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Abstract: Scheduling personnel is an important aspect of many organizations and can rapidly become unsustainable to
perform manually. It is crucial that the automated algorithm consistently generates a high quality schedule.
This paper discusses a linear integer program with a set of constraints, developed in collaboration with a
scheduling expert, required to generate reliable schedules for a live online tutoring platform. The focus in
the algorithm is shifted away from the optimization of an objective function to adopting hard constraints that
guarantee any solution will be sufficiently good. Furthermore, a graceful degradation protocol to implement
fuzzy boundary conditions for the constraints ensure that appropriate compromises can be made in most cases
to find a solution. Lastly, a comparison of the automated algorithm to a domain expert shows a 5% higher
topic coverage and 10% lower cost in favor of the former which has led to a rapid adoption of the automated
scheduler by the organization.

1 INTRODUCTION

Organizations that rely on scheduling experts and
skilled employees with multiple specializations to
meet the demand for their service face challenges re-
lated to scalability. To provide an excellent service, it
is necessary to create a schedule such that the person-
nel have the specific set of skills that the customers
require. As the number of employees and customers
grow, manually generating a schedule becomes in-
tractable while continuing to satisfy the various hard
and soft constraints imposed by the unique charac-
teristics of the organization. This type of rostering
problem, as demonstrated by the well studied Nurse
Scheduling Problem (NSP), is prevalent in hospitals,
airports and online tutoring companies.

GradeSlam is a chat-based online tutoring plat-
form that instantly connects a tutor to a student when
they request support for an academic topic. Students
can ask questions corresponding to any elementary to
high school level topic at any time of day throughout
the week. While the exact number of students and
when they will appear on the platform is impossible
to know apriori, an approximate number of tutors to
meet the demand for each topic can be determined
from the historical data. Each tutor has a different

set of specializations, times they are available to work
on the platform, level of seniority, and reliability, all
which must be taken into account to generate an ef-
fective and fair schedule.

Until recently, the schedules at GradeSlam were
created manually by an expert week after week. This
expert manages the entire tutor team and conse-
quently knows the topics they teach, the number of
students they can handle at a given time, and even
their shift preferences. She would manually create a
schedule by cross-referencing the required topic cov-
erage and the tutor availability calendar while factor-
ing in her nuanced knowledge of the staff. Initially,
this was possible to do in a reasonable amount of time,
but the growing tutor team made scheduling increas-
ingly time consuming and ultimately unscalable. The
implemented solution discussed in this paper takes
inspiration from the NSP, which is a closely related
problem in the context of healthcare.

In this paper, an integer linear program is used
to solve the scheduling problem in the context of a
live, online tutoring platform. A number of hard and
soft constraints have been identified and integrated
into the optimization problem formulation to ensure
the service quality, satisfaction of labor regulations,
and fairness in terms of the number of hours assigned
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to each tutor. The combination of all of these con-
straints, coupled with the fact that the tutor availabil-
ity is variable, often makes the automatic schedule
generation infeasible. However, similar to the expert,
a robust scheduling algorithm should be able to work
around such difficulties to find a solution despite the
highly complex problem setup. In this paper, we dis-
cuss an effective strategy of creating a more robust
algorithm by integrating the notion of graceful degra-
dation and strategically relaxing the constraints and
relevant parameters.

The paper is organised as follows. Section 2 pro-
vides a literature review of real world applications of
the employee scheduling problem. Section 3 defines
the problem where all of the constraints and the main
objectives are stated. Section 4 outlines the mathe-
matical formulation, i.e. the variables, constraints and
objective function. Section 5 introduces the heuris-
tics to modify the scheduling algorithm and overcome
the problem of conflicting constraints. Section 6 dis-
cusses the performance of the algorithm in generat-
ing schedules using both quantitative and qualitative
metrics. Finally, section 7 presents a summary of the
paper and highlights future experiments.

2 PREVIOUS WORK

Employee scheduling is of utmost importance in
many industries. The research community has mainly
focused on the Nurse Scheduling Problem (NSP),
which tries to schedule hospital employees to vari-
ous shifts for different days depending on the demand.
Some examples of scheduling in the context of emer-
gency services can be found in (Beaulieu et al., 2000)
and (Camiat et al., 2019). Though each setting is
unique, they share a common objective of finding a
trade off between satisfactory coverage of the service
demand, labor regulations and personnel satisfaction.
The NSP has been studied extensively, as shown in
(Burke et al., 2004) and (den Bergh et al., 2013), so
that a consistent, automated generation of schedules
is possible, while ensuring adequate demand cover-
age and employee well-being.

Even though the problem models are easily trans-
ferable amongst different industries, many specific
examples of employee scheduling are described since
the constraints, the objective function and the heuris-
tics are variable. The most well studied domains are
transportation, supply chain, call centers, airlines and
health care. More examples are described in (Ernst
et al., 2004). It can also be applied in niche fields, as
shown in (Albornoz et al., 2015) (meat packing indus-
try), (Leiva and Albornoz, 2016) (soft drink industry),

or in (Lampoudi et al., 2015) (telescope industry). All
these examples show that specialized knowledge is re-
quired to come up with an automated solution that can
be adopted by an organization. Consequently, having
a domain expert is essential to the success of an auto-
mated scheduler.

Two papers, (Ağralı et al., 2017) and (Hojati and
Patil, 2011) hold our attention since they both have
a similar setup as us. For example, they all have
part-time workers with heterogeneous skills, flexible
availability and variable demand to satisfy, and use
heuristics to overcome constraint conflicts. (Hojati
and Patil, 2011) showcases a 2-step method: the first
one is to find the optimal shifts (shift duration, place-
ment, and corresponding employees), and the second
one is to generate a schedule considering those good
shifts. Furthermore, heuristics are used to come up
with a feasible solution. Though both problem setups
are similar to ours, we have to deal with many more
constraints related to employee satisfaction.

The large number of constraints and variables cre-
ate a lot of constraint conflicts. Over-constrained
problems are difficult to satisfy or optimize. One way
to resolve this issue is to apply constraint relaxation.
In (Junker, 2004), a divide-and-conquer method is de-
scribed to explain which constraints are responsible
for the conflicts. This form of constraint relaxation is
a powerful way to make a problem feasible, although
the method is aggressive since it removes some con-
straints. In our case, we want to avoid the complete
removal of a constraint to ensure employee satisfac-
tion and sufficient demand coverage, both of which
are necessary for a successful adoption of the system.

(Burke et al., 2004) concludes that there has been
a lot of work on finding and tuning scheduling algo-
rithms. However, the applications that are highlighted
are often toy problems or problems with low dimen-
sions. In (De Causmaecker et al., 2004), several real
world scheduling problems are discussed. Yet, not
many studies demonstrate how to find solutions in real
world scheduling issues with an over-constrained en-
vironment, where optimization methods coupled with
heuristics are used to find a viable solution.

The main contribution of this paper is to provide
an exhaustive view of automated scheduling in online
tutoring, including a mathematical formulation of the
problem, the creation of heuristics with the help of a
domain expert, and the implementation of a graceful
degradation protocol.
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3 PROBLEM DEFINITION

In order to specify the schedule input parameters, a
week is broken up into seven days which are further
subdivided into one hour slots. A tutor shift refers to
a block of adjacent hour slots during which a tutor is
scheduled. Following that, information regarding the
number of required tutoring units needs to be speci-
fied for every topic during each hourly slot.

Due to weekly changes in the tutors’ availability
and the student demand, i.e. the net volume of stu-
dents coming onto the platform for tutoring help, the
schedule input parameters need to be updated on a
weekly basis and the algorithm needs to be re-run.
Tutors specify their weekly availability at least four
days before the schedule is generated. For exam-
ple, tutors would set their availability for the week of
September 23rd to 30th by September 13th. The gen-
eral tutor availability can change due to tutors having
variable personal time commitments, but also due to
the growth of the tutor team which adds new sets of
availability. The student demand can change due to
seasonal influences such as midterms or assignment
deadlines, as well as the addition of new students to
the platform.

The tutor team changes in response to the platform
traffic. Over the past year, the number of tutors have
almost tripled. Each tutor can cover a certain set of
topics. There are 47 topics, including algebra, En-
glish literature, chemistry, computer science, Span-
ish etc. For each topic, a certain number of tutors
have to be scheduled during each hourly slot based on
the past frequency of students needing help with the
topic. Usually, math and English literature tutors are
in high demand, meaning that the number of tutors
needed to cover these topics is generally higher than
less popular topics such as music theory. The number
of tutors scheduled per topic during each shift is de-
termined by following requirements from the service
department:

1. The minimum number of tutors that must be
scheduled (hard constraint). For example, Mon-
day 12 PM to 8 PM at least three calculus tutors
need to be scheduled.

2. The expected number of tutors that should cover
that topic at that hour (soft constraint). For exam-
ple, Monday 12 PM to 4 PM, scheduling around
six calculus tutors is optimal.

Based on the previous example, on Monday 12 PM -
4 PM, at least three and possibly five to seven calcu-
lus tutors will be scheduled. The objective function
is dedicated to scheduling as close to the prescribed
optimal amount of tutors as possible. All other inputs

expressed by the expert are implemented as hard con-
straints to ensure service quality and employee satis-
faction:

• A tutor should only be scheduled when they spec-
ify they are available to work.

• A tutor should not be scheduled more than the
maximum number of working hours they are al-
lowed, and more than 5 shifts per week. This is to
ensure work-life balance.

• A tutor should get an expected minimum of work-
ing hours. This is to ensure the fairness of the
schedule and hence employee satisfaction.

• A shift must last at least 3 hours and cannot ex-
ceed 6 hours. There should be at least 20 hours
between the beginning of two shifts.

• For every hour slot of the week, a certain mini-
mum number of tutors must be scheduled. This
constraint is to ensure that tutors will not be over-
whelmed by the flow of students coming on the
platform.

• For each hour, the number of scheduled tutors has
an upper bound which can change from week to
week. This constraint is to prevent overschedul-
ing.

• There are a list of important topics, for which dur-
ing each hour, the number of scheduled tutors cov-
ering that topic must exceed some specified lower
bound.

• The cost of the weekly schedule must be less than
a pre-specified amount.

Knowing exactly what constraints have been sat-
isfied will allow us to easily evaluate the quality of the
schedule. Indeed, having a schedule that is transpar-
ent and interpretable is of utmost importance to en-
sure the quick adoption of the system and the fair-
ness of the schedules. While the large number of hard
constraints makes it more difficult to find a solution,
relaxing the constraints and the usage of heuristics re-
solve the problem. The ability to compromise is an
essential feature for the success of the scheduling al-
gorithm. This is achieved by either strategically omit-
ting some constraints or by changing the constraint
parameters so that they are less restrictive.

To sum up, the objective is to schedule tutors such
that each topic is covered adequately at all times.
In addition to that, the schedule must satisfy several
rules to ensure a high service quality and staff sat-
isfaction without exceeding the upper bound for the
schedule cost.
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4 MATHEMATICAL
FORMULATION

The problem is expressed as a constrained optimiza-
tion problem with input parameters, linear constraints
and integer variables.

4.1 Input Parameters

• Tutors are enumerated by the index n, where n ∈
[1,N] and N = 100 in our experiments.

• A week is partitioned into one hour slots. These
hour slots are enumerated by the index s where
s ∈ [1,S] and S = 24 · 7 = 168. In this paper, the
first hour of the week is Monday at midnight.

• The set of academic topics available for tutoring
are enumerated by the index k, where k ∈ [1,K]
and K = 47.

• Important topics are a subset of the topics enu-
merated by k ∈ [1,K] and designated by the set TI
where TI ⊆ [1,K]. Currently, there are less than
ten important topics but these topics absolutely
need to be covered during certain hours.

• Hourly salary of each tutor n is denoted by pn
where n ∈ [1,N].

• Number of tutors required for each important
topic k during hour s is designated MI

ks where
k∈ TI and s∈ [1,S]. These inputs are implemented
via hard constraints.

• The status of tutor n in their ability to teach topic
k is denoted by the binary input ynk ∈ {0,1}where
n ∈ [1,N] and k ∈ [1,K]. This information is static
and gathered when the tutors are first hired.

• Number of tutors available during hour s for topic
k is denoted Oks = ∑

N
n=1 ans · ynk where s ∈ [1,S]

and k ∈ [1,K].

• Number of required tutors per topic k during hour
s, i.e. demand, is denoted Mks where k ∈ [1,K]
and s ∈ [1,S]. The demand is an input for the al-
gorithm specified by the expert. This information
is interpreted as a soft constraint.

• The availability of tutor n during hour s is given
by the binary input ans ∈ {0,1} where n ∈ [1,N]
and s ∈ [1,S].

4.2 Decision Variables

• Tutor shift assignment variable xns ∈ {0,1},
where n ∈ [1,N], s ∈ [1,S] represents whether tu-
tor n is scheduled during hour s. Assignment

of these binary variables is equivalent to the cre-
ation of a schedule. The variable x has dimension
N ·S = 16800.

• Coverage of topic k during hour s based on the
generated schedule (via the xns variables) is de-
noted by cks = ∑

N
n=1 xns · ynk, where s ∈ [1,S] and

k ∈ [1,K].

• Status if hour s is the beginning of a shift for tutor
n is denoted by the binary variable bns ∈ {0,1}
where n ∈ [1,N] and s ∈ [1,S] (Note that the di-
mension of b is also 16800).

• Status whether the demand of topic k during hour
s is satisfied is denoted by the binary variable
zks ∈ {0,1} where s ∈ [1,S] and k ∈ [1,K]. The
dimension of z is 7896.

All the variables discussed in this section are integers.
The binary variables take the values 0 or 1. There are
41496 variables in this optimization problem. All the
hard constraints outlined by the expert are defined in
the next section. Furthermore, all the hard constraints
created to keep the problem setup linear are also dis-
cussed in the next section. A summary of the preced-
ing variables can be found in table 1.

4.3 Constraints

The hard constraints in section 3 are expressed as lin-
ear constraints since they are often easier to solve as
discussed in (Chinneck, 2001).

1. A tutor cannot work when not available.

∀n ∈ [1,N], s ∈ [1,S], xns ≤ ans (1)

2. A tutor cannot work more than their maximum
number of working hours.

∀n ∈ [1,N],
S

∑
s=1

xns ≤ H+
n (2)

3. A tutor cannot work more than 5 shifts per week.

∀n ∈ [1,N],
S

∑
s=1

bns ≤ 5 (3)

4. A tutor should get an expected minimum number
of working hours as long as they put enough avail-
ability.

∀n ∈ [1,N],
S

∑
s=1

xns ≥min

(
H−n ,

S

∑
s=1

ans

)
(4)

H−n is defined by the expert and can change from
week to week, to ensure a fair distribution of hours
among tutors.
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Table 1: Input parameters and variables.

Variable name Description
xns Tutor shift assignment
bns Status if it’s the beginning of a shift
cks Coverage of topic k during hour s
zks Status if expected demand of topic k is satisfied

Input parameter Description
pn / C×max Hourly salary / Cost limit

TI Set of important topics
Mks / MI

ks Number of required tutors, k ∈ [1,K] / k ∈ TI
ans Tutors’ availability
ynk Status if tutor n ∈ [1,N] teaches topic k ∈ [1,K]

H−n / H+
n Expected minimum / Maximum number of working hours

L−s / L+
s Minimum / Maximum number of scheduled tutors

5. A tutoring shift, i.e. adjacent hour slots a tutor is
scheduled, must add up to at least 3 hours.

∀n ∈ [1,N], s ∈ [1,S−2], 3 ·bns ≤
2

∑
i=0

xn(s+i) (5)

We also want to ensure that there is no shift start-
ing the last 2 hours of the week.

∀n ∈ [1,N], bn(S−1) = 0 = bnS (6)

A shift must not exceed 6 hours.

∀n ∈ [1,N], s ∈ [1,S−6],
6

∑
i=0

xn(s+i) ≤ 6 (7)

6. There should be at least 20 hours between the be-
ginning of 2 shifts for a given tutor.

∀n ∈ [1,N], s ∈ [1,S−19],
19

∑
i=0

bn(s+i) ≤ 1 (8)

7. For each hour, there must be a minimum number
of scheduled tutors (L−s , defined by the expert) as
long as there are enough tutors available.

∀s ∈ [1,S],
N

∑
n=1

xns ≥min

(
L−s ,

N

∑
n=1

ans

)
(9)

8. For each hour, the number of scheduled tutors
cannot exceed a certain number (L+

s , defined by
the expert).

∀s ∈ [1,S],
N

∑
n=1

xns ≤ L+
s (10)

9. For every hour and important topic, there must
be a minimum number of tutors scheduled who
can teach the respective topic provided there are
enough tutors available.

∀k ∈ TI , s ∈ [1,S],cks =
N

∑
n=1

xns · ynk ≥min
(

MI
ks,Oks

)
(11)

10. There is a price limit on the weekly schedule.

N

∑
n=1

(pn ·
S

∑
s=1

xns)≤Cmax (12)

11. A linear formulation of the beginning of shift vari-
ables (bns) is based on imposing hard constraints
and using the variables xns as shown below.

bns ≥ xns− xn(s−1) (13)

bns ≤ xns (14)

bns ≤ 1− xn(s−1) (15)

xn,−1 is the information specified in the last hour
slot of the schedule corresponding to the previous
week’s schedule (In our case that corresponds to
11 PM - 12 AM on Sunday).

12. The demand satisfaction variable zks is linearly
formulated by imposing hard constraints on Mks
and cks and is shown below.

cks ≥Mks−Z · (1− zks) (16)

cks ≤Mks−1+Z · zks (17)

Z is an upper bound on the variables cks and Mks.
Since the demand and the number of available tu-
tors is bounded in this problem setup for a given
week, Mks is bounded. We arbitrarily choose Z
to equal 50. This number may vary from week to
week.

4.4 Objective Function

The objective function was defined to maximize the
instances where the required number of tutors (for
each topic and hour slot) were scheduled. Mathemat-
ically, this is equivalent to maximizing the instances
where the variables zks equals 1. Hence, the objective
function (to be maximized) can be written as
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K ({zks}) =
K

∑
k=1

S

∑
s=1

zks. (18)

Each unit increment in the objective function is
due to the required number of tutors being scheduled
for a topic and an hour slot. This definition is both
intuitive and easy to implement.

5 HEURISTICS

The optimization problem discussed in this paper is
comprised of approximately 60,000 hard constraints
and 40,000 variables. Due to the large number of
constraints and variables, the solution space is often
empty since it is unfeasible to satisfy all of the con-
ditions. The gap between tutor availability and topic
demand is one of the major contributors to the infea-
sibility of finding a solution. Not being able to find
a schedule for a given week would be unacceptable.
That is why the principle of graceful degradation is
adopted to gradually relax the set of constraints and
find the best possible schedule. In subsection 5.1,
we discuss the approaches to relaxing the constraints,
while in subsection 5.2 the protocol that would lead to
the best compromise in finding a solution is discussed.

5.1 Constraint Parametrization

When a solution is infeasible corresponding to the
problem setup, the following strategies can be used
to relax the overly restrictive conditions:

1. Removing some of the more restrictive hard con-
straints. This option is not desirable since the hard
constraints are crucial for ensuring a high quality
schedule.

2. Reformulating some of the hard constraints to soft
constraints in the problem setup. The downside is
that such an objective function with multiple com-
peting goals makes the algorithm less predictable
and often leads to optimal solutions that are in re-
ality low quality schedules (according to the ex-
pert).

3. Re-parametrize the hard constraints to include a
relaxation parameter so that they are less restric-
tive and allow us to find a schedule that is the best
possible quality for the given inputs. For example,
if the tutor availability for Calculus is low during
2 - 5 PM on Friday, we can reduce the minimum
required topic coverage accordingly (up to a point
beyond which external intervention such as hiring
more Calculus tutors might be necessary) in the
constraints.

Consider the re-parametrized hard constraint given by
equation (11).

cks =
N

∑
n=1

xns · ynk ≥min
(
MI

ks,Oks
)
−R9, (19)

where, the relaxation parameter R9 is introduced to
allow us to strategically compromise on the important
topic coverage,

R9 ∈ {1,2,3} when MI
ks ≤ Oks. (20)

The constraint relaxation need not be subtractive but
can also be multiplicative as shown below in the re-
parametrized hard constraint given by equation (4) as
given below,

S

∑
s=1

xns ≥min

(
R4 ·H−n ,

S

∑
s=1

ans

)
, (21)

where R4 ∈ {1,0.8}.
In the following subsection, we discuss the pro-

tocol used to identify and relax the appropriate con-
straint and gradually sacrifice the quality of the re-
quired schedule to find a solution.

5.2 Graceful Degradation Protocol

The idea behind graceful degradation is to find the
weakest relaxation of constraints that will lead to a
feasible solution. An iterative process is adopted to
find the best compromise. For each iteration, slight
changes are brought to the constraint boundaries, and
a feasibility check is performed. The next iteration
takes place when there is no feasible solution, other-
wise the process stops. This process is summarized
succinctly in algorithm 1.

Algorithm 1: Graceful Degradation Protocol.

input: ordered list of constraint parameter sce-
narios prioritized by schedule quality
output: constraint parameter scenario that lead
to the highest quality schedule (if it exists)

1: for scenario in constraint parameter scenarios
do

2: if scenario allows feasible solution then
3: return scenario

The degree to which the constraint parameters can
be relaxed is determined by the scheduling expert.
Following that, constraint scenarios are ordered in
terms of priority starting with the unrelaxed parameter
case and ending with the parameters that lead to the
least desirable schedule. The algorithm used in this
paper iterates through up to fifteen stages to search for
a constraint scenario where a schedule can be gener-
ated.
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6 RESULTS

In this section we compare the performance metrics
of the automatically generated schedules to that of the
domain expert. It is worth noting that the comparison
was only possible when the volume of tutors required
to be scheduled was lower. Currently, the larger num-
ber of tutors required to be scheduled makes it impos-
sible to manually generate one in a reasonable amount
of time.

When all the inputs for the scheduling algorithm
have been gathered, the algorithm iterates through
each of the scenarios in the graceful degradation pro-
tocol described in subsection 5.2. For each itera-
tion, the OR tools library with the Python wrapper
(see (Perron and Furnon, 2019)) is used to determine
whether a feasible solution exists or not. It is not re-
quired to find an optimal solution since the constraints
are setup to ensure that any solution will be suffi-
ciently high quality. Determining whether the prob-
lem has a feasible solution takes under a few seconds
using a Mac mini with a processor Intel Core i5 (3
GHz), 6 cores, 8 GB of memory.

Once a scenario for which a feasible solution ex-
ists has been found, the algorithm proceeds to gener-
ate a sequence of solutions that are increasingly opti-
mal with respect to the objective function. This pro-
cess of optimizing the objective function converges
relatively fast and terminating it after two to five min-
utes leads to a good schedule (with negligible differ-
ences depending on how long the optimization was
carried out for). Alternatively, the algorithm can also
be terminated after the objective function reaches a
predefined threshold. The total time taken for the al-
gorithm to find a solution is dependent on the number
of scenarios the algorithm had to test before finding
a feasible scenario if one exists at all. Cumulatively,
testing each scenario until it finds a solution takes the
algorithm less than fifteen minutes. This is a very
significant improvement, considering that the manual
generation of a schedule would take up to three hours
(when the tutor team was small enough to schedule
manually). Furthermore, the algorithm has been able
to find a feasible scenario to generate a solution in ev-
ery case utilizing the graceful degradation protocol.

A quantitative comparison of the schedules gen-
erated by the expert and the integer linear program-
ming (ILP) algorithm is based on the time required
to generate a schedule, the schedule cost, topic cover-
age, number of shifts of that were too short (less than
three hours) and the number of instances where the
tutor was scheduled more shifts than allotted. Over a
period of 12 weeks, the automated algorithm had 5%
higher topic coverage and at the same time, the cost

was 10% lower. Furthermore, the algorithm never
generated schedules with undesirable number and du-
ration of shifts while the expert had on average 2 to
5 tutors who were assigned more than six shifts and
between 5 to 10 shifts that were too short. The results
are summarized in table 2.

On a qualitative level, the expert’s evaluation of
the automated schedule is that it performs as well as
her schedules in terms of topic coverage and satisfy-
ing the expectations that the tutors have in terms of the
hours they are scheduled for. Week over week, the
expert has gained more and more confidence in the
algorithm generating an appropriate schedule based
on her inputs. To develop the automated algorithm,
it was crucial that we relied heavily on the domain
expert’s experience to select the right constraints for
the problem setup. This was one of the key contri-
butions to the success and subsequent adoption of the
scheduling algorithms.

Lastly, since the metrics have been generated, the
platform has scaled a lot (+200% users), and the man-
ual creation of the schedule has become impossible
whereas the integer linear program can generate one
in less than 20 minutes.

7 CONCLUSION

Personnel scheduling is an essential recurring task
for a chat-based online tutoring platform. The em-
ployee availability and the number of required tutors
per topic vary weekly making it necessary to generate
a new schedule every week. Moreover, as the work-
force continues to grow, manually generating a sched-
ule will ultimately become impossible.

The solution discussed in this paper involves col-
laborating with a domain expert to translate the sched-
ule requirements as mathematical constraints and us-
ing integer linear programming to find a solution. The
resulting algorithm is very reliable due to the mini-
mum standard set by all the hard constraints. One
of the most important requirements of the algorithm
is that a solution be found every week. Due to the
complex set of hard constraints in our setup, finding a
solution by a straightforward application of OR tools
is often infeasible. In this paper, a protocol based on
reparametrizing the hard constraints and relaxing the
new parameters is shown as an effective strategy to
find a good compromise for the schedule. In most
NSP applications, a similar graceful degradation pro-
tocol would be immensely beneficial. The constraint
relaxation is carried out in iterations according to the
priority set by the expert and when it fails, an external
intervention such as hiring more tutors is required.
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Table 2: Quantitative evaluation of schedules over 12 weeks.

Metric Expert (N = 50) ILP (N = 50) Expert (N = 100) ILP (N = 100)
Time taken to generate 3 hours 15 min N/A 15 min

a schedule (< 5 iterations) (< 5 iterations)
Topic Coverage 65%-70% 70%-75% N/A 70%-75%

Number of shifts that 5-10 0 N/A 0
are too short

Number of tutors who are 2-5 0 N/A 0
scheduled more than six times

A quantitative comparison of the topic coverage,
cost and time taken to generate schedules show that
the scheduling algorithm outperforms the manually
generated schedules. The results show that the topic
coverage is higher by 5% and the cost is lowered by
10% for an equivalent coverage. The greatest advan-
tage is that it takes the algorithm less than 20 minutes
to generate a schedule compared to hours of work
(it ranged from 3 to 5 hours before the automated
scheduler was adopted) for the expert. Moreover, em-
ployee dissatisfaction with the hours they were sched-
uled compared to what they expected was negligible.

The algorithm’s performance has been very reli-
able and satisfactory leading to a rapid adoption of
a stable version in the platform. Areas of improve-
ment consist in forecasting the topic demand, so that
the expert does not have to input it manually; build-
ing a simulator to generate flows of students coming
on the platform, so that we can evaluate the average
performance of a schedule in multiple scenarios; and
finding the best combination of tutors at each hour slot
taking into account how much work a tutor can han-
dle factoring in the number of simultaneous students
and their requested topic.
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