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Abstract: Surface Plasmon Resonance have been a gold standard for biosensing and chemical sensing over the past 
decades. The surface plasmons are a confined electromagnetic wave mode propagating on surface of noble 
metals. One of the key features of surface plasmons is that they are sensitive to its surrounding medium, 
therefore the surface plasmons are usually applied in sensing applications. It has been very well established 
that measuring the phase response of the surface plasmons is more sensitive and more robust compared to 
intensity or amplitude measurements. To measure the phase, of course, an interferometer is required. This 
will impose the complexity to the optical alignment. Moreover, the interferometric systems usually require a 
well-controlled experimental condition, such as, vibration isolation system. Recently, there are some interest 
of the research community to recover the surface plasmons phase through computational phase retrieval 
algorithms, such as, Ptychography. Although these computational algorithms can recover the phase profile, 
they do require many images or a lengthy computing time making them not suitable for real-time measurement. 
Here, we propose a novel approach to perform surface plasmon phase retrieval using image recognition 
though deep learning. We demonstrate the feasibility of using the deep learning to recover amplitude and 
phase responses of simulated back focal plane images.

1 INTRODUCTION 

Surface Plasmons (SPs) are a confined 
electromagnetic wave phenomenon propagating on 
surface of noble metals, such as, gold (Au), Silver 
(Al) and Copper (Cu) (Somekh & Pechprasarn, 
2016). Surface Plasmon Resonance (SPR) is a well-
known resonant effect of the SPs occurring when 
there is a p-polarized light beam (TM polarization) 
with a matching momentum to the resonant frequency 
of the SPs illuminating on the noble metal surface. 
The SPR is very sensitive to its local refractive index 
change around the height of 200nm from the metal 
surface due to the evanescent wave penetration depth 
of the SPs (Shen, Learkthanakhachon, Pechprasarn, 
Zhang, & Somekh, 2018). The SPs have been widely 
utilized as a gold standard equipment for label-free 
biosensing (Liedberg, Nylander, & Lundström, 
1995), chemical sensing (Liedberg, Nylander, & 

 
a  https://orcid.org/0000-0001-9105-8627 
b  https://orcid.org/0000-0002-1459-8133 
c  https://orcid.org/0000-0003-4057-7237 
d  https://orcid.org/0000-0001-8195-1841 

Lunström, 1983) and bioimaging (Pechprasarn & 
Somekh, 2014; Somekh, Pechprasarn, Chow, Meng, 
& Shen, 2016).  

There are two standard approaches to excite the 
SPs, which are (1) Kretschmann configuration 
(Kretschmann & Raether, 1968) as shown in Figure 
1a and (2) Otto configuration (Akowuah, Gorman, & 
Haxha, 2009) as shown in Figure 1b. Both optical 
configurations require high index prism coupling and 
p-polarized incident illumination with the wavelength 
in red to infrared regime. The main difference 
between the two configurations is the thickness of the 
metal and the position of the metal. On the reflectance 
of both configurations, there will be a dark band in 
the reflectance curve, so called ‘SP dip’ position and 
the wave vector position that the SP dip occurs is the 
surface plasmon’s wave vector or ksp.  
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Figure 1: Shows conventional SPR optical setups (a) 
Kretschmann configuration and (b) Otto configuration. 

The SP dip occurs due to loss mechanisms of SP 
coupling (Pechprasarn, Chow, & Somekh, 2018). 
This is a strong evidence for SP excitation. Figure 2a 
shows the simulated SP reflectance curves for 
different thicknesses of gold between 60nm to 60nm 
with the p-polarized incident wave of 633nm 
wavelength (HeNe) and the gold complex refractive 
index of 0.1834+3.4332i (Johnson & Christy, 1972) 
for Kretschmann configuration. Fig.2b shows 
corresponding phase responses. The phase responses 
of reflection coefficient for p-polarized wave were 
different for different thicknesses of the gold layer d1. 
For the thicknesses lower than 47nm had 2π rad phase 
transition over the SP dip, whereas the thicknesses 
higher than 47nm had π rad phase transition. This can 
be explained by coupling strength of the SPs and the 
direct reflection from the gold surface, which is 
explained in detail in the cited reference here 
(Pechprasarn et al., 2018). The simulation results in 
Figure 2 were calculated using Fresnel equations and 
Transfer matrix approach (Suvarnaphaet & 
Pechprasarn, 2018). 

For Kretschmann configuration, the uniform 
metal is usually very thin and attach to the glass prism 
layer. The metal thickness (d1) for biosensing depends 
on the metal type and its application. For biosensing, 
gold is usually used as the SPR sensor chip, since gold 
is chemically stable and does not form an oxide layer 
with its environment (Suvarnaphaet & Pechprasarn, 
2018). The gold thickness is usually employed at 
46nm to 50nm, since it gives the darkest |rp|2.  

On the other hand, for the Otto configuration there 
is a very thick metal layer positioned around one 
wavelength of light away from the glass prism. The 

Otto configuration to the best of author knowledge it 
is not usually applied in a biosensing. Most of its 
applications are in physics, like study of light-matter 
interaction (Pechprasarn et al., 2016). 

Thanks to high numerical aperture (NA) objective 
lenses, which are becoming more affordable and 
widely commercially available, they have made the 
SPs excitation possible under a conventional 
microscope configuration as shown in Figure 3. 

 
Figure 2: Shows (a) Reflectance |rp|2 and (b) phase of rp in 
rad for 30nm to 60nm of uniform gold layer coated on BK7 
glass with refractive index of 1.52. The incident wave was 
p-polarized wave at 633nm wavelength. 

 
Figure 3: Shows gold sensor under an oil immersion 
objective lens and optical system to capture the back focal 
plane (BFP) image. 
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Figure 4a and Figure 4b show a simulated back 
focal plane (BFP) of the 1.49 NA objective lens 
microscope system in Figure 3a for a linearly 
polarized coherent source of 633nm wavelength. The 
pure p-polarization is along the x-axis of  Figure 4 and 
the pure s-polarization is along the y-axis of  Figure 
4.  

 
Figure 4: Shows (a) BFP intensity and (b) BFP phase in rad 
for the electric field component along x-direction. n0=1.52, 
n1=0.1834+3.4332i ,n2=1.00, d1=45nm λ0=633nm. 

Although the SPR has been discovered and its 
theory have been thoroughly studied and very well 
established for a few decades, there are still new 
findings and breakthroughs reported over the recent 
years. One of the most exciting work in the field is 
single protein molecule imaging (Taylor & Zijlstra, 
2017) and quantitative bioimaging (Tan, 
Pechprasarn, Zhang, Pitter, & Somekh, 2016). Most 
of the ultra-sensitive SPR systems rely on phase SPR 
phase measurement (Pechprasarn & Somekh, 2014). 
It has been very well established that in measuring 
SPR phase is more robust and more sensitive than 
measuring SPR amplitude response (Kabashin, 
Patskovsky, & Grigorenko, 2009). Of course, to 
measure the phase response, an optical interferometer 
is needed making the optical configuration more 
sophisticated (Pechprasarn, Zhang, Albutt, Zhang, & 
Somekh, 2014). There are several interferometric 

configurations reported to improve SPR phase 
measurement stability and repeatability, such as, 
common path SPR interferometry (Pechprasarn et al., 
2014). Recently there is an interest in applying 
computational phase retrieval algorithms, such as, 
Ptychography (Somekh, Pechprasarn, Chen, 
Pimonsakonwong, & Albutt, 2017), Transport of 
intensity (Streibl, 1984) and Gerchberg and Saxton 
(Zalevsky, Mendlovic, & Dorsch, 1996) to retrieve 
the SPR phase with no requirement of an 
interferometer system.  

Although the phase retrieval algorithms can be 
employed to recover the SPR phase, they still have 
their own disadvantages for each of the algorithms. 
For example, for the Ptychography and Gerchberg 
and Saxton they are iterative therefore they are not 
suitable for real time measurement. The transport of 
intensity method is not an iterative method, it 
recovers the phase by solving a Poison’s equation to 
wave propagation to predict the phase of the 
propagating wave. The method requires finite 
element (FEM) calculation, computationally time 
consuming and require relatively large computing 
power compared to the other two methods.  

Here, the mentioned issues will be addressed by 
replacing the time-consuming phase retrieval 
computations by a data driven technology deep 
learning. Here a 3 layered U-shaped artificial neural 
network (UNet) architecture was employed to learn 
how to do image segmentation and regression to 
predict the corresponding real part and imaginary part 
of the back focal plane as the network output.  

2 PROPOSED METHOD 

In this section, an overview of relevant computational 
methods and the deep learning are described in detail. 
There are 3 major components to train the UNet 
network (1) Input BFP intensity (2) the UNet network 
and (3) the labelled output BPF. Once the UNet has 
been trained and has reach its convergence. The 
network can then be deployed to validate itself, by 
predicting an output for a new BFP input. Validation 
to test the robustness of the trained network will be 
discussed in section 3. 

2.1 Back Focal Plane Calculation 

Here, 1,000 BFP images were computed with 
different d1 thicknesses ranging from 25nm to 65nm 
serving as the training data for the UNet, which will 
be described in detail in the later section. The d1 
thicknesses are randomly distributed as shown in 

Surface Plasmons Phase Imaging Microscopy using Deep Learning

35



Figure 5. The mean value and the standard deviation 
for the d1 were 44.55nm and 11.33nm respectively. 

 
Figure 5: Shows d1 thicknesses for all the 1,000 cases. 

 
Figure 6: Shows one quadrant of the BFP intensity for the 
500th sample with d1 of 49.54nm. 

BFPs for all the d1 thicknesses were then 
computed using Fresnel equations and the transfer 
matrix approach (Suvarnaphaet & Pechprasarn, 
2018). It is important to point out that only one 
quadrant of the BFP was computed to reduce the size 
of the training set since the other 3 quadrants contain 
the exact same information. Figure 6 shows a 
computed BFP intensity of the electric field pointing 
along x direction for the case number 500 (d1 of 
49.54nm). This is the input for the neural network. 

For the output from the neural network, the 
labelled data was prepared as the real part and the 
imaginary part of the BFP as shown in Figure 7a and 
Figure 7b. The training dataset for the neural network 
consisting of 1,000 images with 1 input (BFP 
intensity with the size of 328 pixels x328 pixels) and 
2 outputs (the real part of the BFP and the imaginary 
part with the total size of 328 pixels x328 pixels x 2 
dimensions). It is important to point out that one can 
use only one output by taking the phase as the output, 
but here the two outputs was implemented to avoid 
the ambiguity of 2π rad phase wrapping. This will be 
discussed in detail in discussion section later.  

 
Figure 7: Shows (a) real part of the 500th sample BFP and 
(b) imaginary part of the 500th sample BFP. 

2.2 U-Network Shape Neural Network 

 
Figure 8: Shows U-shaped artificial neural network 
structure with 3 layers of encoders and 3 layers of decoders. 

In this paper, U-shaped artificial neural network 
structure with 3 layers of encoder and 3 layers of 
decoder as shown in Figure 8 were employed. The 
UNet has been found to one of the best artificial 
neural networks (ANNs) for image segmentation and 
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image regression. Predicting the phase values is, of 
course, in the category of image regression. The 
detailed functions for each network layer are omitted 
they are all standard functions in deep learning. The 
UNet is then trained with the BFP dataset described 
in the section 2.1. 

3 RESULTS AND DISCUSSION 

3.1 Network Training 

The UNet network was trained under 
MATLAB2019a environment with a single graphic 
processing unit (GPU) Nvidia GeForce GTX1060. It 
took about 8 hours for 100 Epoches (100,000 
iterations in total). The UNet is trained so that the 
recovered outputs have reached the root mean square 
error less than 0.0001 or 0.01%.  

Once the UNet is trained, in the next section the 
UNet will be tested with different thicknesses of d1 to 
validate the corresponding output results. 

3.2 Network Testing with Simulated 
Data 

Here let us, see how well the network responses to the 
simulated input BFP. It is interesting to point out that 
the BFP phase responses do have different phase 
gradient and transition levels depending on the d1 
sensor thickness. Three thicknesses of 30nm,40nm 
and 50nm were chosen to be the test input to the 
trained UNet.  

 
Figure 9: Shows (a) real part for d1 of 30nm and (b) 
imaginary part for d1 of 30nm. 

The BFP images corresponding to the 3 
thicknesses were then computed as discussed in 
section 2.1. The 3 BFPs were employed as an input to 
the trained UNet in turn. The output real part and 
imaginary part images corresponding to the 3 inputs 
are shown in Figure 9 to Figure 11 for d1 of 30nm, 
40nm and 50nm respectively. 

 
Figure 10: Shows (a) real part for d1 of 40nm and (b) 
imaginary part for d1 of 40nm. 

 
Figure 11: Shows (a) real part for d1 of 50nm and (b) 
imaginary part for d1 of 50nm. 

The UNet can recover the real and imaginary parts 
for all the three inputs. However, for the 40nm case, 
there were some noise artefacts at around the NA of 
1.02 for both s and p polarizations. 

From the results in Figure 9 to Figure 11, the 
reflectance curve and the phase transition can be 
calculated as shown in Figure 12. Figure 12 shows the 
linescan reflectance |rp|2 for the 3 thicknesses. 

 
Figure 12: Shows linescan of recovered reflectance |rp|2 
calculated from the results in Figure 9 to Figure 11 in 
comparison with the ideal BFPs calculated using Fresnel 
equations. 

It can be observed that the recovered intensity images 
have the similar shape and intensity profiles 
compared to the Fresnel calculations. However, they 
did have some noise on the recovered SP dips 
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especially for 40nm case. The SP phase responses 
could also be recovered from the results in Figure 9 
to Figure 11. The phase responses calculated from 
Fresnel equations for the three gold thicknesses are 
shown in Figure 13a in comparison with the phase 
profiles recovered from the UNet as shown in Figure 
13a. Like the intensity responses, the recovered phase 
profiles using the UNet were like the phase profiles 
from Fresnel calculation with some random noise on 
the phase profile. These noises did not affect the 
shape and gradient of the phase transition of the SPR 
dip. 

 
Figure 13: Shows (a) phase responses for the three 
thicknesses of gold calculated using Fresnel equations and 
(b) the recovered phase responses using the UNet. 

The proposed image recognition using UNet 
might be another promising candidate to get around 
the issues of phase retrieval algorithms. There are still 
several issues that need to be further investigated, 
such as, how robust the network is at different input 
noise levels and its performance compared to the 
conventional interferometry and computational phase 
retrieval algorithms. 

 
 
 
 

4 CONCLUSION 

In this paper, we have proposed a novel approach to 
perform SPR phase measurement using U-shaped 
artificial neural network through deep learning. The 
UNet has been employed to replace the need for an 
interferometer or a computational phase retrieval 
algorithm. We have provided a theoretical analysis 
showing that the trained UNet can correctly recover 
different phase profiles. However, there are still some 
noise artefacts on the recovered intensity and phase 
profiles. There are still some room for further 
improvement, such as, training the network with a 
bigger dataset or including the image plane to the 
training set. We are currently investigating these 
possible improvements, which will be reported in 
another separate publication.   
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