire network for up to 200
epochs, with the same Early Stopping setup de-
scribed above and using Stochastic Gradient De-
scent optimizer with learning rate of 0.001 and
momentum of 0.9 (Qian, 1999).

Regularization: in addition to Dropout, we use
the following regularization techniques in the hidden
layer:

• L2 regularization (Krogh and Hertz, 1992) (λ): we
set λ ∈ {0.0,0.1}, with λ = 0.0 meaning no L2
regularization;

• Max-norm constraint (Srebro and Shraibman,
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Table 5: Effect of different optimizer settings on validation accuracy for all models and all datasets, with λ = 0.1, γ = 0, with
best optimizer indicated inside parentheses (AD indicates ADAM, RA indicates RADAM, RM indicates RMSprop). Bold
shows best values for each dataset and model.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.350 (RA) 0.408 (AD) 0.375 (RA) 0.380 (RM) 0.301 (RA) 0.305 (RA) 0.364 (RA) 0.333 (AD) 0.417 (RA) 0.459 (AD)
EF-4 0.786 (RA) 0.885 (RA) 0.825 (RA) 0.874 (RM) 0.779 (RA) 0.830 (AD) 0.812 (RA) 0.841 (RM) 0.874 (RA) 0.892 (RM)
EF-2 0.958 (RM) 0.994 (RM) 0.961 (RA) 0.989 (RM) 0.945 (AD) 0.992 (RM) 0.952 (AD) 0.985 (RA) 0.965 (RA) 0.994 (RM)
MG 0.918 (AD) 0.858 (RA) 0.923 (RA) 0.799 (AD) 0.827 (RA) 0.784 (AD) 0.913 (AD) 0.827 (RM) 0.634 (RM) 0.949 (RM)
SG 0.992 (RM) 0.965 (RM) 0.975 (RM) 0.952 (RM) 0.782 (AD) 0.912 (AD) 0.990 (RM) 0.952 (RA) 0.562 (RM) 0.990 (RM)

Table 6: Effect of different optimizer settings: difference between validation accuracy showed in Table 2 and in Table 5. Bold
indicates differences greater than 0.1.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.021 0.000 0.026 0.007 0.051 0.002 0.082 0.000 0.291 0.000
EF-4 0.005 0.007 0.023 0.005 0.023 0.000 0.039 0.000 0.117 0.014
EF-2 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.001 0.046 0.000
MG 0.000 0.001 0.047 0.000 0.193 0.000 0.000 0.001 0.000 0.002
SG 0.005 0.005 0.413 0.002 0.000 0.000 0.019 0.001 0.000 0.000

Table 7: Effect of different optimizer settings: average number of epochs until convergence for all optimizers evaluated. AD
indicates ADAM, RA indicates RADAM, RM indicates RMSprop. Bold values indicate the fastest.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset RM AD RA RM AD RA RM AD RA RM AD RA RM AD RA
EF-15 2.25 4.5 4.5 7 2.75 4.25 6 2 2.5 8.5 2 3.25 13.75 23 17.5
EF-4 10 4.5 4.5 2.5 2.25 3 1.25 1.5 2 1 1.75 5 1 12.75 28
EF-2 13.25 6 8.25 9.75 1.5 2.5 1.25 5 1.75 3.25 13.25 4.75 1 2.5 12.75
MG 18.5 7.25 6.25 1.75 1.25 1.75 2.5 15.75 2 11.25 50.25 5 9 1 1
SG 27.5 27.5 26 50.75 5 2 3 4.5 3.5 26.5 17.25 26.5 14.5 3.5 8.5

2005) (γ): we set γ ∈ {0,2}, with γ = 0 meaning
no max-norm constraint.

Optimizers: we use the following adaptive optimiz-
ers, which are popular in Deep Learning literature:

• RMSprop (RM) (Tieleman and Hinton, 2012);

• ADAM (AD) (Kingma and Ba, 2014);

• RADAM (RA) (Liu et al., 2019).

With this combination of hyperparameter values
and training procedures, we expect to achieve a good
compromise between completeness and a reasonable
time frame for executing the full experiment, which is
comprised by 24 training sessions for each model and
dataset, thus yielding a total of 600 runs.

4 RESULTS

We next present the obtained results for each experi-
ment. First, results corresponding to a preset training
configuration is presented and then effects of vary-
ing the hyperparameters are assessed taking this pre-
set configuration as reference.

4.1 Preset Training

We compare the validation accuracy obtained on each
dataset with models trained from scratch and with

pre-trained models plus fine-tuning. For this assess-
ment, among all results, we selected the ones from the
experiments that used λ = 0.1, γ = 0 and the ADAM
optimizer, as these are commonly used preset values
for those parameters. We see in Table 2 that, with a
few exceptions for the larger datasets (SG and MG),
using pre-training yields models with higher valida-
tion accuracy for all studied datasets, in some cases
by a large margin.

4.2 Regularization
We train all models with different regularization set-
tings to assess their effect depending on training
setup (from scratch or pre-trained), network architec-
ture/model, and dataset. In Table 3 we see the vali-
dation accuracy obtained with the best regularization
settings, for all models and datasets, and in Table 4
we see the difference between results obtained with a
fixed preset (See Table 2) and the optimal. In most
cases the difference is very small, but in a few cases
finding the optimal regularization settings made a sig-
nificant difference. Another interesting finding is that
the significant improvements were achieved only with
training from scratch, which indicates that the pre-
trained network is less sensitive to those settings.
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Table 8: Best models overall: Accuracy achieved for each dataset and model with optimal settings, as described in Table 10.
Bold shows best values for each dataset and model.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.350 0.408 0.392 0.389 0.301 0.310 0.364 0.338 0.436 0.476
EF-4 0.835 0.885 0.835 0.874 0.782 0.830 0.812 0.841 0.883 0.903
EF-2 0.962 0.994 0.969 0.989 0.959 0.992 0.962 0.986 0.994 0.994
MG 0.923 0.894 0.929 0.803 0.896 0.797 0.935 0.827 0.941 0.952
SG 0.992 0.973 0.975 0.952 0.914 0.921 0.992 0.952 0.992 0.991

Table 9: Best models overall: difference between validation accuracy showed in Table 2 and in Table 8. Bold indicates
differences greater than 0.1.

DenseNet121 InceptionResNetV2 InceptionV3 ResNext50 VGG16
Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.021 0.000 0.042 0.016 0.051 0.007 0.082 0.005 0.310 0.016
EF-4 0.053 0.007 0.032 0.005 0.025 0.000 0.039 0.000 0.127 0.025
EF-2 0.004 0.000 0.011 0.000 0.014 0.000 0.010 0.003 0.076 0.000
MG 0.005 0.038 0.054 0.004 0.263 0.013 0.022 0.001 0.308 0.004
SG 0.005 0.012 0.413 0.002 0.133 0.010 0.020 0.001 0.430 0.001

Table 10: Best models overall: Optimal settings (λ, γ and optimizer) used for achieving results in Table 8.
DenseNet121 InceptionV3 VGG16 ResNext50 VGG16

Dataset scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained scratch pre-trained
EF-15 0.0, 2, AD 0.1, 0, AD 0.1, 2, RA 0.1, 2, RA 0.1, 0, RA 0.1, 2, RM 0.1, 0, RA 0.1, 2, RM 0.0, 0, RA 0.1, 2, RA
EF-4 0.0, 2, AD 0.1, 0, RA 0.0, 2, RA 0.1, 0, RM 0.0, 0, RA 0.1, 0, AD 0.1, 0, RA 0.0, 0, RM 0.0, 2, AD 0.0, 0, RM
EF-2 0.0, 2, RM 0.1, 0, RM 0.0, 2, RA 0.1, 0, RM 0.1, 2, RA 0.1, 0, RM 0.0, 0, AD 0.1, 2, AD 0.0, 2, RA 0.0, 2, RM
MG 0.0, 2, RA 0.0, 2, RA 0.0, 0, RA 0.1, 2, RM 0.1, 2, RA 0.0, 2, RA 0.0, 0, AD 0.1, 0, RM 0.0, 2, RM 0.0, 0, AD
SG 0.1, 0, RM 0.0, 2, AD 0.1, 0, RM 0.1, 0, RM 0.0, 2, AD 0.0, 2, RM 0.1, 2, RM 0.1, 2, AD 0.0, 2, RA 0.1, 2, RA

4.3 Optimizers
We experiment with different optimizers to assess the
effect they play on accuracy and convergence speed.
In Table 5 we see the validation accuracy obtained
with the best optimizer for each training setup, model
and dataset, and in Table 6 we see the difference be-
tween results obtained with a fixed preset (Table 2)
and the optimal. In this case, the difference is less
noticeable than in the case of regularization settings,
with only a few combinations showing significant im-
provement. As in the case of regularization, the sig-
nificant improvement, where exists, is achieved only
when training from scratch.

Regarding convergence speed, in Table 7, we see
that in most cases, there is an association between the
fastest optimizer for a certain architecture, regardless
of the dataset. This may indicate that some optimizers
are more suitable to certain types of models, accord-
ing the certain intrinsic characteristics, such as num-
ber of parameters, existence of residual connections,
and so on.

4.4 Best Models Overall
Finally, by combining the best optimizer settings with
the best regularization settings, we get to the best
models overall for each dataset, as seen in Tables 8
and 9. We see that significant improvement can be
achieved by finding the right combination of model,
optimizer and regularization settings for a specific
problem, however, finding those optimal settings can

be very time-consuming. It seems also that there
are only few cases where performance is significantly
better than the preset case. Table 10 shows the opti-
mal settings for each model and dataset.

5 DISCUSSION

We next summarize the obtained insights, as follows.

Which of the five models is more appropriate to which
classification problem?

In Tables 11 and 12 we see the best models for
each dataset, ranked by accuracy, in both training
setups. We notice that the VGG16 architecture
yielded the best performance for all datasets, on both
training setups and in some cases by a large margin.
Since astronomy images are quite simpler than the
ones from ImageNet, usually with an object in the
center surrounded by a dark background, we believe
that VGG16’s much larger number of parameters
might have been instrumental in helping the network
discriminate images that vary little per class. When
looking at the second best model, we see different
trends depending on the training setup: when trained
from scratch, InceptionResNetV2 produced the best
results for the smaller datasets (EF-2, EF-4 and
EF-15), while the larger datasets (SG and MG)
achieved the best results with ResNext50; when
pre-trained on ImageNet, DenseNet121 is the overall
second-best. We also see that InceptionV3 was the
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Table 11: Best models for each dataset, ranked by accuracy, trained from scratch.
EF-15 EF-2 EF-4 MG SG

VGG16 (0.436) VGG16 (0.994) VGG16 (0.883) VGG16 (0.941) VGG16 (0.992)
InceptionResNetV2 (0.392) InceptionResNetV2 (0.969) InceptionResNetV2 (0.835) ResNext50 (0.935) ResNext50 (0.992)
ResNext50 (0.364) ResNext50 (0.959) DenseNet121 (0.835) InceptionResNetV2 (0.929) DenseNet121 (0.992)
DenseNet121 (0.350) DenseNet121 (0.962) ResNext50 (0.812) DenseNet121 (0.923) InceptionResNetV2 (0.975)
InceptionV3 (0.301) InceptionV3 (0.959) InceptionV3 (0.782) InceptionV3 (0.896) InceptionV3 (0.914)

Table 12: Best models for each dataset, ranked by accuracy, pre-trained on ImageNet.
EF-15 EF-2 EF-4 MG SG

VGG16 (0.476) VGG16 (0.994) VGG16 (0.903) VGG16 (0.991) VGG16 (0.991)
DenseNet121 (0.408) DenseNet121 (0.994) DenseNet121 (0.885) DenseNet121 (0.894) DenseNet121 (0.973)
InceptionResNetV2 (0.389) InceptionV3 (0.992) InceptionResNetV2 (0.874) ResNext50 (0.827) ResNext50 (0.952)
ResNext50 (0.338) InceptionResNetV2 (0.989) ResNext50 (0.841) InceptionResNetV2 (0.803) InceptionResNetV2 (0.952)
InceptionV3 (0.310) ResNext50 (0.986) InceptionV3 (0.830) InceptionV3 (0.797) InceptionV3 (0.921)

worse-performing model on almost every case. In
summary, we see a trend emerge, with models con-
taining many parameters performing best, followed
by models with residual connections, followed by
models without residual connections. Since models
with residual connections are faster to train and run
inference on than VGG-style models, a user could
trade-off some accuracy for speed if required.

Which set of hyperparameters is the best for each
model and for each problem?

In Table 10 we see that regularization settings are
highly dependent on the model and training setup, and
less dependent on the data. For example, when trained
from scratch, DenseNet121 achieves top accuracy in
most cases with λ = 0.0 and γ = 2, whereas when pre-
trained on ImageNet, it achieves top accuracy in most
cases with λ = 0.1 and γ = 2. InceptionV3 presents
a similar pattern, while VGG16 works best in most
cases with λ = 0.0 and γ = 2, regardless of training
setup. In the specific case of VGG16, we expected
a model as large as VGG16 to require stronger regu-
larization, but we found that max-norm and dropout
works best, which corroborates the results of (Srivas-
tava et al., 2014). Regarding optimizer, the pattern
is less clear, with some models working best with a
single optimizer depending on the training setup, like
InceptionV3 with RADAM (from scratch) and RM-
Sprop (pre-trained). The RADAM optimizer, which
is fairly new development in the area, performed well
if we look at how many times it appeared as the best
choice, but it does not seem to have a very big im-
provement over ADAM and RMSprop.
When is ImageNet pre-training beneficial?

In all cases except one (which is an almost-tie, for
the SG dataset), the highest accuracy was achieved
by using models pre-trained on ImageNet, with a five
percentage-point-improvement for the dataset MG.
We see this as confirmation that models pre-trained on
ImageNet can be used as generic feature extractors for
images in very different domains, such as astronomy,

with little effort.
How do the number of classes and observations affect
model performance?

We see that VGG16 achieved almost perfect
scores for the larger datasets (SG and MG) on both
training setups. This was expected, since the datasets
are reasonably large and have only two classes each.
The datasets EF-2 and EF-4, despite being quite small
for ConvNets, also worked very well with VGG16,
which might be due to the fact that the images are of
higher quality when compared to the others, and that
they only have a few classes as well. However, in
the case of EF-15, even the best model achieves accu-
racy below 50%. In this case, we believe the higher
number of classes along with the small number of ob-
servations per class played a central role.

6 CONCLUSION

We presented an in-depth study aimed at evaluating
different ConvNet architectures for different astro-
nomical object classification problems. We presented
results for five popular architectures and five datasets
representing three different problems in astronomy.
We showed how training setup, optimizer and reg-
ularization settings affect the accuracy for different
architectures and datasets, and we conclude that for
all problems studied here, VGG-style architectures
pre-trained on ImageNet perform the best, even with
smaller datasets, followed by models with residual
connections such as DenseNet, InceptionResNetV2
and ResNext.

We plan to extend this work in the direction of ex-
ploring different feature extraction techniques, in par-
ticular, by finding ways of leveraging the enormous
amount of unlabeled data which exists in astronomy.

All experiments were executed on a computer
with a quad-core Intel E3-1240v6 running at 3.7 GHz,
64 GB of RAM and an NVidia GTX 1080 Ti GPU
with 11 GB of Video RAM.
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