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Abstract: In medical imaging modality, such as X-ray computerized tomography (CT) and positron emission 
tomography (PET), image reconstruction from projection is to produce an image of a two dimensional object 
from its line integrals along a finite number of lines. Given some subsets of a priori knowledge about the 
problem in Hilbert space, a formalized problem is to find the object from observed vector. If the subsets are 
closed and convex sets, given the convex projections onto the sets, the problem can be solved by using the 
method of projections onto convex sets (POCS). In this paper, we apply the method of projection onto convex 
sets to image reconstruction problems and evaluate the image quality in computer simulations. Also, we 
evaluate the influence of the noise in reconstructed image. 

1 INTRODUCTION 

In medical imaging modality, such as X-ray 
computerized tomography (CT) and positron 
emission tomography (PET), image reconstruction 
from projection is to produce an image of a two 
dimensional object from estimates of its line integrals 
along a finite number of lines of known locations 
(Herman, 2009; Kak et al., 1998; Imimya, 1985). If 

 is an observed function, ,  is a known 
kernel and  is unknown function or object to be 
determined, then image reconstruction problem can 
be formulated by 

, . 

This is known as a Fredholm integral equation of the 
first kind. Because of the ill-posed nature, it is 
difficult to solve strictly this integral equation. Since 
observed function can be discretized experimentally, 
it is necessary to discretize the integral kernel and 
object to solve it in computer. This leads to the 
problem of seeking the inverse of some matrix 
(Bertero et al., 1985; Bertero et al., 1988). In finite 
dimensional vector space, if an observed data is a 
vector in  dimensional space and an object data is a 
vector in  dimensional space, the integral kernel 
can be expressed by  matrix. If  and the 
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matrix is nonsingular, there exist an inverse. Then, 
object vector to be reconstructed can be obtain by 
using observed vector and an inverse. However, in 
general, because the matrix is not always nonsingular, 
there is no guarantee of existence and uniqueness for 
the solution. Given some subsets of a priori 
knowledge about the problem in Hilbert space, a 
formalized problem is to find the object or element f 
from observed vector. If the subsets are closed and 
convex sets, given the convex projections onto the 
sets, the problem can be solved by using the method 
of projections onto convex sets (POCS) (Stark et al., 
1998). POCS is an iterative algorithm for solving a 
Fredholm equation of the first kind. Up to now it has 
been used in CT, electron microscope, pattern 
recognition, phase retrieval, image compression, 
image restoration and so on (Sezan et al., 1984; Sezan 
et al., 1982; Oskoui-fard et al., 1988; Kudo et al., 
1991; Bauschke et al., 2003). Algebraic 
reconstruction techniques (ART) is also one of POCS 
for solving a system of simultaneous equation. In this 
paper, we apply the method of projection onto convex 
sets to image reconstruction problems and evaluate 
the image quality in computer simulations. Also, we 
evaluate the influence of the noise in reconstructed 
image. 
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2 IMAGE RECONSTRUCTION 
FROM PROJECTIONS 

Let us consider the problem of computerized 
tomography that is to reconstruct an object on the 
orthogonal coordinate system of 2 dimensional 
Euclidean space 2 . Let ,  be the orthogonal 
coordinates of any point in the plane. Let ,  be 
the orthogonal coordinates of any point which are 
rotated through θ degrees around the origin. And, let 

,  be an object which is, for example, X-ray 
absorption coefficient or the distribution of the 
nuclide. For this setting, we can define the integral of 
the function ,  along θ direction, such that, 

, ,

∞

∞

. (2)

This is known as a parallel projection, the ray-sum of 
, , the Radon transform or the X-ray transform. 

Figure 1 shows an object, its coordinate system and a 
parallel projection. The real problem in CT is to 
reconstruct f from a finite number of its line integrals, 
and the reconstruction procedure has to be adapted to 
the scanning geometry. The settings of finite 
sampling and scanning geometry on resolution and 
accuracy is one of the main problems in CT (Natterer, 
2001). 

3 THE METHOD OF CONVEX 
PROJECTIONS 

Assume that 1, 2,⋯ ,  denote  closed convex 
sets in Hilbert space , and 0  denotes their 
intersection set. 

0

1

. (3)

 

 

Figure 1: An object, , , and its projection, , , are 
shown for an angle of θ. 

For each 1,2,⋯ , , let  denote the projection 
operator onto the set , and  denote the 
corresponding relaxed projector, such that, 

, ∈ 0,2 . (4)

The  are called relaxation parameters, and can be 
adjusted to accelerate the rate of convergence. 
Moreover, we define the composition of the relaxed 
projectors. 

1 ⋯ 1. (5)

Then, we have the following theorem. 
Theorem (Fundamental Theorem of POCS). 
Assume that 0 is non-empty. Then for every ∈
 and for every ∈ 0,2 , 1,2,⋯ , , the 

sequence  converges weakly to a point of 0. 
This theorem was proved with the fixed point 

theorem of non-expansive mappings by Youla et al. 
in 1982(Youla et al., 1982). In a finite dimensional 
vector space, the sequence  converses strongly 
to ∈ 0 (Takahashi, 2000). 
Constraint sets used by this paper are listed below. 

The derivation of the projection operators is given 
in (Youla et al., 1982). 

1 : ∈ , , 0	for , ∉ . (6)

In other words,  is the set of all functions in  that 
are spatially band-limited in finite region .  In short, 
it is compact support. The projection  onto  is 
given by 

,
, , ∈
0 , ∉

. (7)

2
: ∈ , , 0	

for all , ∈
. (8)

In other words,  is the set of all function in  that 
are nonnegative. The projection  onto  is given 
by 

,
, if	 0
0 if	 0

. (9)

3 : ∈ , , . (10)
 

In other words,  is the set of all function in  that 
are amplitude-limited in the range , . The 
projection  onto  is given by 

,
,

, ,
,

. (11)

 
Let us consider the set that are obtained by the line 

integral. It is inner product in Hilbert space , that is, 
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: 〈 ,a〉 . (12)
 

Let g1, g2 ∈ , g3 g1 1 g2,	for ∈ 0,1 . 
Then, 

〈g3,a〉 〈 g1 1 g2,a〉 
(13)〈g1,a〉 1 〈g2,a〉 

α 1 . 

Hence, g3 ∈  and  is convex. 
Next, let  be a sequence in  such that →

∗. By the Schwarz inequality, we obtain 
|〈 ,a〉 〈 ∗,a〉| |〈 ∗,a〉| 

‖ ∗‖ ∙ ‖a‖ → 0. (14)

Thus, 

〈 ∗,a〉 lim
→∞
〈 ,a〉 . (15)

Hence, ∗ ∈  and set  is closed. Therefore,  is 
closed convex set. 

The projection of an arbitrary  onto the set  is 
driven. We need to find a ∈ , for an arbitrary ∈

, that minimizes ‖ ‖. Let a0 a/‖a‖. Then, 
each vector ∈  has the following orthogonal 
decomposition, that is, 

〈 , a0〉a0 . (16)

Hence, 

〈 , a0〉a0. (17)

Clearly 〈 , a0〉 0  so  is orthogonal to a0 . Since 
each ∈  satisfies 〈 ,a〉 , i.e., 〈 , a0〉 /‖a‖, 
we can write  according to eq. (16) as 

‖a‖
a0 , (18)

where  is a vector that is orthogonal to a0. 
Let us consider ∉  and ∈ . From eq. (16) 

and (18) we have 
 

‖ ‖2 〈 , a0〉a0

‖a‖
a0

2

 (19)

〈 , a0〉 ‖a‖
a0

2

 
 

Since a0 is orthogonal to , 〈a0, 〉 0. 
Then, we write 

‖ ‖2 																																											 

〈 , a0〉 ‖a‖
a0

2

‖ ‖2. (20)

We need to minimize ‖ ‖2 . Since ‖ ‖2

0, . From eq. (18), we can write 
 

‖a‖
a0  

(21)
‖a‖

a0 〈 , a0〉a0 

‖a‖
〈 , a0〉 a0 

〈 ,a〉
‖a‖2

a. 
 

We conclude that 
 

y
〈 ,a〉

‖a‖2
a, (22)

 

which is the projection of  onto the set . 

4 COMPUTER SIMULATIONS 

To confirm the effectiveness of the method, computer 
simulations were carried out. A Cartesian grid of the 
square observation plane, called pixels, is introduced 
into the region of interest (ROI) so that it covers the 
whole observation plane that has to be reconstructed. 
The pixels are numbered in some manner. We set the 
top left corner pixel 1and bottom right corner pixel M 
with Raster scanning. The object to be reconstructed 
is approximated by one that takes a constant uniform 
value f  throughout the -th pixel, for 1,2,⋯ ,M. 

Thus the vector f
1
 in  is the discretized 

version of the object (Censor et al., 2008). 
For our simulations we assumed the parallel mode 

of data collection. The set of all lines for which line 
integrals are estimated is divided into V sets of /V 
lines in each. The lines within a set are parallel and 
equidistant. The total number of all discretized line is 

. We assumed projection angle θ 0, , and it is 
discretized at even. We set the left detector element 
to 1 at θ 0 and the right detector element to N at 
last View. Thus  indicates any detector elements and 

1,2,⋯ , . We denote the length of intersection of 
the -th line with the -th pixel by a , for all 
1,2,⋯ , , 1,2,⋯ , . Therefore, in this model, 
each line integral is approximated by a finite sum and 
represented by a system of linear equations, such that, 

 

a f
1

g , 1,2,⋯ , . (23)

 

Thus the vector g 1 in  is the discretized 
version of the line integral or parallel projection. 
Using vector notation, it can be expressed by 
 

A . (24)
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Figure 2 shows the discretized model of the image 
reconstruction problem. 

 

Figure 2: The fully-discretized model of the image 
reconstruction problem. 

 

Figure 3: The original test image 1 (128×128pixel, 8bpp) 
and its projection data (Sinogram: 128 Detectors, 100 
Views and 8bpp). 

 

Figure 4: The reconstruction image using FBP. 

 

Figure 5: The reconstructed image using (a) ART (10 
iterations), (b) ART with , and (10 iterations). 

 

Figure 6: Plots of the normalized mean square error versus 
iteration number. 

 

Figure 7: Plot of the normalized mean square error versus 
SNR. 

The ART is the following iterative scheme. 

Algorithm. 
Step 1 (Initialization): f 0 ∈  and the relaxation 
parameter  is arbitrary. 

Step 2 (Iterative Step): Given  compute 

〈 , k〉

‖ ‖
, (25)

where k ∈ 0  and ∈ 0,2 . ‖∙‖2  indicates the ℓ2 -
norm. 
 

〈a , f 〉 a f
1

. (26)

 

Having identified the ART as convex projection 
algorithm, we can describe the ART algorithm by 
 

f 1
ARTf , (27)

 

where ART is defined as following. 
 

ART ⋯ 2 1. (28)
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It means that  is constituted by a composition of 
 projection operators  that project onto the closed 

convex sets , 1,2,⋯ , . 
Our first image is a text based phantom. Figure 3 

shows its original test image, discretized 128 128 
pixels, and its parallel projection data, called 
sinogram. In this case we set 100 projections with 128 
line per projection. The sinogram is shown 128
100 pixels. Figure 4 shows the reconstructed image 
with the filtered backprojection algorithm (FBP) for 
reference. FBP is an important reconstruction 
algorithm in tomography. It can be viewed as a 
numerical implementation of the inversion formula of 
the Radon transform. Figure 5 shows the 
reconstructed image with the method of convex 
projections after 10 iterations. Fig.5 (a) is the 
reconstructed image by ART without a priori 
constraints. It can be written as 

 

f 1 ⋯ 2 1f . (29)
 

 

Figure 8: The original test image 2 (128×128pixel, 8bpp) 
and its projection data (Sinogram: 128 Detectors, 150 
Views and 8bpp.) 

 

Figure 9: The reconstruction image using FBP. 

 

Figure 10: The reconstructed image using (a) ART (10 
iterations), (b) ART with , and (10 iterations). 

 

Figure 11: Plots of the normalized mean square error versus 
iteration number. 

 

Figure 12: Plot of the normalized mean square error versus 
SNR. 

Fig. 5 (b) is the reconstructed image by ART with 
three prior constraints. It can be written as 
 

f 1 ⋯ 2 1f . (30)
 

In this case we set the starting data to the origin, 0
f0 ∈ , and the relaxation parameter  to 0.01. 
Figure 6 illustrates the plots of the normalized mean 
square error versus iteration number to compare the 
error of the reconstruction. The normalized mean 
square error is defined by 
 

NMSE
f f

2

2

‖f‖2
2 , (31)

 

where  is the image after ’th iteration step and  is 
the original image. In Fig. 6 the green line shows the 
NMSE by using the convex projections 
12799 12797 ⋯ 3 1 . The reconstruction was updated 

by 
 

f 1
12799 12797 ⋯ 3 1f . (32)

 

The total number of tis projections is 6400. The orange 
line shows the NMSE by using the convex projections 
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12800 12799 ⋯ 2 1. The reconstruction was updated 
by 

f 1
12800 12799 ⋯ 2 1f . (33)

The total number of tis projections is 12800. The blue 
line shows the NMSE by using the convex projections 

12800 ⋯ 2 1. The gray dotted line shows the 
NMSE by FBP for reference. From Fig. 6 we can see 
that the error decreases with increasing the number of 
projections and the number of iterations. 

To confirm the influence of the noise, noises are 
added the projection data. Using vector notation, it 
can be expressed by  

A , (34)

where q indicates noise and is a normally distributed 
deviate with zero mean and unit variance (Press et al., 
1992). 

To measure the effect of noise on the 
reconstruction images, we use the signal-to-noise 
ratio (SNR) (Trussel, 2008). This is usually defined 
as the ratio of signal power g

2, to noise power 2, 
 

SNR
g
2

2, (35)

 

and in decibels 
 

SNRdB 10 log10
g
2

2 . (36)

 

In projection data, the function power is usually 
estimated by the simple summation 

g
2 1

128 100
g g

2
,

128 100

1

 (37)

 

where g is the mean of the projection data. 
Figure 7 illustrates the plots of the normalized 

mean square error versus SNR. From Fig. 7 we can 
see that the error decreases with increasing SNR. 

Our second image is 2-demensional numerical 
phantom which is modeled on Hoffmann brain 
phantom. Figure 8 shows its test image 2, discretized 
128 128pixels, and its parallel projection data. In 
this case we set 150 projections with 128 line per 
projection. The sinogram is shown 128 150 pixels. 
Figure 9 shows the reconstructed image with FBP for 
reference. Figure 10 shows the reconstructed image 
with the method of convex projections after 10 
iterations. Fig.10 (a) is the reconstructed image by 
ART without a priori constraints. Fig.10 (b) is that 
with three prior constraints. Figure 11 illustrates the 
plots of the normalized mean square error versus 
iteration number with test image 2. In Fig. 11 the 
green line shows the NMSE by using the convex 

projections 19200 19198 ⋯ 4 2 . The reconstruction 
was updated by 

f 1
19200 19198 ⋯ 4 2f . (38)

The total number of tis projections is 9600. The 
orange line shows the NMSE by using the convex 
projections 19200 19199 ⋯ 2 1  The total number of 
tis projections is 19200. The blue line shows the 
NMSE by using the convex projections 

19200 ⋯ 2 1.  The gray dotted line shows the 
NMSE by FBP for reference. From Fig. 11 we can see 
that the error decreases with increasing the number of 
projections and the number of iterations. Figure 12 
illustrates the plots of the normalized mean square 
error versus SNR with the test image 2. From Fig. 12 
we can see that the error decreases with increasing 
SNR. 

5 CONCLUSIONS 

By discretizing the image reconstruction problem, we 
applied the method of projection onto convex sets to 
the problem and evaluated the image quality. Also, 
we evaluated the influence of the noise in 
reconstructed image. We showed that the error 
decreases with increasing the number of projections 
and the number of iterations. Also, we showed that 
the error decreases with increasing SNR. However, 
by increasing the number of the projections and the 
iteration step, time consuming problem arise. And, by 
increasing the pixel size of object and the data size of 
sinogram, this method requires more computational 
time. If we get more priori information with respect 
to an object, this method can decrease the normalized 
mean square error in comparison to FBP. 

In this study, there are many prior constraints 
except for our constraints used. If prior constraints are 
closed and convex set, these sets can be incorporated 
in this method. Therefore, it is necessary to create 
mathematically the subset in Hilbert space. 
Moreover, there are many parameters, such as initial 
data, the relaxation parameter and the pixel size of 
reconstructed image. The image quality of 
reconstructed image and the speed of the convergence 
in this method are affected by these. It is necessary to 
find the optimal parameters. These become the future 
problems. 
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APPENDIX 

Here, the definition of closed and convex sets and 
weakly convergent used by this paper are described 
below (Simmons, 1963, Wouk, 1979). 

Definition A. 
Let  be an arbitrary Hilbert space. A convex set in 

 is a non-empty subset  with the property that if  
and  are in , then 

1  

is also in  for every real number  such that 0
1. 

Definition B. 
A subset  of metric space  is called a closed set if 
it contains each of its limit points. 

Definition C. 
Let  be a normed linear vector space, ′  its dual, 
and  a sequence in . The sequence  is called 
a weak Cauchy sequence if 〈 , ′〉  is a Cauchy 
sequence for every ′  in ′ . We say  is weakly 

convergent to , written → , → ∞ , if 
〈 , ′〉 → 〈 , ′〉, → ∞ for every ′ ∈ ′. 
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