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In this paper we present a modification to the Dynamic Assignment Vehicle Routing Problem. This problem

arises in parcel to vehicle assignment where the destination of the parcels is not known up to the assignment
of the parcel to a delivering route. The assignment has to be done immediately without the possibility of
re-assignment afterwards. We extend the original problem with a generalisation of the definition of capacity,
with an unknown workload, unknown number of parcels per day, and a generalisation of the objective function.
This new problem is defined and various methods are proposed to come to an efficient solution method.

1 INTRODUCTION

In city logistics, the efficient and effective transporta-
tion of goods in urban areas is important. For the
community as a whole however, taking into account
the negative effects on congestion, safety, and en-
vironment (Savelsbergh and Van Woensel, 2016) is
important. These aspects come together in consoli-
dation and transshipment on satellite locations with
cross docking, redistributing the incoming freight into
other, possibly smaller vehicles to serve customers.
This results in a 2-echelon distribution and vehicle
routing problem (2E-VRP), which are described in
the survey of (Cuda et al., 2015). The authors of this
survey consider strategic planning decisions, includ-
ing decisions concerning the infrastructure of the net-
work, and tactical planning decisions, including the
routing of freight through the network and the allo-
cation of customers to the intermediate facilities. At
the tactical level, the customer locations are consid-
ered known. This is not the case in most situations in
practice. There, a considerable part of the customer
locations is revealed late in the process. This brings
us in the field of dynamic vehicle routing problems.
The review of Pillac et al. (Pillac et al., 2013)
gives an overview of dynamic vehicle routing prob-
lems. They make a separation of those problems be-
tween ‘static and dynamic’ on one axis and ‘deter-
ministic and stochastic’ on the other axis. This gives
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four fields of research. In field (1) ’static and deter-
ministic problems’, all input is known beforehand and
vehicle routes do not change once they are in exe-
cution, see for an overview of these classic vehicle
routing problems (VRPs) (Baldacci et al., 2007). In
field (2), ‘Static and stochastic’, problems are charac-
terised by input partially known as random variables,
which realisations are only revealed during the exe-
cution of the routes, see for example (Bertsimas and
Simchi-Levi, 1996). Here also clustering techniques
for stochastic data can be used (Ngai et al., 2006).

In field (3) ‘dynamic and deterministic’ problems,
part or all of the input is unknown and revealed
dynamically during the design or execution of the
routes. These problems are also called online VRP
problems (Bjelde et al., 2017; Jaillet and Wagner,
2008). Similarly, in the problems of field (4), ‘dy-
namic and stochastic’ problems, a part or all of their
input unknown. The unknown information is revealed
dynamically during the execution of the routes, but in
contrast with the latter category, exploitable stochas-
tic knowledge is available on the dynamically re-
vealed information. See for a survey (Ritzinger et al.,
2016). In addition, methods based on anticipation can
be used (Ulmer et al., 2015).

In (Phillipson and De Koff, 2020) the Dynamic
Assignment Vehicle Routing Problem (DA-VRP) is
introduced. This is a field (3) ‘dynamic deterministic’
VRP, however, the assignment of the parcels is done at
the same time the destination is revealed. This means
that the planning is done dynamically, but in contrast
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to the common dynamic case, it is done in upfront,
where the route is not being executed yet, giving the
possibility to change the order per route, but not to
interchange between the routes. This problem relates
directly to the practice in parcel distribution. Often,
a satellite location where the incoming parcels have
to be distributed over a number of vehicles to deliver
them to the customers, has no, or a rather small, space
for storage. This means that the parcels have to be as-
signed directly, after unloading and scanning, to an
outgoing vehicle. There is no possibility to reassign
on a later moment in time. The parcels are delivered
to the assigned vehicle instantaneously. The destina-
tion of the parcels is not known on beforehand and is
revealed only at arrival at the satellite location.

In (Phillipson and De Koff, 2020) an approach is
presented to solve this problem. However, some as-
sumptions are made there that will be generalised in
this work. This generalisation will be on:

o the capacity of the routes: this is now not only
driven by the number of parcels, but also by the
(time) length of the tour. The tour cannot be
longer than a specific time ¢.

o the forecast: we do not longer know the exact
number of parcels to be distributed per day. In
some cases we assume we have some approximate
forecast using a seasonal or weekly pattern.

o the objective: the objective to be minimised is
no longer only the total distance of the tours in
kilometres, but a combination of this total dis-
tance (monetised by multiplying it with a price-
per-kilometre) and the costs (salary cost per hour)
of the driver. For this we will round the number of
hours per driver to a certain amount (7 or 8 hours)
to illustrate what happens when a driver can only
be hired for (almost) a whole day.

The remaining of this paper is organised as fol-
lows. First, in Section 2, we present the general
approach to come to a dynamic assignment of the
parcels to the routes. In Section 3, we elaborate on
the cases we use to show the performance of the vari-
ous approaches. Conclusions can be found in Section
4,

2 METHOD

In this section we present an approach that can be used
to assign the parcels to the routes. In (Phillipson and
De Koff, 2020) two steps were distinguished:

1. Initial assignment of direction to routes;

2. Dynamic assignment of arriving parcels;
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The first step gives a potential direction to each of the
routes, or none if empty vehicles are used, by assign-
ing a base load, a certain region or some initial direc-
tion. The second step assigns directly the incoming
parcels to the routes. The uncertainty about the num-
ber of parcels per day will lead to two extra steps in
our approach:

1. Initial assignment of direction to routes;
2. Dynamic decision of daily fleet size;

3. Dynamic assignment of arriving parcels;
4. Post-processing.

All steps will be discussed in more detail in the next
sections. In Section 2.3 solution techniques that are
used, are presented in more detail. After those steps
the load assigned to all routes is known and for each
route a regular TSP can be solved.

2.1 Assumptions and Notation

In a Dynamic Assignment Vehicle Routing Problem
(DA-VRP) k parcels arrive at a location in a specific
order. In that specific order, each of the parcels reveal
their destination and have to be assigned immediately
to one of the m (identical) vehicles, that will deliver
the parcel to its destination. Each parcel requires one
capacity unit of the vehicles and all vehicles have ca-
pacity C. When assigning the jth parcel, vehicle i can
only be regarded iff n; < C, where n; equals the load
of vehicle i at that current moment. No information
is known or used about the geographical location of
the client. Only a estimation of the total volume is
assumed, based on a similar day in the past.

2.2 Detailed Steps
We go into more detail on each of the four steps.

Step 1: Initial assignment of direction to vehicles. Itis
helpful to give an initial direction or assignment of a
certain area to each of the routes. This is done in Step
1 of the approach, the initial assignment. We consider
two possible approaches:

1. Separation by dummy location - We perform a k-
Means clustering over all potential customers and
assign a dummy parcel, having as location one of
the cluster means, to each route. K-means clus-
tering (James et al., 2013) aims to partition obser-
vations into k clusters, in which each observation
belongs to the cluster with the nearest mean.

2. Total geographical separation - Again we perform
a (k-Means) clustering over all potential customer
locations (postal codes) and assign each of those
(postal codes) clusters to a route.
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Step 2: Dynamic decision of daily fleet size. In
(Phillipson and De Koff, 2020) the (exact) number
of parcels is known in advance and from that we can
compute the number of routes we need, given only
a capacity constraint on the number of parcels. How-
ever, now we don’t know the number of required vehi-
cles for two reasons. Firstly we don’t (exactly) know
the number of parcels per day and, secondly, we don’t
know the location of the parcels and thus we don’t
know the (time) lengths of the resulting routes. This
means that we have to decide on the number of routes,
somewhere before, during or after the assignment of
arriving parcels. We actually do all three: we start
with a certain number, add extra routes during the
sorting process and finally, we combine, where pos-
sible, routes into one route after sorting. This also
means that Step 2 and Step 3 are happening some-
what in parallel: the number of tours are not defined
beforehand but during the assignment. For the sake
of clarity, we will use the term four for the first three
steps. The result of the third step will then be a num-
ber of tours with parcels assigned to it. In Step 4 the
tours will be assigned to routes, that can be executed
by vehicles.

In Step 2 we decide on the number of tours to start
with, and on the procedure and conditions to add an
extra tour to the problem. We looked at two possible
approaches for this step. For both approaches we as-
sume a (rough) estimation of the number of arriving
parcels, coming from a seasonal or weekly pattern.
We estimate the number of tours to distribute these
parcels and call this number N for a certain day. The
two approaches are now:

1. ‘Overall capacity based’ - Start with nN < N
(0% < n < 100%) tours. When the overall tour
load gets higher than a certain value ¢ (0% < ¢ <
100%) during the assignment phase, we add an
extra tour.

2. ‘Tour capacity based’ - Start with nN < N (0% <
n < 100%) tours. When the tour load of a specific
tour is higher than a certain value ¢ (0% < ¢ <
100%) when trying to assign a parcel to it, we add
an extra tour and assign this parcel to it.

We found in prior analyses that approach 2 performs
better than approach 1 and that approach 2 performed
best with parameters n = 75% and ¢ = 99%. Note
that these parameters are case specific.

Step 3: Dynamic assignment of arriving parcels.

Next, three methods for the third step, the dynamic

assignment of arriving parcels, are proposed:

1. Based on minimal insertion costs — for all tours
we calculate the minimal cost of inserting the ar-
riving parcel destination to the tour. Details of this

approach are in the next section. We assume that
the assigned parcels are ordered in the routing of
the tour, so we can calculate the cost by trying to
insert the parcel between each pair of consecutive
parcels in the tour. The insertion that is cheapest
is selected.

2. Based on minimal insertion costs with penalty —
for all tours we calculate the minimal cost of in-
serting the arriving parcel destination to the tour.
Again, as we assume that the assigned parcels are
ordered in the routing of the tour, we can calcu-
late the cost by trying to insert the parcel between
each pair of consecutive parcels in the tour. The
cost is multiplied by a penalty factor, depending
on the load of the tour. The insertion that is cheap-
est will be selected. The calculation of the penalty
is explained in the next sub-section.

3. Based on fixed clusters — here the parcel is simply
assigned to the tour it belongs to, using the total
geographical separation of the initial stage, based
on customer or postal code of the customer.

When, by one of these methods, the assignment is
determined, the parcel is inserted on the right place
in the route of the selected vehicle, meeting the
assumption of ordering.

Step 4: Post-processing. In the post-processing step
we assign tours to vehicles. Due to the fact that we
do not know the exact number of parcels and the driv-
ing times, and due to the heuristic character of Step 2,
we can end with tours that are small and can be com-
bined (together) to one vehicle. Again we consider
two flavours.

1. Combining: Assume that the tours start and end
at the depot, such that any two tours can be com-
bined, as long as the time restriction, the maxi-
mum driving time of the driver, is met. The re-
striction on the number of parcels is not impor-
tant, due to the extra stop at the depot. It also
is not important which two tours are combined,
where we assume that there is no gain to obtain
by combining two (near) tours smartly. In this
post-processing step we just try to minimise the
number of vehicles, given the tours. We do so in
a greedy way, start with the longest tour and try
to add the longest tour as possible that fits the re-
quirements.

2. Integrating: Optimise further by integrating com-
bined tours, such that they do not have to go to
the depot in between. For this we use a greedy
heuristic as shown below:

(a) Sort the tours on available capacity;
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(b) Take the tour with the smallest available capac-
ity (but not zero);

(c) Take a number (max 20) of the largest tours that
can be combined with this tour, within the ca-
pacity constraints;

(d) Calculate the costs of the integrated routes of
those combined tours and select the best. Com-
bine those tours into one;

(e) Go back to step (b) until no combinations can
be made.

Integrating tours, in the second option, means that two
tours are combined by removing the extra stop at the
depot (D). For example, if we have two routes, visit-
ing customers with ID 1-10:

route 1: D-1-2-3-4-D,

route2: D-5-6-7-8-9-10-D.

Those can be combined to each of the following two:
D-1-2-3-4-5-6-7-8-9-10-D,
D-5-6-7-8-9-10-1-2-3-4-D.

2.3 Solution Techniques

We use two mathematical solution techniques within
our approaches: k-Means clustering method, and the
Insertion method (with penalty).

For the k-Means clustering method in the Sepa-
ration methods we use the basic Matlab implementa-
tion, ‘kmeans(X, k)’

The Insertion method works as follows. We as-
sume that already each tour i has a sorted route in-
dicated by the (x,y) coordinates of the destination of
the parcels, starting and ending at the satellite location
with coordinates (x;0,yi0) = (X0,Y0):

(Xi.0,3i.0)5 (Xi, 152015+ + s (Xigs Vins )5 (X2,05 91,0 -
Now, a parcel with coordinates (x,y) has to be as-
signed to a cluster. For each tour i, determine the pair
of consecutive points &,/ such that

d; = Irlcljlnd((xi,k7Yi,k)v (x,3)) +d((x,), (xi1,i1))

—d((Xi s Yik)s (X0, Vip))
is minimal for all pairs &, I, where d((x1,y1), (x2,2))
denotes the distance between two destinations, noted
by their (x,y) coordinates. The parcel will now be
inserted, on the spot between k; and [/, in the tour
i that minimises d; for all i. In case of the Insertion
method with penalty, this distance is multiplied by a
penalty factor (1+ p;) where

pi=P-max(n;/C,;/T),
where P is the chosen penalty value, n; the current
load of tour i, C the capacity of the tour, #; the time-
length of tour i and 7' the maximum length of the tour.
The value of P is case dependent. A part of the data
can be used to calculate the best value of P.
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3 RESULTS

In this section we show the performance of the ap-
proach in practice. The use case is based on real data
from a Dutch satellite location, of November 2018.
Here, every day, on average 12,000 parcels are han-
dled. We disregard the pick-up orders, where a parcel
has to be collected. This satellite location serves a ge-
ographical area of approximately 80x100 kilometres.

The first analysis compares two approaches, each
of which is a different implementation of the four
steps, as presented in Section 2. In the second anal-
ysis we will look if we can say something about the
optimal number of tours. The last analysis looks at
the performance of the alternative method of step 4,
which is harder to implement in practice.

For the first analysis, we compare two approaches,
we will call approach 1 ‘Base’ and approach 2 ‘Al-
ternative’. The idea of ‘Base’ is that there is a fixed
assignment of an area (postal code based) to (a set of)
routes. This approach is used often in practice. We
will present approach ‘Alternative’ as an alternative
approach. The approaches are explained in detail in
Table 1. We looked at the best penalty parameter for
approach 2. We found that a low penalty (or even
zero) performs best. This means we actually use the
‘filled by insertion approach’ in Step 3. It was benefi-
cial to keep some slack in the routes when the number
of routes was known (but fixed during assignment), to
have the possibility to assign some very well fitting
parcels to a tour. However, in this problem we want
to assign the parcel to the best route possible. If that
route is fully loaded, we just add a new route. As-
suming the (fictional) costs per kilometre of 0.6 euro
and cost per driver hour of 15 euro, for the data of
November 2018, the ‘Alternative’ approach performs
9.5% better in total cost, as is shown in Table 2. The
table shows the costs of the tours, based on distance
(in euro), the costs of the drivers (in euro) and the
total costs (all averages per day). In addition in the
table are displayed the number of tours, after Step 3,
and the number of vehicles after the post-processing
Step 4, resulting from combining tours.

We see that the process results in a certain num-
ber of tours after Step 1-3 and a certain number of
vehicles resulting from the post-processing step. The
question of the second analysis is whether we can say
something about the optimum number of tours and
the optimum number of routes. For this we run the al-
gorithms (without Step 2) for a fixed number of tours
and derive the number routes and the costs for that so-
lution. We do that for a specific day (having 11,100
parcels). A theoretical minimum of routes needed
equals 61, when the capacity is only based on the
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Table 1: Overview of two approaches.

‘Alternative’

‘Base’
Step 1 | Total geographical separation
Step 2 | Tour capacity based
Step 3 | Fixed Clusters
Step 4 | Combining

Table 2: Result for first analysis.

‘Base’ | ‘Alternative’
Distance (euro) 10,472 9,012
Driver hours (euro) 14,577 13,633
Total costs (euro) 25,049 22,645
Tours (Step 1-3) 142 130
Vehicles (after Step 4) 116 112

number of parcels per route, which is assumed 180,
or 90, when the capacity is time based, assuming an
average of 150 km per route per day. We vary the
number of tours between 160 and 110. The algorithm
does not find solutions having less than 117 tours. For
a low number of tours, all parcels are forced in tours
that can be one-on-one translated into routes. How-
ever, when filling the tours, some tours may become
full and the parcels have to be assigned to ‘less op-
timal’ tours. Choosing a high number of tours, we
might end up with a number of (very) small tours, that
cause a lot of empty capacity in the routes. Note that
we restrict ourselves to combining a maximum num-
ber of two tours. The results for this analysis can be
found in Figure 1. We see (using a polynomial trend
line) that there actually is an optimal number of tours,
around 144 for ‘Base’ and 140 for ‘Alternative’ (ALT
in the figure). Resulting in a minimum number of ve-
hicles of 105 for *Alternative’.

If we now change the method in step 4 to ‘inte-
grating’ instead of ‘combining’, we get even better
results. The results are displayed in Figure 2. There
is shown that using ‘integrating’, a further increase in
the number of tours leads to lower costs, which ap-
peared to be at a resulting number of vehicles of 91.
This is already close to the theoretically estimated op-
timum.

4 CONCLUSIONS

In this study we looked at the Dynamic Assignment
Vehicle Routing Problem. In contrast to earlier re-
search, we now assumed the capacity of the routes
based on both the number of parcels and the driving
time, we assumed the number of parcels per day to be
unknown and we optimised the total costs. The two
main conclusions for this problem are:

Separation by dummy location
Tour capacity based

Minimal insertion (with penalty)
Combining

1. Using the 4-step approach with a variable number
of routes can be beneficial, leading to lower costs
of around 9%.

2. Assigning parcels to a higher number of tours,
and combining them to routes afterwards gives an-
other gain of around 15%.

These gains are calculated against the ‘Base’ ap-
proach, which serves as an approximation for the ap-
proach used in practice.

A few remarks on these conclusions. The im-
provement in performance by using a larger num-
ber of tours, and then combining those to real routes
driven by vehicles, is obvious. Theoretically, a num-
ber of tours equal to the number of parcels and then
combining those tours, thus consisting of exactly one
delivery, is optimal. However, this is obviously equal
to solving the underlying VRP problem, which is hard
for those number of deliveries. Also, clustering the
deliveries in a smart way and conducting the VRP on
those clusters is a smart heuristic in some way. The
question now is how big those clusters should be, or,
how many clusters you should have. We see in the
example that at a small number of clusters (relative to
the number of parcels) 160 clusters vs 11,000 parcels
leads to a number of vehicles that is already close
to the theoretical minimum number. An even bigger
number of clusters and a higher number of routes to
be combined is not expected to give a huge increase
in performance. Note that the presented approach can
be seen as an example of multi-tier territory cluster-
ing and multi-plane meshed hub within the Physical
Internet approach (Tu and Montreuil, 2019). They in-
troduce flexibility to assign resources (depots, vehi-
cles) to delivery-addresses.

The ‘BASE’ approach leads in practice to a sit-
uation in which drivers have a largely fixed delivery
area. The practical question now is whether drivers
are willing to change their way of working. In the
new setting they might have a combination of multi-
ple delivery areas that might change every day. Note
that this could be solved by assigning (tactically) a
number of tours to drivers, where they will only serve
a subset of those tours per day, increasing their oper-
ating area. Here a bigger number of tours could be
beneficial. Also, one would have to check whether
the combining of tours to the vehicles is workable
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Figure 1: Costs as function of tours, after combining tours.
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Figure 2: Costs as function of tours, after integrating tours.
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