
Bayesian Networks based Policy Making in the Renewable  
Energy Sector  

Moldir Zholdasbayeva1,*, Vasilios Zarikas1,2,† and Stavros Poulopoulos3,‡ 
1Department of Mechanical and Aerospace Engineering, Nazarbayev University,  

Kabanbay Batyr 53, Nur-Sultan 010000, Kazakhstan 
2General Department, Theory Division, University of Thessaly, Volos, Greece 
3Department of Chemical and Material Engineering, Nazarbayev University,  

Kabanbay Batyr 53, Nur-Sultan 010000, Kazakhstan 

Keywords: Bayesian Networks, Expert Models, Renewable Energy, Geothermal Energy, Hydro Energy.  

Abstract: Extensive research on energy policy nowadays combines theory with advanced statistical tools such as Bayes-
ian networks for analysis and prediction. The majority of these studies are related to observe energy scenarios 
in various economic or social conditions, but only a few of them target the renewable energy sector. Therefore, 
it is crucial to design a method to understand the causal relationships between variables such as consumption, 
greenhouse emissions, investment in renewables and investment in fossil fuels. This research paper aims to 
present expert models using the capabilities of Bayesian networks in the renewable energy sector, considering 
renewables in two countries: Germany and Italy. For this purpose, expert models are built in BayesiaLab with 
supervised learning. An augmented naïve model is applied to quantitative data consisting of the consumption 
rate of geothermal and hydro energy sectors. As a result, it is indicated that in the optimum case, geothermal 
and hydro energy consumption will be increased in parallel with investment. It is found that, as oil price grows, 
greenhouse emissions will decrease. The precision of the expert model is no less than 90%.  

1 INTRODUCTION 

Bayesian networks are widely being used in various 
fields of study, namely in environmental (Martos et 
al., 2016; Marcos et al., 2018; Ropero, Renooij and 
Gaag, 2018), ecological (Barton et al., 2016; Corani 
and Scanagatta, 2016; McLaughlin and Reckhow, 
2017; Orun et al., 2018; Liu and Callies, 2019), sus-
tainable development (Keshtkar et al., 2013; Franco 
et al., 2016), agricultural (Mukashema, Veldkamp 
and Vrieling, 2014; Barton et al., 2016), mapping 
(Landuyt et al., 2015; Gonzalez - Redin et al., 2016), 
risk management (Gerstenberger et al., 2015; Tang et 
al., 2016a, 2016b; Kabir and Papadopoulos, 2019),  
reliability (Amrin, Zarikas and Spitas, 2018; 
Kameshwar et al., 2019), medicine (Zarikas, 
Papageorgiou and Regner, 2014; Zarikas et al., 2018) 
and safety (Zarikas et al., 2013; Washington et al., 
2019). Further, the theory behind Bayesian networks 
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can be applied in diverse research areas to analyze the 
numerous data (Bapin and Zarikas, 2014; Amrin, 
Zarikas and Spitas, 2018). It is a prognostic method 
for conducting diagnostics and calculating probabili-
ties, which is useful for uncertain data (Conrady, 
Jouffe and Elwert, 2014; Zarikas, 2014).  

It is important to point out that the majority of 
studies have been dedicated to the energy sector based 
on the latest environmental report (Borunda et al., 
2016). However, with the vast volume of data, there 
are a few studies related to the use of Bayesian  
networks in the renewable energy sector (Res et al., 
2009; Cinar and Kayakutlu, 2010; Borunda et al., 
2016; Gambelli et al., 2017), particularly for the  
energy policy cases (Kumar et al., 2010; Bhowmik et 
al., 2017). Therefore, it is pivotal to develop a tech-
nique to predict future progress in this field for the 
sources of energy such as geothermal energy, hydro  
energy, bioenergy, solar energy, wind energy. For this 
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purpose, energy policies are important, so that they can 
contribute to the understanding of the future market for 
renewable energy production and consumption.  

Case studies may be considered to be an effective 
method to create energy policies (Kim et al., 2018). 
For this, the algorithms in Bayesian networks can be 
modified and built in relevance with structural re-
strictions of the system (Campos and Castellano, 
2007; Pitchforth and Mengersen, 2013; Perreault and 
Sheppard, 2019). Two approaches can be applied to 
data analysis in the renewable energy sector such as 
supervised and unsupervised learning. In case of un-
supervised learning, it is useful to determine the 
causal relationships between variables, otherwise, su-
pervised learning allows referring to one variable at a 
time (Conrady, Jouffe and Elwert, 2014). One of the 
relevant studies using unsupervised learning in BNs 
in this field is dedicated to forecasting the investment 
in the renewable energy sector in Turkey for the years 
1970 to 2007 (Cinar and Kayakutlu, 2010). Several 
variables, which were expected to have even a slight 
impact on energy investment, were chosen. Also, 
gross domestic product, renewable energy produc-
tion, fossil fuel production, urbanization, and indus-
trialization were directly imported to Bayesian net-
work. Three scenarios were created (optimistic, stable 
and pessimistic). As a result, in the optimistic sce-
nario investment in renewables grew with a gradual 
decrease in greenhouse emissions. This leads to the 
fact that with a high rate of industrialization process 
and GDP the demand for renewables increases.  

Another study in this area is related to the predic-
tion of the future market of biofuels using supervised 
learning in Italy by 2030 (Gambelli et al., 2017). Two 
scenarios were developed such as “best scenario” and 
“worst scenario”. As an outcome, in the best scenario 
biofuels would demonstrate the highest percentage of 
market involvement in the near future. Nevertheless, 
one requirement is needed: advanced technological 
development and environmental policies should be 
taken into action simultaneously.  

The main aim of current research is to develop ex-
pert models (Tselykh, Tselykh and Barkovskii, 2018; 
Jha, 2019) for the renewable energy sector using a su-
pervised learning technique. Methodologies above 
will be modified to create expert models, concerning 
two energy sectors: hydro energy and geothermal en-
ergy. In addition, the application of Bayesian net-
works in the determination of the best scenarios for 
geothermal energy shows only 2 percent of research 
papers addressed this type of renewable, whilst for 
hydro energy, it is 21 percent (Borunda et al., 2016). 
Particularly, these studies will be concentrated on the 
widely used energy source (hydro energy) and on the 

least favourable one (geothermal energy). Factors as 
GDP, fossil fuel and renewables consumption, green-
house emissions will be taken into account to verify 
the results obtained from previous research. 

In the following section, modified methods for 
this research will be given and explained. K-Folds 
analysis method will be discussed. In Section 3, re-
sults will be shown regarding the optimum and mini-
mum cases for the renewable energy sector with max-
imum and minimum consumption rate. In Section 4, 
conclusions will be drawn regarding expert models 
and the impact of selected variables on renewables. 

2 METHODOLOGY 

Data analysis for the identification of the optimum 
and minimum cases for the renewable energy sector 
is undertaken using BayesiaLab software (Conrady 
and Jouffe, 2015). The optimum case is this with the 
highest percentage of the increase in renewable con-
sumption and the minimum case is the less optimistic, 
where a significant decrease in renewable consump-
tion will be observed by inserting evidence to a 
model. Data on renewables is obtained from the offi-
cial site of OECD (Organisation for Economic Coop-
eration and Development). OECD is an organization 
that provides a wide range of data on economics, wel-
fare, energy, and investment with open availability. 
Specifically, data on import and export, the consump-
tion and the electricity production and price, the pro-
duction of greenhouse emissions is collected from the 
dataset ‘Renewables balance’ and data on GDP is 
taken from ‘Energy statistics’ for two countries (Ger-
many and Italy) for the years 1990 – 2017 (Organisa-
tion for Economic Cooperation and Development 
[OECD], n.d.). The information on the investment for 
both renewables and fossil fuels is extracted from 
‘RD&D Budget’, whereas data on patents is from ‘Pa-
tent statistics’. Finally, data on gold and oil prices is 
from ‘Main economic indicators’. Renewables such 
as geothermal energy and hydro energy are used for 
the preliminary analysis related to its full availability 
and will be shown as separate models next sections.  

2.1 Augmented Naïve Bayesian Model 

To analyze those cases mentioned above, expert  
models are created. The first stage for this is to  
identify the discretization method and the learning 
type. The supervised learning algorithm is used for 
this research, considering that consumption of either 
renewable type will be set as a target variable.  
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Before these steps will be conducted, it can be   
mentioned that the discretization type is chosen to be     
“Tree” for supervised learning for “Oil_Price (RI)”, 
“TRenEnergy_import (ktoe)”, “Gold_ Price (US dol-
lars)”, “TRenEnergy_export (ktoe)”,“Geothermal_-
electricity (GWh)”, “GDP”, “Investment_renewables 
(millions)”, “Investment_fossilfuels (millions)”, “En-
vironPolicy (%)”, “Electricity_Price (RI)”, “GhEmis-
sions_production (tonnes)”, “Geothermal_techpa-
tents”. A tree is considered to be the most commonly 
used discretization methods for supervised learning. 
The major process involves using the class infor-
mation of child nodes and applying a hierarchical dis-
cretization based on the correlation. The reason be-
hind applying this type of discretization lies in the op-
timization process of correlation between the target 
variable (“Geothermal_consumption (ktoe)”) and 
predictor variables.  

The manual discretization process is applied to 
“Geothermal_consumption (ktoe)” with generating 
states by choosing R2-GenOpt discretization type 
based on the regression model (Montgomery and 
Runger, 2014):  

 
ܴଶ ൌ ܵܵோ/்ܵܵ                           (1) 

 
It can be clearly shown from the above formula 

that a sum due to regression is over a total sum of 
squares, considering that discretization is chosen for 
strengthening the connection between discrete and 
continuous variables. This is called genetic optimiza-
tion. 

It can be noted that all variables are continuous 
while supervised learning requires at least one dis-
crete target variable. Therefore, using R2-GenOpt 
converts a continuous variable to a discrete one (“Ge-
othermal_consumption (ktoe)”). Values for missing 
parts of the data are generated by Missing Values Im-
putation, which gives the Structural EM method, ap-
plicable to a small set for data for the purpose of this 
research (Conrady, Jouffe and Elwert, 2014). The 
method of Structural Expectation Maximization is 
based on finding the ‘most suitable’ estimate for the 
missing part of the dataset by evaluating possible 
structures for the parameter.   

For the strength of each arc, Pearson’s correlation 
method is used by showing the strongest and the least 
strong connections. Thus, the structural analysis uses 
Pearson’s correlation coefficients 
 
ܲ൫ߙ௜, ௝൯ߙ ൌ ,௜ߙሺݒ݋ܿ ௜ሻߙሺݎܽݒ௝ሻ/ඥߙ ∙  ௝ሻ   (2)ߙሺݎܽݒ

 
for evaluating the differences between two nodes and 
summation of the resultant values, which gives the 

values with high precision and accuracy (Mu, Liu and 
Wang, 2018).  

Furthermore, a supervised learning procedure is 
carried out by choosing the augmented naïve model. 
It is applicable to analyze a small set of data. The 
structure of the augmented naïve model is character-
ized by having similar properties as the naïve model, 
but adding a higher precision and accuracy to the 
model (Figure 1(b)). It is, therefore, achieved by cre-
ating new connections between the adjacent nodes 
(Montgomery and Runger, 2014). In the naïve model, 
nodes are considered to be independent of each other 
without any correlation between neighboring nodes 
(Figure 1(a)).  

 

a) 

 

b) 

Figure 1: A simplistic naïve and augmented naïve models 
(Y – target node; N1, N2, N3 – child nodes): a) naïve model; 
b) augmented naïve model.  

The augmented naïve model uses the famous 
Bayes formula to identify joint probabilities not only 
between dependent variables and one target variable, 
but also correlations between several child nodes. 

  
ܲሺܤ|ܣሻ ൌ ܲሺܣ|ܤሻ ∙ ܲሺܣሻ/ܲሺܤሻ            (3) 

2.2 K-Folds Analysis 

In order to demonstrate the precision of each model 
presented in these studies, k-folds analysis is exe-
cuted. K-Fold cross-validation is useful in machine 
learning to evaluate the precision of a machine learn-
ing model on unseen data. It is a technique in which a 
particular sample of a dataset is reserved on which 
there is no need to train the data. Then, the model is 
tested on this sample before finalizing it. Thus, a 
small reserved sample is utilised to calculate how the 
model is supposed to behave in general when used to 
make predictions on data, but not used during the 
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training of the model. The algorithm is characterised 
by a single parameter “k” denoting the number of 
groups that our sample is to be split into. This is the 
reason the method it is called k-fold cross-validation.  

3 RESULTS AND DISCUSSIONS 

In this section, the method explained previously is ap-
plied to create expert models in the renewable energy 
sector for two countries: Germany and Italy. Two 
sources of energy are used in predicting the optimum 
and minimum cases for consumption such as geother-
mal energy and hydro energy. The dependencies be-
tween child nodes are built by an automatic calcula-
tion of correlation using supervised learning.  

3.1 Augmented Naïve Bayesian Model 
for Renewables in Germany 

In this subsection, two expert models are presented 
for geothermal energy and hydro energy in Germany. 
For both cases, consumption is considered to be a tar-
get variable with the manual discretization. In case of 
geothermal energy, the discretization method is cho-
sen to be “Tree” for “Gold_Price (US dollars)”, 
“TRenEnergy_export (ktoe)”, “Geothermal_electri-
city (GWh)”, “GDP”, “Investment_renewables (mil-
lions)”, “Investment_fossilfuels (millions)”, “Envi-
ronPolicy (%)”, “Electricity_Price (RI)”, “GhEmis-
sions_production (tonnes)”. The type of discretiza-
tion as “Perturbed Tree” is automatically generated 
states for two variables such as “TRenEnergy_Import 
(ktoe)” and “Oil_Price (RI)”, whereas R2-GenOpt is 
chosen for “Geothermal_techpatents”.  

In Figure 2(a), the model for geothermal energy is 
presented using the supervised learning algorithm 
with a structural coefficient of one. In Figure 2(b), it 
is shown that the new connection between variables 
“Geothermal_techpatents” and “Oil_Price (RI)” is 
created by editing the structural coefficient to 0.5. 
But, the relationship between “TRenEnergy_import 
(ktoe)” and “Oil_Price (RI)” is deleted. The correla-
tion between variables are shown in the same figure 
(Figure 2(b)) using Pearson’s correlation, where the 
strongest relationship is bounded to be between “Ge-
othermal_consumption (ktoe)” and “Investment_re-
newables (millions)”, “Geothermal_consumption 
(ktoe)” and “GDP”, “Geothermal_consumption 
(ktoe)” and “Geothermal_electricity (GWh)”, “Geo-
thermal_consumption (ktoe)” and “Electricity_Price 
(RI)”. The least strong connection is between “Geo-
thermal_consumption (ktoe)” and “Geothermal_- 
techpatents”.  

 
a) 

 
b) 

Figure 2: Supervised learning for geothermal energy in Ger-
many: a) with the structural coefficient of 1; b) with the 
structural coefficient of 0.5 and with Pearson’s correlation.  

After applying the augmented naïve model for var-
iables in the geothermal energy sector, it is important 
to use the joint probability to predict the optimum and 
minimum cases for geothermal energy consumption. 
Firstly, the optimum case for geothermal energy is ob-
served in Figure 3. By setting the evidence for the op-
timum case of “Investment_renewables (millions)” to 
100%, the same percentage is obtained for the opti-
mum state of “Geothermal_consumption (ktoe)”, 
whereas the minimum state of “GhEmissions_produc-
tion (tonnes)” is shown to be 80%. 

Furthermore, the minimum case for geothermal en-
ergy is shown in Figure 4. By setting the evidence for 
the optimum state of “Investment_fossilfuels (mil-
lions)” and the minimum state of “Gold_Price (US dol-
lars)” to 100%, the same percentage is obtained for the 
minimum state of “Geothermal_consumption (ktoe)”. 
The optimum state of “GhEmissions_production 
(tonnes)” is described by 95.65% increase.  
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Figure 3: Optimum case for geothermal energy consump-
tion in Germany. 

 

Figure 4: Minimum case for geothermal energy consump-
tion in Germany. 

Table 1: Occurrences, reliability and precision of expert 
model for geothermal energy in Germany. 

Occurrences 
Value <=89.973 (23) >89.973 (5) 

<=89.973 (22) 22 0 
>89.973 (6) 1 5 

Reliability 
Value <=89.973 (23) >89.973 (5) 

<=89.973 (22) 100.0000% 0.0000% 
>89.973 (6) 16.6667% 83.3333% 

Precision 
Value <=89.973 (23) >89.973 (5) 

<=89.973 (22) 95.6522% 0.0000% 
>89.973 (6) 4.3478% 100.0000% 
 
It can be said that the optimum case where the 

consumption of geothermal energy will increase is the 
state with increasing investment in renewable energy. 
However, the minimum case is obtained by setting a 
condition with the increasing investment in fossil 
fuels and the decreasing price for gold. To verify this 
expert model, k-folds analysis is undertaken as shown 
in Table 1 with the precision approximately equals to 
95.6%, which demonstrates a quite acceptable result 
for further analysis.  

A similar expert model is created for the hydro en-
ergy sector as shown in Figure 5. The discretization 
type is chosen to be “Tree” for three variables such as 

“Hydro_electricity (GWh)”, “GDP” and “GhEmis-
sions_production (tonnes)”. The remaining set of vari-
ables is discretized by choosing “Perturbed Tree”. It is 
observed (Figure 5(b)) that the strongest correlation is 
between “Hydro_consumption (ktoe)” and “Hydro 
_electricity (GWh)”, “GDP” and “GhEmissions_-pro-
duction (tonnes)”. The less apparent connection is the 
same as with geothermal energy. New relation-ships 
are created between “TRenEnergy_Import (ktoe)” and 
“Hydro_techpatents”, “TRenEnergy_-Export (ktoe)” 
and “Oil_Price (RI)”, “Electricity_- Price (RI)” and 
“Investment_fossilfuels (millions)”, “Oil_Price (RI)” 
and “GDP”. 

 
a)               

 
b) 

Figure 5: Supervised learning for hydro energy in Germany: 
a) with the structural coefficient of 1; b) with the structural 
coefficient of 0.5 and with Pearson’s correlation. 

The optimum case for hydro energy is demons- 
trated in Figure 6. The maximum increase of 58.33% 
in “Hydro_consumption (ktoe)” is achieved by set-
ting the value for evidence for “Investment_renew-
ables (millions)” and “Hydro_techpatents” to 100%.  

The minimum case for hydro energy consumption is 
the same as for geothermal energy as shown in Figure 7.   
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Figure 6: Optimum case for hydro energy consumption in 
Germany. 

 

Figure 7: Minimum case for hydro energy consumption in 
Germany. 

The optimum condition for hydro energy with the 
increasing investment in renewables leads to the grad-
ual growth of hydro consumption.  

At the same time, the minimum case is shown to 
be quite similar to one shown with geothermal energy 
case, which is explained by using the same dependent 
variables. The precision (100%) of the model is des- 
cribed in Table 2.  

3.2 Augmented Naïve Bayesian Model 
for Renewables in Italy 

In this subsection, two more expert models are de-
signed for geothermal and hydro energy in Italy. A 
target variable remains the same from previous analy-
sis. In terms of geothermal energy, the discretization 
method is chosen to be “Tree”, except for “Geother-
mal_techpatents” R2-GenOpt is applied. The expert 
model is considered to remain stable even by chang-
ing the structural coefficient to 0.5 (Figure 8(b)).  

The strongest relationship is shown between 
“Oil_Price (RI)” and “Coal_Price (RI)”, “Geother-
mal_consumption (ktoe)” and “Geothermal_electri- 
city (GWh)”, “Geothermal_consumption (ktoe)” and 
“TRenEnergy_Import (ktoe)”. The weakest connec-
tion is between “GhEmissions_production (tonnes)” 
and “EnvironPolicy (%)”.  

Table 2: Occurrences, reliability and precision of the model 
for hydro energy in Germany.  

Occurrences 
Value <=1636.371(10) >1636.371 (18) 

<=1636.371 (10) 10 0 
>1636.371 (18) 0 18 

Reliability 
Value <=1636.371 (10) >1636.371 (18) 

<=1636.371 (10) 100.0000% 0.0000% 
>1636.371 (18) 0.0000% 100.0000% 

Precision 
Value <=1636.371 (10) >1636.371 (18) 

<=1636.371 (10) 100.0000% 0.0000% 
>1636.371 (18) 0.0000% 100.0000% 

 

 
a)                                                                

 
b) 

Figure 8: Supervised learning for geothermal energy in  
Italy: a) with the structural coefficient of 1; b) with the 
structural coefficient of 0.5 and with Pearson’s correlation. 

By giving evidence (100%) to “Investment_re-
newables (millions)” and “Geothermal_techpatents”, 
“Geothermal_consumption (ktoe)” is indicated at the 
maximum state of 94.94% for the case with optimum 
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conditions. The optimum states for “Geothermal_-
electricity (GWh)” and “TRenEnergy_import (ktoe)” 
are described by the same percentage as for “Geother-
mal_consumption (ktoe)”, explained by a high corre-
lation (Figure 9).  

 

Figure 9: Optimum case for geothermal energy consump-
tion in Italy. 

The minimum case is described by 60% of 
probability of decreased geothermal consumption by 
giving evidence to “Coal_Price (RI)” and 
“Investment_fossilfuels (millions)”. Therefore, 
“GhEmissions_production (tonnes)” is maximized, 
explained by the opposite correlation with “Geo-
thermal_consumption (ktoe)” (Figure 10).  

 

Figure 10: Minimum case for geothermal energy consump-
tion in Italy. 

In addition, the growth in investment for renew-
ables has a slight effect on environmental policy, 
whereas GDP increases. The precision of this expert 
model created for the geothermal energy sector in It-
aly is 92.3%, which is considered to be relevant to 
these studies (Table 3).  

Further, the augmented naïve model has been ap-
plied to the hydro energy sector in Italy. The most ob-
vious connection is described between “Hydro_con-
sumption (ktoe)” and “Hydro_electricity (GWh)”, 
whereas the weakest one is between “Hyd-ro_con-
sumption (ktoe)” and “EnvironPolicy (%)”.The rela-
tionships between “Coal_Price (RI)” and “Hyd-
ro_techpatent”, “Oil_Price (RI)” and “GDP” are crea-
ted by changing the structural coefficient as shown in 
Figure 11(b).  

Table 3: Occurrences, reliability and precision of the model 
for geothermal energy in Italy.  

Occurrences 
Value <=4258.527 (13) >4258.527 (15) 

<=4258.527 (12) 12 0 
>4258.527 (16) 1 15 

Reliability 
Value <=4258.527 (13) >4258.527 (15) 

<=4258.527 (12) 100.0000% 0.0000% 
>4258.527 (16) 6.2500% 93.7500% 

Precision 

Value 
<=4258.527 

(13) 
>4258.527 (15) 

<=4258.527 (12) 92.3077% 0.0000% 
>4258.527 (16) 7.6923% 100.0000%

 

 
      a) 

 
b) 

Figure 11: Supervised learning for hydro energy in Italy: a) 
with the structural coefficient of 1; b) with the structural co-
efficient of 0.5 and with Pearson’s correlation. 

In the optimum case, adding evidence to “Invest-
ment_renewables (millions)” and “Hydro_techpa-
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tents” leads to 100% probability of the maximum state 
of “Hydro_consumption (ktoe)”. It can be, therefore, 
mentioned that the price for electricity reaches its max-
imum state for the optimum situation (Figure 12).  

 

Figure 12: Optimum case for hydro energy consumption in 
Italy. 

In the minimum case, setting evidence to 
“Coal_Price (RI)” and “Investment_fossilfuels (mil-
lions)” leads to 100% probability for minimum level 
of hydro energy consumption (Figure 13).  

 

Figure 13: Minimum case for hydro energy consumption in 
Italy. 

From figures, it is obvious that GDP has a clear 
impact on the consumption rate of hydro energy. The 
precision of the expert model for hydro energy in Italy 
equals to 100 % according to Table 4.  

Table 4: Occurrences, reliability and precision of the model 
for hydro energy in Italy.  

Occurrences 
Value <=3648.495 (18) >3648.495 (10) 

<=3648.495 (18) 18 0 
>3648.495 (10) 0 10 

Reliability 
Value <=3648.495 (18) >3648.495 (10) 

<=3648.495 (18) 100.0000% 0.0000% 
>3648.495 (10) 0.0000% 100.0000% 

Precision 
Value <=3648.495 (18) >3648.495 (10) 

<=3648.495 (18) 100.0000% 0.0000% 
>3648.495 (10) 0.0000% 100.0000%

4 CONCLUSIONS 

Bayesian networks have been a well-known tool used 
in diverse areas of science and technology. However, 
its usage could be extended in the renewable energy 
policy sector using the expert model.  

At this work, the renewable sources such as geo-
thermal energy and hydro energy were taken into con-
cern as one of the widespread and the least preferable 
types of renewables, respectively. Two expert models 
were created using the augmented naïve method. Ini-
tially, structural coefficient was equal to one, then in 
order to increase the precision, it was taken as a half 
of value. This resulted in new causal connections. It 
was noticeable that editing the structural coefficient 
might give some robustness to the system, however it 
was suggested to use the range no less than 0.1 and no 
more than 1.   

From the analysis, it was shown that the consump-
tion of geothermal energy in Germany could be opti-
mized by the increasing investment in renewables, 
which proves the previous research works. Green-
house emissions were decreased to 80% for the opti-
mized case. On the other hand, the minimum case 
demonstrated that the increasing investment in fossil 
fuels and the cheapest price for gold resulted in a sit-
uation with the minimized state for geothermal en-
ergy consumption.  

In terms of hydro energy in Germany, it was only 
a slight increase in hydro consumption as a response 
for the growing number of technical patents and the 
investment. The minimum case showed that similar 
results as for geothermal energy source, which was 
explained by using the same input variables.  

In case of Italy, the increasing number of tech-
nical patents and the investment in geothermal energy 
lead to a considerable increase in geothermal con-
sumption, whereas a gradual change in environmental 
policy could be noticed. For the minimum case, the 
evidence was set to a coal price, which resulted in the 
worst scenario (minimum case) for this type of renew-
able. As for hydro energy consumption, it was indi-
cated that its optimum case was set by giving the max-
imum evidence to technical patents, whereas the min-
imum situation was involved the decrease in the coal 
price and the increased emissions.  

Therefore, from the obtained results and precision 
data, it can be said that Bayesian Networks is a suita-
ble tool for data analysis in renewable energy policy 
making. Methods in previous sections will be deve-
loped further as a small set of data only was utilized 
during this research. Furthermore, it is crucial to ex-
tend this method applying to other sources of renew-
able energy such as solar, wind and bio.   
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