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Abstract: We propose a novel CNN detection system with hierarchical classification for traffic object surveillance. The
detector is based on the Single-Shot multibox Detector (SSD) and inspired by the hierarchical classification
used in the YOLO9000 detector. We separate localization and classification during training, by introduc-
ing a novel loss term that handles hierarchical classification. This allows combining multiple datasets at
different levels of detail with respect to the label definitions and improves localization performance with
non-overlapping labels. We experiment with this novel traffic object detector and combine the public UA-
DETRAC, MIO-TCD datasets and our newly introduced surveillance dataset with non-overlapping class def-
initions. The proposed SSD-ML detector obtains 96.4% mAP in localization performance, outperforming
default SSD with 5.9%. For this improvement, we additionally introduce a specific hard-negative mining
method. The effect of incrementally adding more datasets reveals that the best performance is obtained when
training with all datasets combined (we use a separate test set). By adding hierarchical classification, the aver-
age classification performance increases with 1.4% to 78.6% mAP. This positive result is based on combining
all datasets, although label inconsistencies occur in the additional training data. In addition, the final system
can recognize the novel ‘van’ class that is not present in the original training data.

1 INTRODUCTION

Thousands of surveillance cameras are placed along
public roads and highways for traffic management
and law enforcement. Because continuous manual in-
spection is infeasible, only a limited number of cam-
eras are observed, specifically for special situations
(traffic jams, accidents). Video analysis tools enable
automatic detection of such situations, improving the
efficiency of traffic incident management. In addition
to real-time safety management, the output of such
detection, tracking and classification algorithms gen-
erate interesting statistics about the amount and type
of road users and their presence over time and on
road lanes. Multi-fold solutions for automatic recog-
nition of road users have been proposed (Sivaraman
and Trivedi, 2013; Fan et al., 2016; Lyu. et al., 2018).
All these works focus on detection and tracking and
apply classification only with a limited number of ob-
ject classes.

Depending on the application, a varying amount
of detail is desired in the number of classes. For gen-
eral traffic management, it is sufficient to distinguish
between small traffic (cars, motorcycles) and large
traffic (trucks and buses). In the application of tolling,

a larger number of classes is desired (extra classifica-
tion of agricultural vehicles, and articulated vs. fixed-
unit trucks or even a division in the number of axles).
For law enforcement or predicting CO2 emissions, a
higher classification resolution is required, such as ve-
hicle brand, model and engine type/size.

Although vehicle categories can be found by read-
ing the license plate and querying detailed informa-
tion in a national registry, the license plate might not
be visible or readable, due to occlusions or limited
pixel size and lack of database availability. Other
solutions for classification comprise expensive laser
scanners that are required to be mounted at exact po-
sitions above the road. A less intrusive and more
maintenance-friendly solution is the use of video
cameras. When considering cameras for monitoring
crossings or busy roads, visual detection and classi-
fication of vehicles is required because license plates
are too small for automatic plate recognition. Given
these considerations, a detailed visual traffic object
classification is indispensable based on video camera
information. However, this classification cannot fur-
ther proceed without discussing available datasets.

In recent years, substantial work has been done
on visual object detection and classification for which
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various image vehicle datasets have been published,
such as the UA-DETRAC (Wen et al., 2015) and
MIO-TCD (Luo et al., 2018) datasets. As detection
and classification algorithms gained improved perfor-
mance, novel datasets have been labeled in more de-
tail. Because of this continuous growth in detail in
categories between datasets, combining such data re-
quires the alignment of classification labels.

In this paper, the global objective is on visual ob-
ject detection and classification of vehicle traffic in
surveillance scenarios. For detailing the classifica-
tion, we propose the use of an hierarchical category
definition, that combines datasets at different levels
of detail in classification label definitions. This is
implemented by adopting an existing Convolutional
Neural Network (CNN) detector for hierarchical clas-
sification. This detector is trained using datasets la-
beled with different levels of hierarchical labels, com-
bining the classes of multiple datasets. We show
that object classes that are not labeled in one dataset
can be learned from other datasets where these la-
bels do exist, while exploiting other information from
the initial dataset. This allows for incremental and
semi-automatic annotation of datasets with a limited
amount of label detail. As a result of our method, the
obtained classification is completely tailored to our
desired hierarchical classification, while our method
is flexible to the input data and can accept a broad
range of pre-categorized datasets.

2 RELATED WORK

State-of-the-art object detectors in computer vision
typically perform detection in two stages. In the first
stage, they determine if there is an object and in the
second stage they determine its category and regress
the exact location of the object. For example, R-
CNN (Girshick et al., 2014), Fast R-CNN (Girshick,
2015), Faster R-CNN (Ren et al., 2015) and Mask R-
CNN (He et al., 2017) select object proposals in the
first stage and then classify and refine the bounding
box in a second stage. The two stages already intro-
duce hierarchy: object vs. background at the top and
the different object categories beneath, but subcate-
gories are not considered. Generally, a disadvantage
of two-stage detectors is that they are more complex
than recent single-stage detectors.

Single-stage detectors perform object localization
and classification in a single CNN. The most popu-
lar single-stage detectors are YOLO (Redmon et al.,
2016; Redmon and Farhadi, 2017), SSD (Liu et al.,
2016) and the more recent FCOS (Tian et al., 2019).
The YOLO detector uses the topmost feature map of

a base CNN network to predict bounding boxes di-
rectly for each cell in a fixed grid. The SSD detector
extends this concept by using multiple default bound-
ing boxes with various aspect ratios. In addition, SSD
uses multi-scale versions of the top-most feature map,
rendering the SSD detector more robust to large vari-
ations in object size. Therefore, we propose to use the
SSD detector as the basis of our object detector.

The SSD detector uses a softmax classification ap-
proach with a single label for background classes,
while the most recent YOLO (Redmon and Farhadi,
2017) detector follows a different approach for de-
tection and classification. First, the authors use
an objectness score P(physical ob ject) to predict if
there is an object present. In parallel, for classifi-
cation purposes, they assume that there is an object
(P(physical ob ject) = 1) and estimate probabilities
for each category in a hierarchical tree of 1,000 object
categories, derived from the COCO and ImageNet
datasets. Per level in the hierarchical tree, the au-
thors use multinomial classification to find the most
likely category. They assume that performance de-
grades gracefully on new and unknown object cate-
gories, i.e. confidences spread out among the sub-
categories. Our approach to implement hierarchical
classification in the SSD detector is based on the ap-
proach of the YOLO detector. However, instead of
multinomial classification, we propose to use inde-
pendent binary classification, since with our approach
the system directly learns the considered object. This
allows each classification output to predict only its ob-
ject (sub-)category, i.e. predict if the object is of that
category instead of choosing the most likely category
as with multinomial classification. Unknown or new
categories will result in a performance degradation for
all sub-categories.

3 SSD-ML DETECTION MODEL

We now describe our Single Shot multibox Detector:
Multi-Loss (SSD-ML). We propose a modification
of the original SSD detector (Liu et al., 2016) by
decoupling the presence detection and classification
tasks, which leads to more accurate classification
when the number of object classes increases. Decou-
pling is carried out by first predicting if there is an
object and then predict the class of that object. To
this end, we propose to use a binary loss function,
that in addition decouples the different classes and
enables the use of a hierarchical class definition.
For object classification, we propose the use of
independent predictions, instead of multinomial
logistic classifications, as proposed by (Redmon and
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Farhadi, 2017) for hierarchical classification. This
decoupling of detection and classification allows the
use of datasets for training that contain objects with
different levels of classification detail. For example,
agricultural vehicles must be detected as vehicle, but
are are not present as a sub-category of the vehicle
class. Furthermore, we will present an improved
hard-negative search and the addition of so-called
ignore regions for training. The implementation is
described in more detail in the following paragraphs.

A. Modified SSD Detector. Similar to the SSD de-
tector, our SSD-ML detector consists of a CNN base
network and a detection head (see Figure 1). The
input of the detector is an image of 512× 512 pix-
els. The VGG16 (Simonyan and Zisserman, 2014)
base network computes image features. Detection
boxes are predicted by detection heads that are cou-
pled to several layers from the base network and ad-
ditionally to down-scaled versions of the last feature
layer. Each detection head outputs possible detections
at fixed positions in the image using so-called prior
boxes. The detection head estimates objectness o,
class confidences [c0,c1,c2, ...,cN ] and location off-
sets δ(cx,cy,w,h) for each prior box in a feature layer.
These estimates are all predicted by a convolution
with a kernel of 3×3× the number of channels.
B. Prior Boxes. These boxes are associated to each
cell in a feature layer. The set of prior boxes Pr con-
tains boxes with varying aspect ratios and scales, to
cover all object sizes and shapes. The position of each
prior box relative to each cell is fixed. Per feature
layer there are m× n locations (cells) and each loca-
tion has ||Pr|| prior boxes (the cardinality or size of
the set Pr). Detailed information of the individual as-
pect ratios and sizes of each prior box can be found in
the original SSD paper (Liu et al., 2016).
C. Matching. This step involves the matching be-
tween the set of prior boxes and ground-truth boxes,
which is carried out during training of the detector to
generate a set of positive matches Pos. Firstly, the
maximum overlapping prior box of each ground-truth
box is selected as a positive match. Next, all prior
boxes with a Jaccard overlap (IoU) of at least 0.5 with
a ground-truth box are also be added to the Pos set.
The set of positive matches is used for computing the
objectness, classification and localization loss.
D. Negative Samples. These samples are collected
during training in a negative set Neg. This set consists
of all prior boxes that are not in the positive match-
ing set. This is a large set, since most of the prior
boxes will not match with any ground-truth box. To
compensate for the imbalance between the size of the
positive and negative sets, only the negatives with the

highest objectness loss (see below) are selected to be
used during training. The amount of negatives is cho-
sen to be a ratio of 3 : 1 with respect to the size of the
positive set.
E. Improvement of the Negative Set. In contrast with
the original SSD implementation, we propose to col-
lect negative samples per batch instead of per image.
The negative-to-positive ratio is kept the same, but
the negative samples may come from different im-
ages (within the same batch). This enables us to add
background images (without ground-truth bounding
boxes) containing complicated visual traffic scenar-
ios. This improvement decreases the number of false-
positive detections when applying the detector at new
scenes containing never-before seen objects. For traf-
fic detection, specific images containing empty high-
ways and empty city streets and crossings in all kinds
of weather conditions may be added to the training
set. Additionally, we propose to select negative sam-
ples more carefully by not selecting them in ignore
regions. Although these regions have to be manually
annotated in the training images, they are particularly
useful if only a part of the scene is annotated, or when
static (parked) vehicles are present in multiple train-
ing images. These regions should be ignored (see yel-
low regions in Figures 4 and 6) for negative mining.
F. Objectness. The prediction of objectness is newly
introduced, compared to the original SSD implemen-
tation. The objectness loss Lob j and the classification
loss Lclass replace and further detail the confidence
loss Lcon f of the original SSD detector implementa-
tion (see Figure 2). The objectness estimate oi for
the i-th prior box is learned, using a binary logistic
loss function computed over the set of positive Pos
and negative Neg matches with ground-truth bound-
ing boxes. The objectness loss is then defined by

Lob j(o) =−
N

∑
i∈Pos

log(ôi)−
3N

∑
i∈Neg

log(1− ôi), (1)

where ôi denotes the softmax function defined by

ôi =
1

1+ e−oi
. (2)

G. Hierarchical Classification. The classification
confidences are predicted per object category. Each
classification category prediction score ĉp

i , for the i-
th prior box for category p is determined by a binary
logistic loss. This means that each category predic-
tion output is independent from other category predic-
tions. The classification loss Lclass is only computed
over the set of positive matches Pos between ground
truth and prior boxes. Let t p

i ∈ {0,1} be a binary in-
dicator for the i-th prior-box matching a ground-truth
box of category p or any of the subcategories of p and
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Figure 1: The SSD detection model network design. Note that the loss function is visualized in more detail in Figure 2.
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let Negp ⊂ Pos be a selection of ground-truth boxes
not of category p or any of its super-categories. This
notation is explained as follows. We wish to select
from the positive traffic object set a specific set of ob-
jects that are a negative example of another class. The
samples in the negative set Negp are selected based on
the dataset properties (see Table 1). The classification
loss for category p is now defined by

Lclass,p(t,c) =−
N

∑
i∈Pos

t p
i log(ĉi))

− ∑
i∈Negp

log(1− ĉi),
(3)

where ĉi is again the softmax function for this prior
box, giving

ĉi =
1

1+ e−ci
. (4)

The total classification loss becomes now the summa-
tion of all losses of the individual categories p.

H. Locations. The object locations are predicted
(similar to SSD) by estimating offsets δ(cx,cy,w,h)
for each prior box d in the set of prior boxes Pr at each
location in a feature layer. Parameters cx,cy, ... refer
to the offset in x dimension, y dimension, etc. Hence,
for a feature layer with dimensions m× n, there will
be ||Pr||×m×n location estimates. The localization
loss is computed only over the set of positive matches
Pos between a predicted box l and a ground-truth box
g. More specifically, the offsets for the center (cx,

cy), width (w) and height (h) of the prior-box d are re-
gressed using a smoothing L1 loss function (Girshick,
2015), denoted by SmoothL1(.), leading to:

Lloc(l,g) =
N

∑
i∈Pos

(SmoothL1(lcx
i −

gcx
j −dcx

i

dw
i

)

+SmoothL1(l
cy
i −

gcy
j −dcy

i

dh
i

)

+SmoothL1(lw
i − log

gw
j

dw
i
)

+SmoothL1(lh
i − log

gh
j

dh
i
)).

(5)

I. Training. The training of our model is carried
out by combining the different loss functions as a
weighted sum, resulting in

L(o, t,c, l,g) =
1

||Pos||
(Lob j(o)

+β∑
p

Lclass,p(t,c)+αLloc(l,g)).
(6)

If no object category is known in the ground-truth la-
bels, the classification loss Lclass is set to zero. Con-
trary to the original SSD implementation where the
loss function is defined to be zero when no objects are
present in an image during training, our loss function
is only defined zero when no objects are present in a
complete batch due to our proposed negative mining
technique over a batch instead of per image.

J. Output. The output of the detection head is cre-
ated by combining the objectness confidence, classi-
fication confidences, location offsets and prior boxes
of all feature layers. These combinations are then
filtered by a threshold on the objectness confidence
followed by non-maximum suppression based on the
Jaccard overlap of the boxes. The output of the non-
maximum suppression results in the final set of de-
tections. The confidence per object category is deter-
mined by traversing down the class hierarchy, start-
ing with the objectness confidence. The confidence is
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Figure 3: The proposed hierarchical categories for traffic.

multiplied at each step with the parent category pre-
diction to ensure that a low parent category prediction
results in a low child category prediction.

4 TRAFFIC SURV. APPLICATION

Common datasets for evaluating object detection per-
formance focus on a wide range on object categories,
such as Pascal VOC (Everingham et al., 2012), Im-
ageNet (Russakovsky et al., 2015) and COCO (Lin
et al., 2014). These datasets contain a large amount of
images, with annotations of many object categories.
Although these datasets provide extensive benchmark
possibilities, they do not accurately represent traffic
surveillance applications because of different view-
points and limited amounts of samples for specific
traffic object classes. Datasets for traffic surveillance
are typically created from fixed surveillance cameras
also working in low-light conditions and under vary-
ing weather conditions, typically resulting in low-
resolution objects that are unsharp and often suffer
from motion blur. Recently, two large-scale traf-
fic surveillance datasets have been published: UA-
DETRAC (Wen et al., 2015) and MIO-TCD (Luo
et al., 2018). Both datasets contain multiple vehicle
object categories and multiple camera viewpoints. In
this paper, we propose to combine these datasets for
training our object detector using our hierarchical ob-
ject category definition. The hierarchical categories
used in this paper are presented in Figure 3. We cre-
ate a new dataset for evaluation of the novel trained
object detector with hierarchical classification.

4.1 Dataset 1: UA-DETRAC

The first dataset used is the publicly available UA-
DETRAC (Wen et al., 2015), further referred to as
DETRAC in the remainder of this paper. This dataset
is recorded at 24 different locations in Beijing and
Tianjin in China at an image resolution of 960× 540
pixels. Typical scenes contain multiple high-traffic
lanes captured from a birds-eye view (see Figure 4).

Table 1: Mapping of the dataset labels to our hierarchical
categories. Samples are used as positive (P) or negative (N)
during training, otherwise they are ignored.

Label # 1 2 3 4 5 6
DETRAC
Car (5177) 479,270 P N N N
Van (610) 55,574 P N N P
Bus (106) 29,755 N N P
Other (43) 3,515 N P N
MIO
Artic. Truck 8,426 N P N N P
Bus 9,543 N N P
Car 209,703 P N N
Motorcycle 1,616
Mot. Vehicle 13,369
Non-Motor. 2,141
Pickup Truck 39,817 P N N
S. Unit Truck 5,148 N P N P N
Work Van 7,804 P N N P
Ours
Car 50,984 P N N
Bus 2,215 N N P
S. Unit Truck 1,422 N P N P N
Artic. Truck 2,420 N P N N P

The training set (abbreviated as trainset) contains 61
video clips with annotated bounding boxes. The
videos are sampled at a high temporal resolution
(25 fps), resulting in many images of the same physi-
cal vehicle. Each bounding box is classified into one
of four vehicle categories, i.e. car, bus, van, and other.

Table 1 describes the mapping of the DETRAC
dataset on our classification tree. The numbers behind
the label names for DETRAC denote the number of
sampled physical objects. Note that in our hierarchy
‘Van’ is a sub category of ‘Car’ and in the DETRAC
set they are labeled individually, so that we can use the
DETRAC ‘Car’ label as negatives for our ‘Van’ cat-
egory. Visual inspection shows that the ‘Other’ cat-
egory in DETRAC contains various types of trucks.
Because the test set annotations have not been made
publicly available, we construct our own test set for
our experiments, based on a part of the original train-
ing set. The test set is created from the video clips
{MVI 20011, MVI 3961, MVI 40131, MVI 63525}
and consists of 4,617 images containing 54,593 an-
notations. The training set contains the remaining
77,468 images with 568,114 annotations.

4.2 Dataset 2: MIO-TCD

The MIO-TCD dataset (Luo et al., 2018), further re-
ferred to as MIO in the remainder of this paper, con-
sists of 137,743 images recorded by traffic cameras all
over Canada and the United States. The images cover
a wide range of urban traffic scenarios and typically
cover one or two traffic lanes captured from the side
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Figure 4: Example images from the UA-DETRAC dataset.

Figure 5: Example images from the MIO-TCD dataset.

of the road with a wide-angle lens, producing notice-
able lens distortion (see Figure 5). The image reso-
lution is generally low and varies from 342× 228 to
720× 480 pixels. Each vehicle annotation is catego-
rized into one of 11 vehicle categories, of which we
remove the ‘pedestrian’ and ‘bicycle’ categories, as
we focus on road traffic. The remaining categories
are mapped to our hierarchical categories as shown
in Table 1. Note that the classes ‘Motorcycle’, ‘Mo-
torized Vehicle’ and ‘Non-Motorized Vehicle’ are not
assigned to any category, because they are used only
for the objectness prediction.

Similar to the DETRAC set, a small part of the an-
notations is used to create a test set. For this, we se-
lect every tenth image from the training set, resulting
in a validation set of 11,000 images containing 34,591
annotations. Our training set contains the remaining
99,000 images with 307,567 annotations.

4.3 Dataset 3: Our Constructed Dataset

Our dataset is considerably smaller in size than
the DETRAC and MIO datasets, but contains high-
resolution images of 1280×720 and 1920×1080 pix-
els, recorded from typical surveillance cameras mon-
itoring urban traffic in Europe. The captured scenes

Table 2: Our testing set categories (note that class 1 and 2
include their sub-classes).

# Label Samples %
1 Car (incl. 4) 5681 89.3%
2 Truck (incl. 5, 6) 438 6.9%
3 Bus 244 3.8%
4 Van 590 9.3%
5 Single-unit truck 160 2.5%
6 Articulated truck 236 3,7%

Total objects 6363 100.0%

Figure 6: Example images from our dataset.

contain traffic crossings, roundabouts and highways.
In total, 20,750 images are captured at 12 different
locations in various light and weather conditions. All
images are manually annotated with object bounding
boxes and labels.

The dataset is split into a test set of 2,075 ran-
domly selected images, containing 6,363 bounding
box annotations. Each bounding box is assigned one
of the hierarchical categories according to Table 1.
Note that the ‘Van’ category is not annotated in our
training set and that only the subcategories of ‘Truck’
are present. The training set contains 90,237 annota-
tions in 18,675 images. In our test set, we manually
annotated the ‘Van’ category to enable validating our
detector. Table 2 shows the test set distribution.

To validate the performance of our newly intro-
duced hard-negative mining method over background
images, a dataset containing only background is cre-
ated. This dataset is created by computing the pixel
median over every 100 images in every scene in our
dataset. This results in 154 background images of
scenes in our trainset. This background set is rela-
tively small compared to other datasets used for train-
ing, therefore each background image is sampled 10
times more often than other images during training.
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5 EXPERIMENTAL RESULTS

The traffic detection and classification performance of
the detector has been experimentally validated. The
detector is incrementally trained by iteratively adding
datasets, while evaluating performance over our fixed
test set. We first present the evaluation criteria and the
details of the training procedure. Object detection is
then evaluated, followed by an in-depth discussion of
hierarchical classification results.

5.1 Evaluation Metrics

Evaluation of detection performance is carried out us-
ing the Average Precision (AP) metric as used in the
PASCAL VOC challenge (Everingham et al., 2012).
This metric summarizes a recall-precision curve by
the average interpolated precision value of the posi-
tive samples. Recall R(c) denotes the fraction of ob-
jects that are detected with a confidence value of at
least c. An object is detected if the detected bound-
ing box has a minimum Jaccard index of 0.5 with the
ground-truth bounding box, otherwise a detection is
considered incorrect. Precision P(c) is defined as the
fraction of detections that are correct with a confi-
dence value of at least c. The average precision AP
is computed as the area Under the recall-precision
curve. To evaluate the combined performance of our
hierarchical classification system, the mean Average
Precision (mAP) is used, calculated as the mean of
the average precision scores per object category.

5.2 Training Details

Our SSD-ML detector is trained using the following
training parameters. We apply 120,000 iterations on
batches of 32 images with a learning rate of 4×10−4,
while decreasing with a factor of 10 after 80k and
100k iterations using stochastic gradient descent. We
set α to unity and β to 0.5 (Eq. (6)).

5.3 Vehicle Detection: Effect of Datasets

In this first experiment we perform measurements
with the baseline SSD detector for a single-class de-
tection problem on all datasets. This provides insight
in the variations of vehicles between the datasets, as
they are recorded in different countries with different
camera viewpoints. The original SSD implementation
cannot be trained with our hierarchical object cate-
gories. It is not possible to define a single (non hier-
archical) class definition that is valid for all datasets.
To evaluate the detection performance for all vehicle
types, we propose to evaluate the vehicle detection

Table 3: Average precision for object detection.

Trainset Model DETRAC MIO Ours
DETRAC SSD 90.6 48.4 77.8

SSD-ML 97.4 59.7 83.8
MIO SSD 87.4 87.8 78.4

SSD-ML 92.6 88.4 83.6
Ours SSD 89.8 42.9 90.5

SSD-ML 95.7 61.8 96.4

task, using the average precision of the single-class
objectness scores (vehicle vs. background).

The detection results on the DETRAC, MIO and
our dataset are presented in Table 3. Each row
presents a detector trained on ‘trainset’ and evalu-
ated over all datasets. Comparing the original SSD
implementation (SSD) with our proposed detection
model (SSD-ML) shows that our detector performs
significantly better when trained on DETRAC or our
dataset. This is not expected, as the different loss
functions (softmax vs. logistic) have similar be-
haviour for a single-class problem. However, the DE-
TRAC dataset and our dataset contain annotated ig-
nore regions, which are regions containing vehicles
that are not annotated. Our implementation does not
allow hard-negative mining in these areas (see Sec-
tion 3), which results in the above-mentioned signifi-
cant improvement.

The detector trained on DETRAC performs well
on our dataset (83.8%), while it has much lower per-
formance (48.4% and 59.7%, respectively) on the
MIO dataset. The detectors trained on MIO perform
well on all datasets. We expect this originates from
the large amount of camera viewpoints and vehicle
variations in the MIO dataset. Although the DE-
TRAC set is two times larger, it contains less vari-
ation, significantly hampering detection performance
on MIO (59.7%).

When trained on our dataset, the detector obtains a
much higher AP on our test set (90.5% and 96.4%, re-
spectively). Although our dataset is smaller, it covers
the visual variation contained in the DETRAC set and
obtains comparable performance (95.7%). In compar-
ison to MIO, our dataset lacks variation in viewpoints,
resulting in a performance drop (61.8%). In addition,
we expect that the detector cannot robustly detect the
vehicles with limited image quality, large variations in
viewpoint, image roll and lens distortion in the MIO
set. This experiment shows that our dataset is suffi-
ciently large to train a good vehicle detector (single-
class) when the camera viewpoints are similar (DE-
TRAC), but covers insufficient viewpoint variations
for robust detection on MIO.
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5.4 Vehicle Detection: Effect on Classes

In this experiment the performance of our detector is
evaluated in more detail. Using our single-class vehi-
cle detector, we now evaluate the performance for the
different vehicle classes and investigate the effect of
combining training datasets. We report the recall of
the different classes, measured at a fixed threshold at
90% precision.

The obtained results are reported in Table 4. We
focus on the contribution of the additional training
sets on the detection performance on our dataset and
the effect on the different vehicle categories. Train-
ing with the DETRAC and MIO datasets individually
results in an AP of 83%, while their combination im-
proves the AP to 86.3%. The recall per object cat-
egory shows that the MIO dataset has high recall for
trucks and busses and lower recall for cars/vans, while
the DETRAC dataset has high recall for cars/vans and
lower for trucks and busses. Because our test set (Ta-
ble 2) is highly imbalanced, the car category domi-
nates the combined AP. This is as expected, as the
DETRAC dataset only contains a small amount of
trucks. Combining DETRAC and MIO leads to an
improved or similar performance on each of the dif-
ferent classes.

Adding our background set improves AP to
87.6%. Although the background set does not con-
tain any objects, it allows for better hard-negative har-
vesting, causing less false positive detections. This
can be observed specifically for the category ‘Single
Unit Truck’ (and ‘Truck’), which increases by 3.4%
(2.8%). Although it seems that the detection of this
class is better, this improvement originates from the
fact that the overall precision improves (less false de-
tections because of explicit background data). This
automatically results in a higher recall (at precision
90%) which has most effect for objects with a low
objectness score, single-unit trucks in this case.

The detector trained on only our dataset outper-
forms the other combinations with an AP of 96.4%, it
also outperforms the detector trained on the combina-
tion of DETRAC, MIO and our dataset. However, the
performance of this detector has low detection perfor-
mance on the MIO dataset (61.8% AP score). Our
training set is small which could lead to over-fitting.
Overall, training with more data results in better de-
tection performance on all datasets.

5.5 Vehicle Classification

The final experiment concentrates on the classifica-
tion performance. Using the models trained and pre-
sented in the previous experiments, the classification

performance is measured per object class in our hier-
archical tree. The average precision is measured for
each object class individually on our testing set and
summarized by the mean Average Precision (mAP).

Table 5 presents the results. The classification per-
formance when trained on the DETRAC set is rather
low for the ‘Truck’,‘Van’ and ‘Bus’ categories. Low
performance for truck classification is expected, since
there are only few trucks (43) present in the DETRAC
dataset. Single-unit and articulated trucks are not la-
beled and thus not trained, but a prediction is always
made by the detection model for this class, so noise
in the network leads to classifications with very low
score. The ‘Bus’ category has an AP of 53.3% de-
spite the high amount of busses in the dataset. Visual
inspection shows that many false positive classifica-
tions for busses originate from trucks in the testing
set, causing low precision. The low performance for
vans results from many larger vehicles, which are be-
ing falsely classified (such as station-wagons).

When training only with the MIO dataset, the AP
for trucks, busses and the sub-classes ‘Single-Unit
Truck’ and ‘Articulated truck’ are higher compared to
the DETRAC set, but the AP value remains still low.
Only for vans, the performance is lower, which is ex-
pected because no negative samples are available dur-
ing training (See Table 1) causing many false-positive
classifications. When combining DETRAC and MIO
for training, this results in a minor improvement com-
pared to DETRAC only and a small loss in perfor-
mance compared to MIO only, where the ‘Van’ class
is an exception and improves slightly from this com-
bination. Similar to the detection performance, when
background images are added to the training set, the
overall average precision increases.

Training with our dataset results in high average
precision for all object categories except ‘Van’. Vans
are not present in our training dataset (See Table 1).

The detector trained on all combined datasets
achieves highest mean average precision. Especially
for vans, it obtains a high average precision compared
to the rest of the trained detectors. This is remark-
able, because vans are not labeled in our training set.
Visual inspection of the false positives for the detec-
tor trained with DETRAC, MIO and our background
set, compared to the detector trained with all datasets,
shows that busses cause confusion with cars/vans in
our testing set. So by adding our training dataset
which contains relatively many busses, the car AP im-
proves, and thereby also the the classification score
of vans and busses. The classification performance
for the ‘Single-Unit Truck’ category is lower than
training only with our dataset, hinting that the other
datasets actually do not provide correct information
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Table 4: Average precision evaluation of SSD-ML objectness score (detection only, ignoring classification).

Trainset Average Precision Recall per category on Ours@P90
DETRAC MIO Ours Car Truck Bus Van A. Truck S.U. Truck

DETRAC 97.4 59.7 83.8 59.6 56.5 77.5 79.6 55.6 58.1
MIO 92.6 88.4 83.6 57.2 65.5 80.4 77.3 64.4 68.2
DETRAC + MIO 97.7 89.6 86.3 61.1 65.5 80.8 79.8 65.0 68.2
DETRAC + MIO + Backgr. 98.1 89.8 87.6 62.9 68.3 82.6 81.8 66.3 71.6
Ours 95.7 61.8 96.4 72.8 77.6 88.4 87.7 74.4 78.8
DETRAC + MIO + Ours 97.9 87.5 95.6 71.4 75.7 88.8 86.9 72.5 76.7

Figure 7: ‘Single-Unit Truck’ examples in MIO.

for single-unit trucks. The DETRAC set does not con-
tain samples of single-unit trucks. Visual inspection
of the class images for MIO shows a variation of large
vehicles that do not fit the remaining class categories
of MIO, such as excavators and tractors (see Figure7).

6 DISCUSSION

In our experiments, we have observed that combin-
ing the datasets is not trivial. First, labeled object
categories in each dataset should be labeled consis-
tently. Samples for the ‘Single-Unit Truck’ category
in the MIO dataset are different vehicle types when
comparing the same labels in our dataset. More-
over, vehicle models are different in Europe, Asia and
USA/Canada. Trucks are larger in the USA compared
to Europe and Asia. For example, pick-up trucks in
America are considered cars, whereas in Europe they
are often considered trucks.

Because we have separated the vehicle presence
and classification tasks, inconsistent sub-labels of a
class can still be used to improve object localization
and classification of the (super-)class. For example, in
our case the category ‘Single-Unit Truck’ in the MIO
dataset can be used for training our objectness pre-
diction without any changes to the dataset to improve
detection performance of the general vehicle class.

The public datasets used in this paper did not

make their test set labels publicly available. We man-
ually extracted part of the training set for testing,
thereby introducing similar camera viewpoints in the
test sets. This poses a risk for over-fitting our model.
This aspect of limited camera viewpoints may hold
for all datasets including our own, which is difficult to
avoid for surveillance sets that are always constructed
from fixed-camera videos with a fixed background
and limited viewpoint variation. Gathering new im-
age material is difficult and labor intensive, resulting
in a limited number of camera viewpoints. Separating
all images from a specific camera viewpoint in a test
set is therefore not desired, as it reduces the training
set significantly.

7 CONCLUSIONS

In this paper, we have proposed a novel detection
system with hierarchical classification, based on the
state-of-the-art Single-Shot multibox Detector (SSD).
Inspired by the recent You Only Look Once (YOLO)
detector, prediction of object presence is learned sep-
arately from object class prediction. Our implementa-
tion uses logistic binary instead of softmax classifica-
tion. Independent training of the classification classes
allows combining datasets that are not labeled with a
complete set of object classes. Additionally, we em-
ploy so-called ignore regions in the datasets during
training, which are regions containing unannotated
vehicles and describe areas where no negative sam-
ples are mined. Moreover, we use an improved hard-
negative mining procedure by selecting examples in a
training-batch instead of per image.

We have experimented with this novel SSD-ML
detector for traffic surveillance applications and com-
bined different public surveillance datasets with non-
overlapping class definitions. The UA-DETRAC and
MIO-TCD datasets are combined, together with our
newly introduced dataset. In our first experiment, the
effect of the dataset on the detector performance is
evaluated. Our new method for negative mining in
unannotated areas significantly improves the detec-
tion compared to the original SSD detector. We show
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Table 5: Mean Average Precision and Average precision per object category, tested on our dataset.

Trainset mAp Car Truck Bus Van S.U. Truck A. Truck
DETRAC 27.1 76.4 15.6 53.3 14.9 1.1 1.5
MIO 47.4 78.3 60.7 70.1 4.0 16.4 54.9
DETRAC + MIO 46.1 81.9 51.1 68.5 26.6 12.0 36.3
DETRAC + MIO + Background 49.7 82.5 62.6 69.6 19.4 13.5 50.4
Ours 77.2 95.5 97.7 85.6 2.9 84.8 96.7
DETRAC + MIO + Ours 78.6 94.5 93.4 84.4 62.2 48.3 88.7

that our dataset and the larger UA-DETRAC dataset
result in similar detection performance, implying that
both sets contain sufficient information to train a de-
tector with similar high performance for localization.

In a second experiment, we have investigated the
effect of incrementally adding more datasets and have
shown that the best performance is obtained when
combining all datasets for training. Although the
MIO-TCD dataset has very different viewpoints, im-
age quality and lens distortion, it offers a large varia-
tion in the data with a high number of labels, so that it
still contributes visually to the detection of the other
viewpoints. The final system obtains a detection per-
formance of 96.4% average precision, improving with
5.9% over the original SSD implementation mainly
caused by our hard-negative mining.

Finally, we have measured the classification per-
formance of our hierarchical system. The effect of
incrementally adding more datasets reveals that the
best performance is obtained when training with all
datasets combined. By adding hierarchical classifica-
tion, the average classification performance increases
with 1.4% to 78.6% mAP. This positive result is based
on combining all datasets, although label inconsisten-
cies occur in the additional training data. Note that the
overall detection performance drops 0.8% in this case.
Since vans are not labeled as such in our dataset, we
have additionally trained our classifier for vans with
labels from the UA-DETRAC and MIO-TCD dataset.
The resulting detector obtained a decent classification
performance of 62.2% for vans, on our separate test
set. We have shown that non-labeled object classes
in actually existing datasets can be learned using ex-
ternal datasets providing the labels for at least those
classes, while simultaneously also improving the lo-
calization performance.
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