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Abstract: Optimization parameters of Selective Laser Melting (SLM) process is a significant question currently. Due to 
attractive advantages, namely high density of printed products and freely design, the SLM has been 
increasingly applied in industrial manufacturing. However, not only various influenced factors but also their 
range affects to the printing process. Therefore, it is difficult and requires much testing time and cost to select 
a suitable process parameter for manufacturing a desirable product.  In this article, a supervised learning 
Artificial Neural Network was applied to build an optimization system for finding out optimal process 
parameters. Inputs of the system are desirable properties of a product as relative density ratio while outputs 
are the crucial parameters as laser power, laser velocity, hatch distance, and layer thickness. The developed 
system is a powerful contribution to industrial SLM manufacturing. By applying the system, it requires less 
pre-manufacturing expenditure and also helps the printing users to choose approximately process parameters 
for printing out a desirable product.

1 INTRODUCTION 

Selective laser melting (SLM) powder bed fabrication 
is additive manufacturing (AM) that starting from 
metal powder, allows achieving desirable density 
products layer-by-layer. Each layer anchors to the 
previous one as the result of a complete fusion of 
metal powder obtained by a laser beam. The laser spot 
moves along a scanning pattern generated and 
controlled by a CAD model of the part to be built. The 
schematics representation of typical powder-bed 
fusion system explained in Figure 1.  The strength of 
the SLM process is possible to create any possible 
geometry (Srivatsan and Sudarshan, 2015a). 
Therefore, the SLM is attractive to the aerospace, 
automotive and other industries for present and 
future.  

Due to its excellent mechanical properties such as 
good stability, good corrosion resistance, and high 
specific strength, the titanium alloy Ti-6Al-4V is 
widely used in many industries (Alcisto et al., 2011). 
However, its high cost and challenging machinability 
somewhat restrict its use in conventional 
manufacturing methods, namely forging and casting 
(Tan et al., 2018). Nevertheless, the use of Ti-6Al-4V 

                                                                                                 
a  https://orcid.org/0000-0002-8382-4843 
b  https://orcid.org/0000-0001-7509-3422 

in SLM offers the benefits of recycling the 
unprocessed metal powder, geometrical freedom in 
product design, and time and energy efficiencies 
(Kruth et al., 2005).  

 

 

Figure 1: A schematic of a Selective Laser Melting method. 

Although an attracting manufacturing method for 
the aerospace, automotive and other technological 
industries, printing a desirable product is complicated 
because of many affected factors and their wide range 
that significantly impacts on the mechanical 
properties of the printed product. Many papers have 
tried to optimize the SLM process. It is evident in all 
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these methods that investigating process parameters 
independently is incorrect because the printed 
product quality is a function of the relationship 
between several crucial process parameters. 
Therefore, determining the optimal process 
parameters by applying an artificial neural network to 
print a desirable density product is the goal of this 
research.  

Artificial neural networks (ANNs) motivated by 
modeling of human brains and nerve cells are 
currently considered as one of the neuro-modeling 
techniques used in associate with robust optimization. 
Using artificial neural networks to optimize 
engineering problems has been a great application, 
such a welding process (Sivagurumanikandan et al., 
2018). In SLM, there were some research analysed 
applying ANNs but individual process parameters 
(Mertens et al., 2014)(Kempen et al., 2011). In this 
article, four crucial process parameters as laser 
power, laser scanning speed, hatch distance and layer 
thickness are optimized to get a desirable density of 
the manufactured product. 

2 METHODOLOGY 

The material selected for this study was the titanium-
alloy Ti-6Al-4V ELI, Grade 23 (SLM Solutions 
Group AG, Germany), supplied in powder form with 
an average particle size of about 20-63μm. An SLM 
printer (MetalSys150; WinforSys Co., Ltd., Korea) 
with an IPG ytterbium fiber laser, (YLR-200-AC-
Y11; IPG Photonics) 200W maximum output, air-
cooled, was used to process the powder. Scanning 
electron microscope (SEM) image of powder material 
and particle size distribution were shown in Figure 2a 
and 2b, respectively. An SLM machine (MetalSys150, 
Winforsys co., Ltd) with the YLR-200-AC-Y11, IPG 
Ytterbium Fiber Laser, 200W maximum output, air-
cooled, was used to process. Table 1 shows the 
technical parameters of the SLM printer.  The printing 
process used the meander laser scanning strategy in 
which the laser scan direction in nth layer is 
perpendicular to that of the n+1th layer, which is the 
same as the n-1th layer. 

Table 1: Technical parameters of the MetalSys150. 

Item Value 
Wavelength 1,075nm 

Output power 200W max 
Beam quality M2,1.1 

Beam spot 70µm 
Building size 150×150×250mm3 
Max scanning 7 m/s max 

Argon gas was filled into the chamber to maintain 
oxygen degree at below 0.5 percent. The chamber 
temperature was at 280C. The process parameters for 
experiments are shown in Table 2. Parameters were in 
the range of settings recommended by the machine 
manufacturers. After printing, SLM processed parts 
were tested. A GR-200 analytical balance (A&D 
Company, Ltd., Tokyo, Japan) was combined with the 
AD-1653 density determination kit to measure the 
density of the printed parts based on the Archimedes’ 
principle. The density of the samples is obtained 
according to the weight of the sample in the air, the 
weight of the sample in liquid, the distilled water (DI 
water) and the density of the liquid. 

   

 

Figure 2: SEM image (a) and particle size distribution (b) 
of the used material powder. 

Table 2: SLM process parameters used for experiments. 

Factor  Level  

Laser power (W) 80 120 180 
Laser scanning speed(mm/s) 800 1200 2500 

Layer thickness(µm) 20 50 100 
Hatch distance(µm) 35 50 90 

2.1 Neural Network Parameters 

A feedforward ANN includes four input nodes as four 
process parameters, while output was the density of 
the printed part. Two hidden layers (Rojas, 1996) 
with ten, eight nodes (L. Fletcher ; V. Katkovnik ; 
F.E. Steffens ; A.P. Engelbrecht, 1998) in first, 
second hidden layer respectively with a full 
connection. 

2.1.1 Data Processing 

Significant differences in the values of four 
investigated process parameters as the inputs and 
product quality as the output leads complicate the 
learning process of the neural network. For solving 
this potential problem, all input and output were 
previously scaled by using a standardization: ݖ = ௫ିஜఙ       (1) 

With mean: 
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μ = ଵே∑ ே௜ୀଵ(௜ݔ)     (2) 

and standard deviation: ߪ = ටଵே∑ ௜ݔ) − μ)ଶே௜ୀଵ      (3) 

2.1.2 Neural Network Architecture 

The number of neurons in the input layer is equal to 
the number of the investigating parameter. The 
quantity of hidden layer usually is set between the 
size of the input and size of the output. Selecting the 
number of neurons in the hidden layers is very 
important. One hand, using too few neurons in hidden 
layer will result the underfitting. On the other hand, 
too many of them can result in overfitting. There are 
many methods for determining a suitable number of 
hidden nodes. In this research, two hidden layers were 
applied and the number of hidden node was 
calculated by the following: ௛ܰ = ேೞ൫ఈ(ே೔ାே೚)൯      (4) 

Ni: number of input neurons 
NO: number of output neurons 
NS: number of samples in training data set ߙ: an arbitrary scaling factor usually 2-10 

2.1.3 K-fold Cross-validation 

For training the model, the dataset is usually split into 
training data and test data. The training dataset 
includes a known output, and the model learns on this 
data to be described to other coming data. The test 
dataset is used to test the prediction of the model. 
However, splitting data that is required to reflect the 
essential characteristics of the problem is not easy. 

Additionally, by partitioning the available data 
into other sets, the data will significantly decrease the 
number of samples which can be used for learning the 
model, and the results can depend on a particular 
random selection for the pair of sets. Therefore, in this 
article, the k-fold cross-validation is applied to solve 
the mentioned problems. In k-fold cross-validation, 
the original sample is randomly partitioned into k 
equal sized subsamples. Of the k subsets, a single 
subsample is retained as the validation data for testing 
the model, and the remaining k-1 subsamples are used 
as training data. The cross-validation process is then 
repeated k times (the folds), with each of the k 
subsamples used exactly once as the validation data. 
The k results from the folds can then be averaged to 
produce a single estimation (James et al., 2013). The 
advantage of this method is that all observations are 
applied for both training and validation, and each 
observation is used for validation exactly once. In this 
article, the 10- fold was selected 

2.1.4 Activation Function 

The rectified linear unit (ReLU), ݂(ݖ) = max(0,  ,(ݖ
was used when going from one layer to the next as an 
active function (Glorot et al., 2011). It is the most 
popular non-linear function recently because it learns 
much faster in networks with many layers, typically 
comparing the others (LeCun et al., 2015). 
Nevertheless, the sigmoid function, f(z) = 1/(1+ exp(-
z)), was used as the active function for the output 
layer because of real-valued output.  

2.1.5 Neural Network Validation 

The ANN was trained by minimizing the mean square 
error as a loss function with the Adam Optimizer 
algorithms (Kingma and Ba, 2017). The loss function 
was the mean absolute error and calculated as: 

,࢝)଴ܮ  ܾ) = ∑ ೙ಿసభேۂ௬ොି௬ہ              (5) 

Where ݕො and y, N, w, b are predicted value of the 
model, experimental output, total of samples, weight, 
and bias of the neural, respectively. 

2.1.6 Neural Network Optimization 

The Gradient Descent method (Kingma and Ba, 
2017) was applied to minimize the loss function by 
changing the values of the ࢝ and ࢈ parameters as the 
following equation: ߠ௧ାଵ = ௧ߠ	 −  (6)   (௧ߠ)ܮఏߘߟ	
In which: ߠ: is a neuron network parameter ߘఏܮ(ߠ௧):  is the derivation of the loss function at a 
point ߠ at the ݐ௧௛ loop. ߟ: learning rate, 0.05. 

2.1.7 Dropout 

Overfitting is a problem that often happened in 
machine learning. It is a phenomenon that model is 
too fit the training data, and it will fit the noise in the 
data rather than finding a general predictive rule 
(Tušar et al., 2017). A signal to recognize the 
overfitting is that training error is small while the 
testing error is high. For preventing overfitting, the 
dropout methods were used. Dropout means shutting 
down units in a neural network (Srivastava et al. 
2014) (Dahl et al., 2013) (de Rosa et al., 2018). It 
temporarily deactivates it from the network. The 
selection of ignored units is random. Each unit has 
remained with a fixed probability ݌ independent of 
another one. In this research, the probability of 
retaining a unit in the network was 0.8. After training, 
at the testing set, the network is used without dropout 
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in which the weights and biases are scaled as ௧ܹ௘௦௧(௟)  .(௟)ܹ݌=
2.2 Optimization System Algorithm 

The Generated Data was created by integrating from 
four the investigated process parameters, as shown in 
Table 2. Laser power changes from 80W to 180W 
with 5W variation. Laser scanning velocity values 
change between 800mm/s to 2500mm/s with 
100mm/s variation. Layer thickness and hatch 
distance change from 20µm to 100µm and 35µm to 
90µm respectively with 5µm variation.  

Table 3: Combination of Generated data for predicting. 

Factor Min 
value 

Max 
Value 

Deviation 

Laser Power (W) 80 180 5 
Laser scanning speed 

(mm/s) 
800 2500 100 

Layer thickness (µm) 20 80    5 
Hatch distance (µm) 30 100 5 

 
The optimization algorithm is shown in Figure 3 

and the following: 
1. At the first time, develop an ANN 
2. Predicting density ratios from the Generated Data 

that was created by combining levels of four 
process parameters. Laser power changes from 
80W to 180W with 5W variation. Laser scanning 
velocity values change between 800mm/s to 
2500mm/s with 100mm/s variation while layer 
thickness and hatch distance change from 20µm to 
80µm and 30µm to 100µm respectively with 5µm 
difference as shown in Table 3.  

3. Input a required density ratio of the user that is 
limited from 75 to 100, in the scope of this paper. 

4. Predicted data as the density ratio from the ANN 
was compared with user requirements.  

5. Then process parameters in the Generated Data of 
which predicted data fit with user needs are 
indexed. 

6. The indexed data were filtered by maximizing the 
value of the productivity, calculated by: ሶܸ = .ݒ ℎ.  ݐ
to point out the optimal parameters. It is a 
relationship of layer thickness (t), laser scan speed 
(v), and hatch distance (h). 
In this research, ANN implementation, training and 
the optimization system were developed using the 
Python programming language, in which the 
TensorFlow library (Abadi et al. 2016) was 
applied.  

3 RESULTS AND DISCUSSIONS 

3.1 Process Parameters and Printed 
Part Qualities Relationship 

Figure 4 indicates the relationship between individual 
four process parameters and the density of the 
manufactured part. Figure 4a shows the influence of 
laser power on density at 1400mm/s of laser speed 
and 40µm of hatch distance. Increasing laser power 
increased the relative density because of sufficient 
powder molten. Moreover, Figure 4a illustrates the 
effect of layer thickness. The blue, green, red and 
black lines present the influence of laser power at 
20µm, 40µm, 60µm, and 80µm of layer thickness 
respectively. It is precise that increasing layer 
thickness reduces the density ratio.   

 

Figure 3: Algorithms for optimization system. 

At a specific laser power, a thicker layer material 
powder will less be moult. Figure 4b presents the 
effect of laser scanning speed at different hatch 
distances. It shows a severe incline during increasing 
laser speed. High scanning speed of laser reduces 
interaction time of laser spot on material that 
generates lower densities because of incomplete 
melting of powder (Cherry et al., 2014). Additionally, 
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the effect of hatch spaces on density illuminates in 
Figure 4b. The hatch distance relates to the 
overlapping area of two adjacent melting lines. 
Reducing the hatch distance leads over-burning and 
vaporization within the melting pool. However, 
insufficient material moulted due to a large hatch 
distance generated low relative densities. A smaller 
hatch distance often increases density ratio. However, 
a combination of low speed of laser scanning velocity 
and too small hatch space leads balling phenomenon 
and vaporization of material that was significantly 
affected by density (Khan and Dickens, 2012). It 
explains for a lower density of blue line at 800mm/s 
compared to others.  

 

Figure 4: Relationship of individual process parameters and 
product properties. 

3.2 Neural Network Evaluation 

In order to validate the developed ANN, the mean 
absolute error (MAE) of the training and testing 
process is shown in Figure 5. The dark blue line and 
the orange line present the training and validation of 
the network. They converge after 3000 epochs. The 
result elucidates that the network prevents overfitting 
problem. Additionally, the results show that the 
maximum error percentage is 1.5% approximately, 
which is an acceptable value. Therefore, the 
developed ANN is valid for predicting. 

3.3 Optimization System Verification 

99 percentage of density ratio was used as a request 
of the user to verify the developed system. Table 4 
shows the parameters given by the system. Using the 
optimal process parameters suggested form the 
system, a product was printed one more time to 
confirm the performance of the system. By applying 
the Archimedes principle, the result indicates 99,8 
percentage of relative density. The part was mounted 

by hot pressing, polished and examined for porosity. 
Figure 6 shows a cross-section of the part. 
Additionally, the optimal parameters confirm a 
similar result by the response surface methodology 
(RSM)- based method (Li et al., 2018). It proved the 
success of the developed optimization system for SLM 
printing. 

 

Figure 5: Mean absolute error of training and testing 
processes of ANN. 

Table 4: Optimal process parameter set. 

Parameter Value 
Layer thickness, t, (µm) 20 
Hatch distance, h, (µm) 80 

Laser power, P, (W) 180 
Laser scanning speed, v,(mm/s) 900 

 

Figure 6: A cross-section of a product manufactured by the 
optimal process parameters set.  

4 CONCLUSIONS 

In this article, a system combining an ANN for 
optimizing process parameters to fabricate a desirable 
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product was developed. A supervised neural network 
was built for predicting a generated data set. Training 
and testing data set of the ANN were collected from 
the experiment. The gradient descent method was 
applied to minimize the loss function. The dropout 
technique and k-fold validate were used to prevent the 
overfitting problem. After building the network, a 
user requirement was compared with predicted data. 
Process parameters of which predicted values 
satisfied with user needs were indexed from the 
generated data set. In order to achieve the optimal 
process parameters, productivity was added as 
filtering conditions finally. In the future, the system 
will be implemented, and training data will more be 
collected to achieve more accurate results. 
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