
Chaining Model Transformations for System Model Verification:
Application to Verify Capella Model with Simulink

Christophe Duhil1, Jean-Philippe Babau2, Eric Lepicier1, Jean-Luc Voirin1 and Juan Navas3

1Thales Defense Mission System, Brest, France
2Lab-STICC, CNRS, UMR6285, Université de Bretagne Occidentale, Brest, France

3Thales Corporate Engineering, Velizy-Villacoublay, France

juan.navas@thalesgroup.com

Keywords: Cyber Physical System, Model Transformation, Model Simulation, Model Verification.

Abstract: In the context of Model-Based System Engineering (MBSE), Thales has developed a method called Arcadia,
and its dedicated workbench Capella. This approach provides engineer generic practices and tools to design
system models in a coherent way. While models grew in complexity, the need emerged for model Simulation
and verification. In this paper, a model based approach is proposed to provide an interpretation of the Capella
dynamic behavior description of modeled systems. The approach allows targeting different semantics and
facilitating reuse of legacy semantics. The idea is to enforce separation of concerns of semantics definition by
defining a chain of five transformations. The approach ensures traceability between Capella source models and
target models, facilitating interpretation of the verification results. We apply our approach to analyze dataflow
diagrams of a Capella "clock radio" model. For this purpose we transform the Capella dataflow model to
a Simulink model. The experimentation on the use case demonstrates the ability of the tool to catch model
inconsistency problems.

1 INTRODUCTION

In the context of Model-Based System Engineer-
ing (MBSE), system engineers build a model of the
system architecture to capture customer’s require-
ments and needs. Designing architecture for com-
plex cyber physical systems like airplanes, satellites
or trains, implies to build wide and heterogeneous
models shared by a large community of stakeholders.
In this context, Thales has deployed a MBSE method
called Arcadia (Jean-Luc. Voirin, 2017) and a mod-
eling tool called Capella (Pascal Roques, 2017). Ar-
cadia and Capella workbench provide guidelines and
tools to describe architecture of complex cyber phys-
ical systems.

In an industrial context, a modeling error could
dramatically impact the progress of a project when-
ever it’s detected at the late stage of integration. So,
there is a strong need of model verification and vali-
dation tools at the early stage of the design.

As discussed in (Kai Chen et al., 2005), the se-
mantic of a Domain Specific Modeling Language may
be either structural (how to describe concepts and
relationships between concepts) or behavioral (how

to interpret the execution of the concepts). Even
if Capella allows the description of the behavior of
the modeled systems, it does not propose a behav-
ioral semantic. So, the verification of behavior part
of Capella models requires the definition of an exe-
cutable semantic for Capella. In the literature (Andrea
Sindico et al., 2001) (Bassim Chabibi et al., 2018)
(Daniel Chaves Café et al., 2013) (Slim Medimegh
et al., 2018), the common solution is to transform the
cyber physical system model (usually expressed with
SySML (Sanford Friedenthal et al., 2012)) to a for-
mal model providing an executable semantic. The
first limitation of these approaches is that they con-
sider only one target semantic when different hetero-
geneous semantics should be targeted, for different
application domains (a hardware component does not
have the same behavior as a software component) and
different analysis domains (simulation environment
or formal description). Another point is that such
model transformation integrates different aspects of
semantic definition such as the mapping of source and
target concepts, the refactoring of source concepts to
facilitate alignment of concepts, the definition of the
analyzable subset of source model, or the necessary

Duhil, C., Babau, J., Lepicier, E., Voirin, J. and Navas, J.
Chaining Model Transformations for System Model Verification: Application to Verify Capella Model with Simulink.
DOI: 10.5220/0008902302790286
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 279-286
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

279



model adaptations and enrichments for analysis. Im-
plementing a unique model transformation is not suit-
able for such transformation. The application of the
separation of concerns facilitates the reuse of the dif-
ferent parts of the semantic definition. For instance,
subset definition and adaptations may be reused to tar-
get both simulation and formal languages. Another
important point is that each aspect of the transforma-
tion plays a specific role in the semantic definition.
It must be explicitly specified, independently of other
aspects. And last, for each step, the traceability is a
key point to help the engineer to interpret analysis re-
sults by making a link between the target concepts and
the source Capella concepts.

In this paper we propose a model-based method
to transform Capella models, to models conforming a
simulation meta-model. In the first section of this pa-
per we introduce the Arcadia method and the Capella
tool. In the second section we discuss the related
works. Then, we propose our methodological ap-
proach based on five transformations. The fourth sec-
tion is dedicated to the experiments results. The con-
clusion proposes some future works.

2 ARCADIA AND CAPELLA

Arcadia is a model-based engineering method devel-
oped by Thales to meet its engineering needs for hard-
ware and software systems design.

The Capella workbench implements the Arcadia
method. The objective of Capella is to propose a
common description of system architecture, consider-
ing different purposes and levels of abstraction. The
language of Capella makes it possible to describe
the structure and the behavior of the systems but it
does not provide an operational semantic. Verifying
some behavior-related properties based on simulation
(among others) may require defining an operational
semantic. This is the purpose of this article.

We illustrate our approach by translating a data
flow of a Capella model to a Simulink model in which
it’s possible to perform simulations and model verifi-
cation.

Data flow is defined in the Arcadia method as the
description of the relationships between different el-
ements of the model in terms of interactions or ex-
changes (mainly functions or operational activities).
In our case study, Data flow is used to describe the
dependency relations between Functions. Functions
are linked together through Functional Exchanges.
A Functional Exchange defines a functional depen-
dency between a source Function and a target Func-
tion.

Now we present representative related works ad-
dressing the formalization and verification of system
modeling.

3 RELATED WORKS

In this paper, we propose to add a behavioral seman-
tic to Capella. For such purpose, (Benoit Combe-
male et al., 2009) proposes a taxonomy based on
three approaches: by defining an axiomatic semantic
dedicated to Capella, by extending the Capella meta-
model with an operational semantic or by transform-
ing a Capella model to a model conforming to a meta-
model containing a behavioral (axiomatic or opera-
tional) semantic.

For the first approach, (José E. Riviera and An-
tonio Vallecillo, 2007) proposes to add a formal se-
mantic to DSL by describing the meta-model using
Maude. So, even if it follows the first approach by
providing an axiomatic semantic to the DSL, the idea
is to apply the third approach at meta-level: the Ecore
model is transformed into a Maude model, providing
sufficient features to define an axiomatic semantic.

The authors of (Benoit Combemale et al., 2016)
propose to follow the second approach by extending
the Capella meta-model to add an operational seman-
tic to data flow and state-machines. The model is
then executed in a simulation environment built from
GEMOC methods and tools(Erwan Bousse et al.,
2016). The approach demonstrates the necessity of
adding elements on Capella models to define a precise
semantic. The limitation of this approach is that only
one behavioral semantic is targeted. And, as illus-
trated by (Cécile Hardebolle and Frédéric Boulanger,
2009), a system designer may have to specify differ-
ent semantics for the same part of a model, here the
semantic of adaptation between heterogeneous mod-
els.

Due to the size of Capella meta-model and the
consideration of heterogeneous targeted domains, we
consider the third approach as the more adapted (see
motivation section after). But, from our knowledge,
(Benoit Combemale et al., 2016)is the only work,
proposing an operational semantic to Capella. So
for the third approach, we consider works based on
SysML. SysML is a general-purpose graphical mod-
eling language defined by OMG for complex and het-
erogeneous system modeling. From modeling objec-
tives, SysML is close enough to Arcadia language to
be considered in this section in place of our language
(Polarsys, 2019).

(Andrea Sindico et al., 2001) (Bassim Chabibi
et al., 2018) (Daniel Chaves Café et al., 2013) (Slim

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

280



Medimegh et al., 2018) propose a direct transforma-
tion from SysML to a target model via a model to
text transformation. For such transformation, the au-
thors propose first a mapping of concepts between
SysML and the target domain (Simulink for (An-
drea Sindico et al., 2001) and (Bassim Chabibi et al.,
2018), SystemC for (Daniel Chaves Café et al., 2013)
and hybrid model for (Slim Medimegh et al., 2018)).
To prepare the mapping, in (Bassim Chabibi et al.,
2018) and (Slim Medimegh et al., 2018), the au-
thors use SysML stereotypes applied to a subset of
SysML elements (structure of blocks, blocks, ports
and flows). The stereotypes contain additional infor-
mation for the target domain. In (Andrea Sindico
et al., 2001) and (Daniel Chaves Café et al., 2013),
the same SysML structural elements (blocks, ports
and flows) are mapped to the target domain and, after
mapping, the result is enriched with necessary addi-
tional information for execution. We can notice that
(Benoit Combemale et al., 2016) also enriches the ini-
tial model to perform simulation. In (Daniel Chaves
Café et al., 2013), adaptations are performed in order
to generate a correct code. Model-based code gen-
erator (Acceleo, 2019) are used in (Andrea Sindico
et al., 2001) (Bassim Chabibi et al., 2018) (Daniel
Chaves Café et al., 2013) (Slim Medimegh et al.,
2018) to implement the final transformation. All these
works propose at least five operations to transform
the source model in an executable one. First is se-
lection of required and analyzed concepts. All ap-
proaches consider a limited subset of SysML, even
if the subset definition is implicit. Secondly an op-
eration of mapping of concepts is performed to de-
fine the semantic of the source elements. This op-
eration defines how the source concepts become tar-
get concepts. The approaches consider implicitly that
the target concepts exist (with different names) in the
SysML meta-model. But in general case, a prepara-
tion (refactoring operation) is necessary to prepare the
alignment of concepts. The third operation is an en-
richment operation. The missing information is added
to the model to conform to the simulation environ-
ment. And finally, an adaptation operation may be
performed before the last code generation operation.
When no adaptation is proposed, the limitation of the
approach is the implicit usage of a SysML pattern de-
fined by the transformation. During the transforma-
tion process, (Benoit Combemale et al., 2009) shows
the necessity of typing or equivalence relationship be-
tween models. If the model equivalence is not estab-
lished, the result of the validation in the target domain
cannot be interpreted in the source model.
All these approaches are adapted but limited to target
one specific semantic. The different concerns of the

semantic definition are composed in a same transfor-
mation and the traceability of links between source
and target concepts is not enough detailed. In the next
section, we present our approach to provide an op-
erational semantic to a model by performing a chain
of five operations: selection, refactoring, mapping,
adaptation and enrichment.

4 APPROACH

4.1 Motivation

As discussed before, Capella doesn’t provide behav-
ioral semantic. A solution to define one may be to ex-
tend the Capella meta-model by providing a specific
axiomatic or operational semantic. This approach is
not suitable for our case because Capella is indepen-
dent of a specific usage. The operational semantic
has to be defined outside the tool and should fit the
specifics designer needs (principle of separation of
concerns).Furthermore, adding full semantics likely
to allow behavior simulation would significantly in-
crease the complexity of the tool, increase model
maintenance and evolution costs.

If the behavioral semantic is defined in a separate
model, it is important to not define yet another se-
mantic: the approach has to improve reuse of legacy
semantics.

In this paper, we propose to add an operational
semantic by operating a chain of transformation on
Capella models. Each transformation concerns a spe-
cific aspect of the operation of adding an operational
semantic to a model. Applying our approach allows
to transform the Capella data flow model to a target
data flow model from which it is possible to perform
different analysis according to the engineer needs.

As viewed in the related works, such transforma-
tion requires making the operations of selection, map-
ping and enrichment. In addition, it appears necessary
to modify the model (refactoring) to prepare the map-
ping, and adapt the model to allow its execution. In
our approach, the transformation is defined by these
five chained transformation steps (selection, refactor-
ing, mapping, adaptation, enrichment). Each transfor-
mation step follows a pattern defined by its intention,
its principles and implementation guidelines. The in-
tention gives the objective of the transformation. The
principles define a set of constraints on transforma-
tion implementation. The implementation proposes
guidelines on how to implement the transformation
by reusing existing tools.

We present now the five transformation steps of
the approach.

Chaining Model Transformations for System Model Verification: Application to Verify Capella Model with Simulink

281



4.2 The Transformations

4.2.1 First Step: Selection

Intention. The goal of the first step is to select model
elements whose concepts are relevant for the analysis.
Principles. We select a subset of Capella classes, at-
tributes and references involved in the sub-domain to
analyze. The resulting CapellaSelection meta-model
is a type of the Capella meta-model in the sense of
(Jim Steel and Jean-Marc Jézéquel, 2007) (Wuliang
Sun et al., 2013). Because of the typing relationship,
the operations defined on CapellaSelection are rele-
vant for Capella.
Implementation. We first select the concrete classes
and the features representing the objects which are
relevant for the analysis. To ensure meta-model cor-
rectness, all the kept references are linked to exist-
ing classes. We also select abstract classes contain-
ing attributes and references useful for the analysis.
From these abstract classes, we select all the inher-
itance paths, including intermediate classes, ensur-
ing an inheritance relationship between the abstract
classes and the concrete classes. Finally, we select
a class playing a role of root class for the selected
classes. From this root class, we select all the classes
and references insuring a containment path between
the root class and all concrete classes.
Case Study. The Capella meta-model contains 428
meta-classes, distributed in 20 meta-models and 25
packages. To analyze the Capella physical architec-
ture data-flow, we select 12 concrete classes and 17
abstract classes.
Comments. This step is usually implicit in most of
the approaches proposed in the literature. From our
point of view, it appears fundamental to explicit the
subset of the Capella meta-model involved in the data
flow.

4.2.2 Second Step: Refactoring

Intention. The goal of refactoring is to organize
the Capella Selection meta-model in order to prepare
mapping.
Principles. The resulting meta-model is only a com-
pound of classes that can be directly mapped to the
target meta-model. All the operations involved in this
transformation are refactoring operation. We do not
allow creation of information in this step. All the new
information is derived features.
Implementation. We use a library of refactoring
operators (flatten, hide, move ...) provided by co-
evolution approaches such as ModifRoundrip (Paola
Vallejo et al., 2016) or Epsilon Flock (Louis M. Rose

et al., 2010). For instance, one can flatten all the fea-
tures of abstract classes before deleting them (combi-
nation of flatten and hide operators defined by Mod-
ifRoundtrip co-evolution tool).
Case Study. In the new meta-model (see Figure 1) all
the attributes and references are moved to the concrete
classes. Abstract classes are deleted. The classes in-
volved in the structure description (Physical Archi-
tecture, Packages, Actor, and Component) are hid-
den. The classes and the objects are removed but the
implicit references between Physical Functions and
System Engineering remain. We obtain a new meta-
model without any generalization. Objects involved
in system hierarchy have been hidden. The resulting
object graph is simpler than the original one. Only
information needed for the verification objective is
present. The Figure 1 shows the impact of the refac-
toring stage on the object graph. The classes needed
by the Capella structure are hidden.

Figure 1: Meta-model after refactoring step.

Comments. Selection and refactoring prepare the
mapping; no extra-information is added to the model
before mapping. If the mapping does not produce
complete result, we may add information after, in
the context of the target meta-model. By facilitat-
ing alignment of concepts between Capella and target
meta-models, refactoring enforces reuse of legacy se-
mantics. From our point of view, there exist enough
formal models to analyze the different Capella as-
pects.

4.2.3 Third Step: Mapping

Intention. The goal of the mapping step is to trans-
late the refactored Capella model to a model conform
to the concepts defined by the target meta-model. The
target meta-model is a legacy meta-model providing
a behavioral semantic, equipped with simulation and
analysis tools.
Principles. We map each Capella concept (class, at-
tribute and reference) to one concept of the target
meta-model.
Implementation. The mapping is implemented as a
simple and direct model to model transformation. A
wide range of tooling can implement such transforma-
tion (QVT (Ivan Kurtev, 2008), ATL (Frédéric Jouault
et al., 2008), ETL (Dimitrios S. Kolovos et al., 2008),

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

282



XTend (Xtend, 2019)). Using co-evolution tools like
ModifRoundtrip, the only operator to use is the re-
name operator. To ensure the traceability from the
source objects, the target objects keep the informa-
tion of the source objects id.
Case Study. The mapping of concepts to the target
data flow concepts is given by the Table 1. The result-

Table 1: Concept mapping.

Capella Concept Target Concept
SystemEngineering DataFlow
PhysicalComponent Component

PhysicalActor Actor
PhysicalFunction FunctionBlock
FunctionInputPort InputPort
FunctionOuputPort OutputPort
FunctionalExchange Link

ing object graph is equivalent to the refactored one.
From initial Capella model, only information required
by the verification purpose is kept. In the approach,
the modification of the object graph is only performed
by the refactoring step.
Comments. The mapping is a fundamental transfor-
mation to explicit the semantic: the source concepts
are interpreted in the sense of the target domain. In
the literature, it is usually the more commented as-
pect. If it is the core of the transformation, our ap-
proach proposes data selection and preparation to be
complete.

4.2.4 Fourth Step: Adaptation

Intention. In this step, the generated model is
adapted to be executable in the chosen simulation en-
vironment. The goal of the adaptation step is to adapt
the resulting model to respect the analysis tools con-
straints.
Principles. The transformation is endogenous. The
resulting model conforms to the target meta-model.
Necessary information is added but no information is
lost during this transformation. From the result, it
is always possible to get the source model by using
refactoring operators.
Implementation. We add new objects and corre-
sponding features to transform the model structure.
Case Study. To simulate the model under Simulink
we adapt the Capella data-flow structure to integrate
the Simulink constraints. We find two critical cases:
First of all, using Simulink (as opposed to Capella),
it is not possible to link two different block output
ports to the same block input port. To solve this prob-
lem, we add a Merge block receiving the two signals
in two different inputs ports, the output of the Merge

block is then linked to the block input port. Sec-
ondly, Simulink considers a cycle as an algebraic loop
and requires additional information to execute it. So,
when a cycle is detected, we add an Initial Condition
block to the cycle.
Comments. This step is fundamental for the ap-
proach. If this transformation is not included in the
approach, the previous cases lead to non-executable
models. Facing this problem, the designer would
adapt its Capella model to respect the structural con-
straints given by the analysis tool. So the designer im-
plicitly embeds, during system modeling, the tool ver-
ification concerns. In our approach, we hide this com-
plexity during system modeling by adding a model
correction in the adaptation transformation. This
transformation is a part of the semantic given to the
Capella model (here for multiples inputs and for cy-
cles).

4.2.5 Fifth Step: Enrichment

Intention. The goal of the final step is to add
information required by the simulation environment.
Principles. This transformation is endogenous. The
resulting models have to contain all the required
information for analysis. The parts of the model
obtained by the previous transformations are not
modified. We just add extra information. At the end
the model is complete and correct for analysis.
Implementation. Considering the target meta-
model, we add the missing objects and set the
non-generated features. Each added objects and
features are set by a default object constructor. For
specific simulation or evaluation, new features and
new objects may be edited.
Case Study. For Simulink simulation, we choose to
verify the completeness of the data flow by propagat-
ing a signal through the data flow. In this case, typing
is required for Simulink signals but it is not a part of
Capella. So we type the signal as double. This choice
makes easier the integration of loop in the data flow.
Comments. By adding new information for analysis,
this last step is a part of Capella semantic. Because,
the operational semantic is dependent of verification
objectives, new information may be edited to fit
different verification objectives. The obtained model
is then a refactored Capella model extended by
adaptation and enrichment operations.

4.2.6 Discussion

The proposed approach is based on a chain of five
consecutive transformations: selection, refactoring,
mapping, adaptation and enrichment. The approach

Chaining Model Transformations for System Model Verification: Application to Verify Capella Model with Simulink

283



proposes to separate each concern of the transforma-
tion process dedicated to the semantic definition in
different transformations:

• the first transformation impacts the semantic defi-
nition by limiting its definition area;

• the second transformation impacts semantic def-
inition by refactoring source concepts to identify
target concepts;

• the third transformation adds semantic to the
model by mapping source and target domains : a
source concept is interpreted as a target concept;

• the fourth transformation adds semantic by adding
information to adapt to target tool specific pat-
terns;

• the fifth transformation adds semantic by adding
extra-information for analysis.

By applying the five transformation steps, we obtain
an extended Capella, providing an operational seman-
tic. The extension is due to the adaptation and enrich-
ment transformations. Then by changing one step, we
can target other specific semantics.

In the next section we present the details of the
implementation of the transformations.

5 EXPERIMENTS

5.1 Implementation

A Capella model transformations have been imple-
mented as an eclipse plugin. The plugin is integrated
in the Capella workbench, taking as input a Syste-
mEngineering object. It produces as output a MAT-
LAB script (.m file). Because, the Simulink meta-
model is not public, we generate a script, executed by
MATLAB to build the Simulink model. The transfor-
mations are implemented using Xtend (Xtend, 2019).
Xtend provides a language to easily implement both
M2M and M2T transformations.

5.2 Clock Radio Case Study

We experiment our approach on a model describing
the operations of a clock radio. The behavior of this
system is described in a Capella physical architecture,
by a data flow and a state machine. Three modes are
available for the user. In the mode off, only the time
display is available. The radio mode, broadcasts the
radio and displays the time. The Alarm mode triggers
the alarm and broadcasts the radio at a preset alarm
time. The Capella state machine in Figure 2, de-
scribes this three modes. Therefore the data flow de-

Figure 2: Capella Clock Radio State Machine.

scribes the dependency relations between functions.
For the radio clock case study, the data flow describes
how is managed the human-machine interface (HMI),
the time and the alarm.

The Data flow is linked to the state machine
through functional exchanges and functions. Each
state of the state machine defines a set of enabled
functions. Considering the enabled functions, the data
flow defines a set of available functional exchanges.
Then an available functional exchange may trigger a
transition of the state machine as shown in Figure 3.

Figure 3: Interactions between data flow and state machine.

5.3 Model Transformation

We apply the transformation process to the clock ra-
dio data flow to obtain an image of the Capella data
flow in Simulink.

During the adaptation step, the transformation tool
produces a warning if a cycle is detected in the data
flow and if two functional exchanges are plugged to a
same function input port.

5.3.1 Warning: ’Cycle Detected’

In the Clock radio data flow, a cycle exists (see Fig-
ure 4) between the Update_time function and the
Store_Current_time function. By default the tool
atomically adds an initial condition ic_update_time to
validate at least one transition in the cycle. The goal
of this warning is to warn the system engineer on the
presence of a cycle in the Capella model.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

284



Figure 4: Simulink Initial Condition added to a cycle.

5.3.2 Warning: ’Multiple Connections on a
Single Port Found’

The transformation tool finds two cases of multiple
functional exchanges connected to a single function
input port. In the first warning the functional ex-
changes Radio_activation (see Figure 5), arriving on
the same input port, is homogeneous and compatible
(same type). The Broadcast_Radio function can re-
ceive both functional exchanges without any problem.
This is not a modeling error.

Figure 5: Capella model of multiple exchanges on a same
input port.

For the second warning , functional exchanges ar-
riving on the input port of the function Switch power
supply are different and could not be compatible. It
could be considered as a modeling error. The design
may be re-factored by adding distinct input ports (see
Figure 6).

Figure 6: Capella model of the re-factored exchanges.

5.4 Simulation with Simulink

In the Simulink environment, we manually implement
the clock radio state machine and build a test environ-
ment. This test environment is made to interact with
the image of the Clock Radio data flow automatically

created by the transformation tool. The goal of the
simulation is to verify the completeness of the data
flow in each state of the state machine. the data flow
is complete when all the enable functions have their
needed data available in input.

5.4.1 Error Found

In the first definition of the alarm_mode state, the
functions Trigger_Alarm and Broadcast_Radio are
set to enable. But the function Decode_Radio_Waves
is set to disabled. This last function is not able
to produce data, and then the radio_signals port re-
ceives a null data making Broadcast_radio function
invalid. The data-flow is not complete. The Figure
7 shows an excerpt of the Simulink diagram. Dur-
ing the simulation, enable-valid functions are colored
in blue. None enable functions are colored in white.
And invalid functions are colored in red. To correct
the error the system engineer should include the De-
code_Radio_Waves in the list of enabled function of
the state Alarm_mode.

Figure 7: Simulation result of an incomplete data flow.

6 CONCLUSION

In this paper, we present a transformation method
to add operational semantic to a descriptive Capella
model. The transformation is based on five steps: se-
lection, refactoring, mapping, adaptation and enrich-
ment. The transformation chain ensures the consis-
tency of the data through the transformation process.
Each step plays a specific role in the semantic defini-
tion. We apply the approach to a Capella data flow
model. From this data flow, the five transformation
steps produce an executable Simulink model. Then
we are able to detect modeling error and potential in-
consistencies in the model. The simulation detects an
error due the incompleteness of the data flow and in-
compatible signals arriving on a single port. The ap-
plication of the approach to the Capella data flow is

Chaining Model Transformations for System Model Verification: Application to Verify Capella Model with Simulink

285



a first step to verify the consistency of more complex
heterogeneous Capella models. For future works, we
will apply the approach to transform Capella models
of state machines and scenarios with data flow.

REFERENCES

Acceleo (2019). Acceleo web-page. Accessed September
01, 2019. www.eclipse.org/acceleo/.

Andrea Sindico, Marco Di Natale, and Giampiero Panci
(2001). Integrating SysML with Simulink using
Open-source Model Transformations. In 1st Int. Conf.
on Simulation and Modeling Methodologies, Tech-
nologies and Applications (SIMULTECH’11)., pages
45–56, Noordwijekr, The Netherlands.

Bassim Chabibi, Adil Anwar, and Mahmoud Nassar (2018).
Towards a Model Integration from SysML to MAT-
LAB/Simulink. Journal of Software, pages 630–645.

Benoit Combemale, Cédric Brun, Joèl Champeau, Xavier
Crégut, Julien Deantoni, and Jérome LE Noir (2016).
A Tool-Supported Approach of Concurrent Execution
Of Heterogeneous Models. In 8th European Congress
on Embedded Real Time Software and Systems (ERTS
2016), Toulouse.

Benoit Combemale, Xavier Crégut, Pierre-Loïc Garoche,
and Xavier Thirioux (2009). Essay on Semantics Def-
inition in MDE An Instrumented Approach for Model
Verification. journal of Software, pages 943–958.

Cécile Hardebolle and Frédéric Boulanger (2009). Multi-
Formalism Modelling and Model Execution. In-
ternational Journal of Computers and Applications,
31,(3):193–203.

Daniel Chaves Café, Frédéric Boulanger, Filipe Vinci dos
Santos, Christophe Jacquet, and Cécile Hardebolle
(2013). Multi-Paradigm Semantics for Simulating
SysML Models using SystemC-AMS. In Forum on
specification and Design Languages (FDL), Paris,
France. IEEE.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Po-
lack (2008). The Epsilon Transformation Language.
In International Conference on Theory and Practice
of Model Transformations (ICMT), volume 5063 of
Lecture Notes in Computer Science, pages 46–60,
Zurich, Switzerland. Springer, Berlin, Heidelberg.

Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja
Mayerhofer, Julien Deantoni, and Benoit Combemale
(2016). Execution Framework of GEMOC Studio
(Tool Demo). In ACM SIGPLAN International Con-
ference on Software Language Engineering, pages
84–89, Amsterdam, Netherlands. ACM.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan
Kurtev (2008). ATL: A model transformation tool.
Science of computer programming, 72(1-2):31–39.

Ivan Kurtev (2008). State of the Art of QVT: A Model
Transformation Language Standard. In Andy Schürr,
Manfred Nagl, and Albert Zündorf, editors, Applica-
tions of Graph Transformations with Industrial Rel-
evance, pages 377–393, Kassel, Germany. Springer
Berlin Heidelberg.

Jean-Luc. Voirin (2017). Model-based System and Archi-
tecture Engineering with the Arcadia Method. ISTE
Press. ISTE Press - Elsevier.

Jim Steel and Jean-Marc Jézéquel (2007). On model typing.
Software & Systems Modeling, 6(4):401–413.

José E. Riviera and Antonio Vallecillo (2007). Adding
Behavioral Semantics to Models. In Enterprise Dis-
tributed Object Computing Conference, pages 169–
180, Annapolis, MD, USA. IEEE.

Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, and
Ethan Jackson (2005). Semantic Anchoring with
Model Transformations. In Alan Hartman and David
Kreische, editors, Model Driven Architecture - Foun-
dations and Applications, volume 3748 of Lecture
Notes in Computer Science, pages 115–129, Nurem-
berg, Germany. Springer Berlin Heidelberg.

Louis M. Rose, Dimitrios S. Kolovos, and Richard F. Paige
(2010). Model Migration with Epsilon Flock. In L.
Tratt and M. Gogolla, editors, Theroy and Practice of
Mdel Transformation, volume 6142 of Lecture Notes
in Computer Science, pages 184–198, Malaga, Spain.
Springer, Berlin, Heidelberg.

Paola Vallejo, Jean-Philippe Babau, and Mickaël Kerboeuf
(2016). ModifRoundtrip: A Model-Based tool to
reuse legacy transformations. In MoDELS 2016 Demo
and Poster Sessions co-located with ACM/IEEE 19th
International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS 2016)., Saint
Malo, France. IEEE Xplore.

Pascal Roques (2017). System Architecture Modeling with
the Arcadia Method : A Practical Guide to Capella.
Iste press - elsevier edition.

Polarsys (2019). Equivalences and Differences
Between SysML and Arcadia/Capella, web-
page. Accessed September 01, 2019.
www.polarsys.org/capella/arcadia_capella_sysml_tool
.html.

Sanford Friedenthal, Alan Moore, and Rick Steiner (2012).
A practical Guide to SysML, The Systems Modeling
Language. Object Management Group. Morgan Kauf-
mann, elsevier edition.

Slim Medimegh, Jean-Yves Pierron, and Frédéric
Boulanger (2018). Qualitative Simulation of Hybrid
Systems with an Application to SysML Models.
In 6 th International Conference on Model-Driven
Engineering and Software Development, Funchal
Portugal. SCITEPRESS - Science and Technology
Publications.

Wuliang Sun, Benoit Combemale, Steven Derrien, and
Robert B. France (2013). Using Model Types to
Support Contract-Aware Model Substitutability. In
Pieter Van Gorp, Tom Ritter, and Louis M. Rose, ed-
itors, Modelling Foundations and Applications, vol-
ume 7949 of Lecture Notes in Computer Science,
pages 118–133, Montpellier, France. Springer Berlin
Heidelberg.

Xtend (2019). Xtend web-page. Accessed September 01,
2019. www.eclipse.org/xtend/.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

286


