
CoProtect: Collaborative Management of Cryptographic Keys for Data
Security in Cloud Systems

Lorenzo Bracciale1, Pierpaolo Loreti1, Emanuele Raso1, Maurizio Naldi2 and Giuseppe Bianchi1
1Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy

2Department of Computer Science and Civil Engineering, University of Rome Tor Vergata, Rome, Italy

Keywords: Cloud Computing, Security, Pedersen Key Distribution, Shamir Secret Sharing.

Abstract: Cryptography key management system plays a very central role in the cloud data security. Nonetheless, a
great part of the current commercial solutions rely on cloud providers that hold both the encrypted data and
the related private master key of their served customers in their secure key vaults, having a de-facto total control
on their customer digital assets. Conversely, entrusting customer companies for key holding can be dangerous
as witnessed by many cases of key loss or theft. In this work we present CoProtect, a novel architecture to
protect the cryptography keys in cloud systems that leverage on the cooperation between the cloud provider
and the customer company. With such trust model, we present the proposed data management strategy, the
key generation and the crypto procedures, and a proof of concept.

1 INTRODUCTION

Cloud will drive 83% of enterprise workloads by
2020, but, according to a Microsoft survey, over 90%
of the public and business leaders recognize data
as the most critical company asset and are worried
about its security, availability and privacy in the cloud
(Subashini and Kavitha, 2011), (Singh and Chatter-
jee, 2017). Among all the concerns, security is the
top inhibitor to cloud adoption and, according to 451
Alliance survey data, current cloud security systems
strive to provide the requested solutions to fill the real
and perceived security market needs (Alliance, 2019).
One of the reasons of this gap is accountable to the
nature of “cloud services”, a generic term that con-
ceals a wide set of cross-domain and technologically
heterogeneous services.

In this context, it is difficult to design and adopt a
single security architecture, as one size does not fit all,
with different technological domains demanding for
different, dedicated and customized security solutions
(Song et al., 2012). Moreover any proposed security
measure must not impair the rapid development and
maintenance which are among the main reasons why
companies choose cloud offers. This market is also
fostered by the new General Data Protection Regu-
lation (GDPR), the legal framework that sets guide-
lines for data protection in Europe. While big cloud
providers such Amazon, Microsoft or Google develop

proprietary security systems integrated in their infras-
tructure, recently third parties also propose different
ways offering Data Protection As a Service (Vu et al.,
2015).

Policy management, authentication through certi-
fication and encryption are among the most effective
techniques adopted in cloud security systems, but sev-
eral problems are still far from being solved. For
instance, privacy issues can occur in case of Elec-
tronic Health Records storage, where the use of cer-
tificates unnecessarily reveals the identity of their
holders (Sajid and Abbas, 2016) (Yüksel et al., 2017)
(Ben-Assuli, 2015). A common technique to enforce
data protection is to use comprehensive encryption at
file level (Sood, 2012), so to move from the protec-
tion of the document contents to the management and
the protection of the cryptographic keys (Rittinghouse
and Ransome, 2017). While this allows more flexible
mobility services and data replication, new problems
arise when dealing with the key management. In par-
ticular, in this work we focus on a very basic and sim-
ple problem: who holds the master key? That is a fun-
damental question whose answer may not be so obvi-
ous. Is it better to totally entrust the cloud providers
by giving them both the customer (encrypted) data
and the master key, or keep the master key inside the
customer company?

This latter solution is currently offered by many
cloud providers and referred to as Hold Your Own

Bracciale, L., Loreti, P., Raso, E., Naldi, M. and Bianchi, G.
CoProtect: Collaborative Management of Cryptographic Keys for Data Security in Cloud Systems.
DOI: 10.5220/0008921603610368
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 361-368
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

361

Key (HYOK) scheme (Nickel, 2019). However, with
HYOK, especially when small and micro enterprises
are taken into account, the system provides a weaker
protection of the key with respect to case where big
cloud providers with security professional teams and
dedicated hardware module (e.g., based on Trusted
Platform Modules) are demanded to store the keys
on behalf of the customer companies. Indeed, if key
theft or loss events occur, cloud providers do not have
any means to recover data content. An example of
this was the recent case when, after the CEO death,
over 190 millions of dollars were trapped in a wal-
let of an exchange because nobody except him knew
the password (Rushe, 2019). Moreover, cloud-based
services and applications cannot reason over the en-
crypted data for giving searching and analytics ser-
vices.

For this reason cloud providers, more or less ex-
plicitly, push companies to use key management ser-
vices offered by them, either with Bring Your Own
Key (BYOK) scheme, or just by generating and hold-
ing their master key on behalf of their customers. This
solution has the drawback of exposing the data to ad-
ditional risks, comprising the potential risk of ven-
dor lock-in, and subtracting data owners from the full
control and access on their data. Moreover, in some
cases, holding encrypted data together with the re-
lated key can be assimilated to having the data in clear
and not using encryption at all.

The envisaged goal of this work is to provide
a third option, based on the collaboration between
companies and cloud providers, that on one hand
gives the companies the control of their data, and on
the other hand offers disaster recovery and protection
against accidental loss or key theft by any of the ac-
tors. The presented architecture, called CoProtect, al-
lows companies to be the sole responsible for their
data disclosure and foster the construction of data ac-
cess and modification logging service (required, in
some cases, to by GDPR), other than implementing
their own access control policies independently. The
rest of the paper is organized as follows. Section
2 reviews the related work, section 3 presents the
related background techniques (Pedersen distributed
key generation, ElGamal crypto-system). Section 4
presents the proposed solution with the related trust
model and the description of architecture and pro-
cedures needed to implement the solution. Section
5 presents a proof-of-concept implementation and fi-
nally conclusions are drawn.

2 RELATED WORK

2.1 Crypto-based Solution

Data security in the cloud is usually based on en-
cryption systems that however may inhibit many of
the advantages offered by the cloud. Many works
proposed solutions to provide typical cloud services
on encrypted data, such as access control, document
search and multi-user collaboration. For example, a
system based on searchable encryption has been pro-
posed in (Singh and Batten, 2017) and enables pri-
vate querying on public data so that the contents of
user queries and their replies are private. In (Huang
et al., 2017), authors propose a cryptographic sys-
tem to support shared read and write access to files in
the cloud. The system is based on Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) (Bethencourt
et al., 2007) and allows a fine grain control on users.
Differently, this work is focused on implementing a
trust model for the cryptographic key management
rather than on providing services on top of encrypted
data; however these kind of techniques can be used to
foster “blinded” services on top of the encrypted data,
but this application is outside the scope of this work.
To enable data sharing, in (Zuo et al., 2017) Zuo et
al. propose a technique based on a central author-
ity that issues keys according to the user’s attribute
set. Similarly to our work they divide the key into
two parts to enhance the system security: one part is
stored in a potentially insecure place, the other in a
physically safe place. To protect data association, De
Capitani di Vimercati et al. (De Capitani di Vimer-
cati et al., 2013) propose a system of fragmentation
and encryption to improve privacy. Other solutions
to securing data storage on a database, has been pro-
posed by (Ganapathy et al., 2019), where the authors
designed a management system and a key data stor-
age based on the Chinese Remainder Theorem for the
management of user groups access policies.

2.2 Commercial Cloud Platform
Privacy Solution

To ensure the security and privacy of user data, com-
mercial cloud service providers (CSP) must comply
with regulations imposed by national and interna-
tional bodies. In Europe, for example, Cloud Infras-
tructure Services Providers in Europe (CISPE) de-
fines some minimum security requirements (CISPE,
2019), recommending specific solutions such as:

• data encryption capabilities available in storage
and database services;

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

362

• flexible key management allowing the customers
to choose whether to have the CSP manage the
encryption keys or enable the customer to keep
complete control over keys;

• provide APIs for customers to integrate encryp-
tion and data protection in the offered services.

Furthermore, the European Community has defined
the General Data Protection Regulation (GDPR), a
specific privacy framework which commits CSPs to
a systematic privacy assessment. Some works pro-
posed GDPR compliant cloud solutions such as the
MUSA project (Rios et al., 2019) that proposes a pri-
vacy by design novel cloud architecture based on ser-
vice level agreements. However, complete solutions
are difficult to apply in commercial clouds that are
often based on outsourcing and service composition.
Commercial clouds are starting to provide solutions to
manage data privacy. For example, Microsoft Azure
Information Protection provides a solution to classify
and optionally protect documents and emails by ap-
plying labels. The system is based on the encryption
of a content with a symmetric key which is encrypted
with an asymmetric key and prefixed, together with
the access policies, as a header of the encrypted con-
tent. Microsoft, holding the private key, can decrypt
the header and, once the access policies have been
verified, return the symmetric key to the user needed
to decrypt the content (Microsoft, 2019).

2.3 Domain Specific Solutions

Privacy solutions can present domain specific chal-
lenges. For instance, in the Big Data field, data is typi-
cally distributed and the main issue is related to assur-
ing security and privacy during the processing. In par-
ticular, the distributed nature of the cloud and the con-
tinuous movement of data implies that security cannot
just rely on infrastructure (data centers) and end-to-
end data tunnels (e.g. TLS), but it must be included in
the data itself, fostering a data-centric control model.
In (Puthal et al., 2017) a selective encryption method
has been presented to ensure and maintain the confi-
dentiality of Big Data flows according to the related
data sensitivity. The solution is based on the presence
of a common key shared by all the peers, which is ini-
tialized and updated by an agent called Data Stream
Manager. In (Pasquier et al., 2016), the authors pro-
pose Information Flow Control, a data-centric mech-
anism to implement access control by complex poli-
cies. The technique is based on the trust between
the data owner and the cloud provider and thus can-
not guarantee the full data privacy. Personal health
data represents another special case for data manage-
ment in the cloud since data privacy must be guar-

anteed, but it should be available to support medical
research works (Singh and Batten, 2017) and it should
be readily available by health professionals in case of
emergency (Yüksel et al., 2017). Moreover privacy
involves not only the content of the health data but
also the presence of data related to some people in-
side healthcare databases (Coats and Acharya, 2014).

3 BACKGROUND

In this section we provide the necessary technical
background that will be used in the proposed solution.

3.1 Pedersen Distributed Key
Generation

In his seminal work (Pedersen, 1991) Torben Peder-
sen presents a protocol in which n parties jointly cre-
ate a public key for the ElGamal cryptosystem, and
obtain a “part of” the private key so that every group
of t-over-n parties can collaborate to decrypt any mes-
sage encrypted with that public key without any party
knowing the full private key. We briefly recap the un-
derlying methodology as we used this technique for
key generation. The i-th entity constructs a polyno-
mial of degree t−1 with random coefficient ak,i as:

pi(x) = a0,i +a1,ix+a2,ix2 + ...+at−1,ixt−1 mod q

where t is the number of parties needed to decipher a
message, while q is a large prime. Then, the i-th entity
distributes a point in that polynomial to the other n−1
parties; specifically it sends pi(x j) to the j-th entity,
with i 6= j.

Once it receives the points from all the other enti-
ties, i-th entity can calculate its “full share” as:

yi =
n

∑
j=1

p j(xi)

In this way parties are collectively creating this poly-
nomial:

P(x) =
n

∑
i=1

a0,i+
n

∑
i=1

a1,ix+ ...+
n

∑
i=1

at−1,ixt−1 mod q

The private key, unknown to every party, is:

s =
n

∑
i=1

a0,i

but all the party can calculate their share of the secret
key starting from their full share as:

si = yiΛi mod q

CoProtect: Collaborative Management of Cryptographic Keys for Data Security in Cloud Systems

363

where Λi = ∏shares xk 6=xi
−xk

xi−xk
is the Lagrange multi-

plier, and s = ∑shares xi si mod q.
The public key can be collectively created as:

gs =
n

∏
i=1

ga0,i = g∑
n
i=1 a0,i (1)

where g is the primitive root of a strong prime p, i.e.
p = 2q+1 and g = (l)2 mod p, where l is a random
integer.

3.1.1 ElGamal Encryption System

ElGamal is an asymmetric key encryption algorithm
for public-key cryptography, whose complexity is
based on the calculation of the discrete logarithm.
Given its homomorphic proprieties, it is well suited
to be used with Pedersen Distributed Key Generation.
Indeed, as explain below, by construction ElGamal al-
lows the chaining of multiple partial decryption oper-
ations performed by all the parties, simply by multi-
plying their decryption results. This allows not only
to ultimately obtain the fully decrypted text without
that any party acquire information on that, but also
preserve the parties from sharing information on their
private key fragments.

Encryption. Given the generator g, the private key
s and a prime p, as previously described, the encryp-
tion process chooses a random number r ∈ [1, p−1].
Then, it encrypt a message m as the pair (c1, c2),
where

c1 = gr mod p

c2 = mgsr mod p

Decryption. Given the pair (c1, c2), decryption hap-
pens calculating:

k = cs
1 mod p = grs mod p

and then:

c2k−1 mod p = mkk−1 mod p =

= mgsrg−rs mod p = m mod p

where k−1 is the multiplicative inverse of k modulo p.

Decryption with Pedersen Keys. In spite of s, each
party uses its secret share si, applies the decryption al-
gorithm and passes to the result to another party. Af-
ter t parties, we have the full decryption of the original
message, i.e.:

c2k−1
1 ·...·k

−1
t mod p=m·gsr ·

t

∏
i=1

g−rsi mod p=

=m·gsr ·g−r ∑
t
i=1 si mod p=m·gsr ·g−rs mod p=

= m mod p
The message has been deciphered without s being re-
vealed to any of the parties.

4 CoProtect

In this section we present the proposed trust model
and why it is different from other industrial options.
We also present the architecture of the proposed so-
lution together with the the technical operations and
data structure needed to implement it on the cloud.

4.1 Trust Model

The trust model, with reference to the entity holding
the master key, is the key feature where the proposed
system mainly differs from the great part of commer-
cial and literature solution. As said, we want to avoid
totally relying on either the cloud provider or the com-
pany/customer: in the former case we would have
the control on the data totally assigned to the cloud
provider, while in the latter case we would not have
any mechanism to prevent from accidental key loss or
key theft, by which especially small companies can
be affected. A third option would be to use a Trusted
Third Party (TTP) appointed, for example, to act in
the case of disaster recovery. Entirely relying on a
Trusted Third Party is a strong assumption and rep-
resents an important security bottleneck that should
be avoided, whenever possible, especially if we are
dealing with multiple companies and very sensitive
data. For this reason, we started from alternative so-
lutions that have been presented in the literature to re-
lax the trust assumption and replace the need of a sin-
gle Trusted Third Party with a “Simulated TTP”, e.g.,
in Sepia (Burkhart et al., 2010) and P4P (Xie et al.,
2008). In our case the Simulated TTP is given by the
collaboration between company and cloud provider,
as described hereafter.

4.1.1 Multisignature Scheme

With reference to figure 1 we have a multisignature
scheme based on three different keys: the first held
by the cloud provider, the second by the company,
while the third is encrypted and protected with the
customer password and stored on both the parties.
These keys are associated to a public key so that ev-
erybody can encrypt any data with the public key, but
two out of the three keys are needed to decrypt the
data. In particular, in case of disaster recovery the
password-protected key together with the other cloud

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

364

Figure 1: Adopted multisignature schema.

provider key can be used, whereas the two keys held
by the company can be used also for offline decryp-
tion. Another combination of the two non password
protected keys can be used to restore the shared key
when the password is lost. This schema has been
proposed and adopted also by Coinbase, a digital
currency exchange, and has been designed in a way
that whichever key is lost, the access to the wallet is
not compromised. We started from this scheme and
adapted it to the cloud environment.

4.2 Architecture

Figure 2: The CoProtect system. Client interacts with
Cloud Provider and Company servers and encrypts/decrypts
data files.

With reference to figure 2, the CoProtect system is
composed of three different entities:

• CoProtect Client: a CoProtect client (or client
for short) offers an interface that bridges the data
source (e.g., filesystem) and the cloud. It ap-
plies encryption (decryption) to the data files and
it uploads them to (downloads them from) the
cloud. It also interacts with the Cloud Provider
and Company servers to perform the necessary
cryptographic key operations. For instance, the
client software can run on a company employee
laptop.

• Cloud Provider Server: this server holds one key
and a password protected key. In standard opera-
tion it is in charge of handling the data decryption

procedure or can operate for disaster recovery. It
may implement access control policies.

• Company Server: this server belongs to the
cloud provider’s customer and holds a key and a
password protected key. It must provide partial
decryption service on demand.

4.3 Data Structure

Figure 3: Protected file composition.

To speed-up encryption and decryption processes and
minimize the bandwidth needs, we resort to the fol-
lowing encrypting procedure. Every file is encrypted
through a symmetric encryption (e.g. using AES) us-
ing a random key. This key is in turn encrypted with
the public key and appended to each file as a security
header, as represented in figure 3. This “enveloping”
solution has been used also by Microsoft Azure In-
formation Protection. More specifically, in our case
the security header contains the ElGamal encrypted
version of a random integer m. Because of ElGamal
encryption, this is stored with a couple of values (c1,
c2) as described in section 3. Given m, it is possible to
recover the AES symmetric key by applying the hash
function SHA256(m). In the header there can be also
policies to regulate data access on a per file basis, such
as in case of Microsoft Azure Information Protection,
for instance to prevent groups or single persons from

CoProtect: Collaborative Management of Cryptographic Keys for Data Security in Cloud Systems

365

viewing, editing or also printing some kind of docu-
ments.

4.4 Operations

We used the Pedersen’s algorithm to generate the
three keys, ElGamal for secure header encryption and
Shamir’s Secret Sharing for the distributed decryp-
tion. The relevant adopted techniques have been re-
viewed and summarized in section 3. It’s important
to note that, in all the operations (key generation, en-
cryption and decryption), the keys are not disclosed
to other parties at any time.

4.4.1 Key Generation

The key generation follows the Pedersen distributed
key generation summarized in section 3 with three
key shares, where two shares are hold by the company
and one by the cloud provider. Then the company en-
crypts one key share with a password and passes it to
the cloud provider. The public key is obtained accord-
ing to equation 1. This procedure must be done once
to bootstrap the operations as represented in figure 4.

Figure 4: Share exchange for public and private key gener-
ation using the Pedersen algorithm.

Data Encryption. Each file is encrypted by the
client (owner) with a symmetric encryption with a
randomly generated key. This key is then encrypted
with the public key and prepended to the encrypted
file as an additional header as described in subsection
4.3. The symmetric random key is generated start-
ing from a random integer m extracted in the range
[1, p−1] where p is a strong prime described in sec-
tion 3. Specifically, we apply a hash function on m
(e.g. SHA256) to generate 32 bytes in order to create
the key for AES256.

Data Decryption. The following procedure hap-
pens every time the client wants to access a protected

Figure 5: File encryption.

data file:

1. The client takes the file header and sends it to the
Cloud Provider Server to have a partial decryp-
tion. The result is returned to the client;

2. The client then sends the partially decrypted
header to the Company Server that performs a sec-
ond partial decryption, leading to the full disclo-
sure of the clear-text header file. The result is sent
back to the client in a secure way (e.g. using the
client public key, or using a secure data channel);

3. The client generates the symmetric key by hash-
ing the number contained in the header file. With
the resulting value, it can decrypt the file content
using some (relatively) lightweight symmetric en-
cryption system such as AES.

Figure 6 shows the described decryption procedure.

Figure 6: File decryption.

5 PROOF OF CONCEPT

We implemented the described architecture on a
proof of concept, whose code is available online
(https://github.com/netgroup/coprotect). We devel-
oped the architecture elements on a container basis
using Docker to implement the client, the company
server and the cloud provider server. We implemented
the cryptographic API using the python crypto library
PyCryptodome for the hashing function and AES. We
implemented the Pedersen distributed key generation
and ElGamal encryption from scratch. We added a set

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

366

Figure 7: Screenshot of the application user interface.

of rest APIs on all the containers, provided through a
Flask application server. The exposed APIs are shown
in figure 8 and offer methods to encrypt and decrypt
information, getting the log file and the company pub-
lic key.

We also implemented a user interface reported
in figure 7 for testing and demonstration purposes.
The interface allows the drag-and-drop of respec-
tively plain-text/cipher-text document for the encryp-
tion/decryption.

Figure 8: API list.

6 CONCLUSION

In this work we present CoProtect, a system to pro-
tect companies digital assets inside the cloud. Differ-
ently to conventional systems which entrust just a sin-
gle entity, the handling of the data is demanded to the
collaboration of the cloud provider and the customer
companies. The system envisages a fully company

control on the access of its digital assets, while offer-
ing protection in case of key theft or loss. We imple-
mented the underlying cryptographic system based on
Pedersen Distributed Key Generation, ElGamal en-
cryption and Shamir Secret Sharing. We released a
proof of concept as a reference implementation and
to demonstrate the feasibility. We deliberately keep
the solution minimal in order to foster implementa-
tion in fully-fledged cloud systems, as it can coexists
with the other already deployed systems such as the
data access control.

ACKNOWLEDGEMENTS

This work has been partially funded by the
BPR4GDPR project from the European Union’s Hori-
zon 2020 research and innovation programme under
grant agreement No 787149.

REFERENCES

Alliance, (2019). 451 Alliance. https://www.451
alliance.com/. Accessed July 2019.

Ben-Assuli, O. (2015). Electronic health records, adoption,
quality of care, legal and privacy issues and their im-
plementation in emergency departments. Health pol-
icy, 119(3):287–297.

Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In 2007
IEEE symposium on security and privacy (SP’07),
pages 321–334. IEEE.

CoProtect: Collaborative Management of Cryptographic Keys for Data Security in Cloud Systems

367

Burkhart, M., Strasser, M., Many, D., and Dimitropoulos,
X. (2010). Sepia: Privacy-preserving aggregation of
multi-domain network events and statistics. Network,
1(101101).

CISPE (2019). CISPE Handbook. https://cispe.cloud/. Ac-
cessed July 2019.

Coats, B. and Acharya, S. (2014). Leveraging the cloud for
electronic health record access. Perspectives in health
information management, 11(Winter).

De Capitani di Vimercati, S., Erbacher, R. F., Foresti, S.,
Jajodia, S., Livraga, G., and Samarati, P. (2013). En-
cryption and fragmentation for data confidentiality in
the cloud. In Foundations of Security Analysis and
Design VII, pages 212–243. Springer.

Ganapathy, S. et al. (2019). A secured storage and privacy-
preserving model using crt for providing security on
cloud and iot-based applications. Computer Networks,
151:181–190.

Huang, Q., Yang, Y., and Shen, M. (2017). Secure and ef-
ficient data collaboration with hierarchical attribute-
based encryption in cloud computing. Future Gener-
ation Computer Systems, 72:239–249.

Microsoft (2019). Azure Information Protection.
https://docs.microsoft.com/en-us/azure/information-
protection/what-is-information-protection. Accessed
July 2019.

Nickel, J. (2019). Mastering Identity and Access Manage-
ment with Microsoft Azure: Empower users by man-
aging and protecting identities and data. Packt Pub-
lishing Ltd.

Pasquier, T., Bacon, J., Singh, J., and Eyers, D. (2016).
Data-centric access control for cloud computing. In
Proceedings of the 21st ACM on Symposium on Ac-
cess Control Models and Technologies, pages 81–88.
ACM.

Pedersen, T. P. (1991). A threshold cryptosystem without a
trusted party. In Workshop on the Theory and Applica-
tion of of Cryptographic Techniques, pages 522–526.
Springer.

Puthal, D., Wu, X., Nepal, S., Ranjan, R., and Chen, J.
(2017). Seen: A selective encryption method to en-
sure confidentiality for big sensing data streams. IEEE
Transactions on Big Data.

Rios, E., Iturbe, E., Larrucea, X., Rak, M., Mallouli, W.,
Dominiak, J., Muntés, V., Matthews, P., and Gonzalez,
L. (2019). Service level agreement-based gdpr com-
pliance and security assurance in (multi) cloud-based
systems. IET Software.

Rittinghouse, J. W. and Ransome, J. F. (2017). Cloud com-
puting: implementation, management, and security.
CRC press.

Rushe, D. (2019). Cryptocurrency investors locked out of
$190m after exchange founder dies. The Guardian.

Sajid, A. and Abbas, H. (2016). Data privacy in cloud-
assisted healthcare systems: state of the art and future
challenges. Journal of medical systems, 40(6):155.

Singh, A. and Chatterjee, K. (2017). Cloud security issues
and challenges: A survey. Journal of Network and
Computer Applications, 79:88–115.

Singh, K. and Batten, L. (2017). Aggregating privatized
medical data for secure querying applications. Future
Generation Computer Systems, 72:250–263.

Song, D., Shi, E., Fischer, I., and Shankar, U. (2012). Cloud
data protection for the masses. Computer, 45(1):39–
45.

Sood, S. K. (2012). A combined approach to ensure data
security in cloud computing. Journal of Network and
Computer Applications, 35(6):1831–1838.

Subashini, S. and Kavitha, V. (2011). A survey on security
issues in service delivery models of cloud comput-
ing. Journal of network and computer applications,
34(1):1–11.

Vu, Q. H., Colombo, M., Asal, R., Sajjad, A., El-Moussa,
F. A., and Dimitrakos, T. (2015). Secure cloud stor-
age: a framework for data protection as a service in
the multi-cloud environment. In 2015 IEEE Con-
ference on Communications and Network Security
(CNS), pages 638–642. IEEE.

Xie, H., Yang, Y. R., Krishnamurthy, A., Liu, Y. G., and Sil-
berschatz, A. (2008). P4p: Provider portal for applica-
tions. In ACM SIGCOMM Computer Communication
Review, volume 38, pages 351–362. ACM.

Yüksel, B., Küpçü, A., and Özkasap, Ö. (2017). Research
issues for privacy and security of electronic health ser-
vices. Future Generation Computer Systems, 68:1–13.

Zuo, C., Shao, J., Liu, J. K., Wei, G., and Ling, Y. (2017).
Fine-grained two-factor protection mechanism for
data sharing in cloud storage. IEEE Transactions on
Information Forensics and Security, 13(1):186–196.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

368

