
Reinforcement Learning of Robot Behavior based on a Digital Twin

Tobias Hassel a and Oliver Hofmann b
Faculty of Electrical Engineering, Technical University Nuremberg, Keßlerplatz 12, Nuremberg, Germany

Keywords: Reinforcement Learning, Digital Twin, Unity.

Abstract: A reinforcement learning approach using a physical robot is cumbersome and expensive. Repetitive execution

of actions in order to learn from success and failure requires time and money. In addition, misbehaviour of

the robot may also damage or destroy the test bed. Therefore, a digital twin of a physical robot has been used

in our research work to train a model within the simulation environment Unity. Later on, the trained model

has been transferred to a real-world scenario and used to control a physical agent.

1 INTRODUCTION

Smart solutions for production processes are key for

a competitive manufacturing industry. While the

number of multipurpose industrial robots has

significantly increased (Roland Berger Strategy

Consultants, 2014), the adaption of robot behavior to

frequently changing processes is still time-

consuming.

Machine learning offers a promising approach to

reduce the adaption effort. Due to the lack of new

process training data, reinforcement learning

algorithms have to be used to explore an efficient

robot behavior strategy based on trial and error.

However, an error in an industrial shop floor

environment may result not only in damaged goods

and equipment, but also (possibly deadly) injuries.

Thus, the exploration has to be done in a simulated

environment by the robot's digital twin. The findings

of that exploration lead step by step to a successively

improved behavior model.

Later on, the trained behavior model can be used

to control the physical robot with the best practices

that have been discovered during the simulation and

to avoid the detected misbehaviors. In contrary to the

simulation domain, the robot's behavior is shifted

from explore to exploit.

Within this paper, we show the soundness of this

approach using a prototype based on the physical

robot Cozmo that is usually used as an educational toy

a https://orcid.org/0000-0002-3135-4923

b https://orcid.org/0000-0002-9714-9869

in student AI classes (Touretzky, D., Gardner-

McCune, C., 2018). The digital twin was built and

operated within the Unity development platform.

While originally designed as a workbench for 3D

game development, the platform has been evolving to

a serious simulation tool. The open source Unity ML-

Agent Toolkit provides the architecture to train digital

twins (Juliani, A., et al., 2018).

As a testing scenario the robot's task is to follow a

line which is printed on the floor. As long as the line

can be detected the robot tries to follow it. Otherwise

the attempt is reset and restarted.

2 ROBOT

2.1 Cozmo

Cozmo is a small toy robot produced by a company

called Anki. It is equipped with a caterpillar drive, a

lift and a small 128x64 pixel display. In addition, it

has sensors like a camera, a cliff sensor and an

accelerometer. The robot also creates a WIFI network

for other devices (e.g. mobile phones) to connect.

Besides the physical robot, Anki also provides an

appropriate open source Python SDK in order to

interact with it. A few lines of code can be used to get

the raw data from Cozmo's sensors or control its

movement. (Anki, 2019a; Anki, 2019b)

Hassel, T. and Hofmann, O.
Reinforcement Learning of Robot Behavior based on a Digital Twin.
DOI: 10.5220/0008880903810386
In Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020), pages 381-386
ISBN: 978-989-758-397-1; ISSN: 2184-4313
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

381

2.2 Actions

Cozmo is primarily designed to work as a virtual

companion. Therefore, its behavior creates the

impression of a personality. For this purpose, it is for

instance able to recognize different human faces and

to differentiate between cats and dogs.

However, the most important actions for the

approach of following a line are movement, taking

pictures and setting the lift as well as the head height.

While positioning the robot's lift and head is only

needed at the start to get an optimal view of the scene

in front of the robot, the real challenge is the

permanent control of the movement.

In order to keep things simple, the movement was

limited to a finite set of actions. Consequently, the

robot was forced to use one of the predefined actions

move forward, turn left, turn right or stop. Each of

these options can only be carried out in a certain speed

that is given by the physics of the engine and the

geometry of the robot itself. Turn left and turn right

lead to a short speed difference of the left and the right

caterpillar resulting in a slight change of the robot's

heading of only a few degrees.

2.3 Observations

One of the robot's sensors is a camera, which can be

found in the bottom half of its head and whose

pictures are accessible via SDK after subscribing to

the proper event.

The robot needs its camera to identify the line

drawn on the ground in front of it. Accordingly, the

head height must be set to the minimum to let the

camera focus on the ground. Additionally, the lift is

not allowed to cover the line and must be set to the

maximum height.

As a result, the camera shows a 640x480 pixel

image of the line on the ground, which can be used as

state information for reinforcement learning.

3 DIGITAL TWIN

3.1 Unity

A 3D-model of the robot was used to visualize the

digital twin in Unity. This scaled CAD-model was

originally created in Tinkercad, an online CAD-

program (Gearcortex, 2018).

After reducing the number of the model's

polygons, it was imported into Unity. Based on this

3D-data, the virtual camera was placed. The position

corresponds to the spot within the real robot. In

addition, the Cozmo SDK was used to get the head

angle from the physical robot in order to replicate it

on the virtual camera.

A comparison between the image of the virtual

and the real camera was made. For this purpose, an

object was positioned right on the edge of the

particular camera's field of view. Afterwards, the

distance between the object and the specific camera

was measured. As a result, the virtual camera was

adjusted to match the real-world camera.

Finally, the Unity components Boxcollider and

Rigidbody were added to the digital twin. These

scripts ensure that the virtual Cozmo can be moved.

Moreover, it can collide with other objects in the

Unity scene (Fig. 1).

Figure 1: Model of the Digital Twin.

3.2 Actions

The virtual Cozmo uses the same discrete action

space as the physical robot. The actions correspond

with the movement states of the real robot, namely

move forward, turn left, turn right and stop.

In order to reproduce the different possibilities in

the virtual environment, the exact movement

characteristics of the real robot must be known. The

API can indeed be used to set the speed of the

physical robot. However, to achieve proper results the

actual behavior has been measured. This applies to

both, the forward motion and the rotary motion.

In order to simulate this speed in virtual mode, a

distance was defined. The times which the real as well

as the virtual Cozmo needed to complete the distance

were measured. By comparing the required times of

the robots, the speed of the virtual robot was adjusted

until the times coincided.

The same procedure was performed for the

rotation speed. It is for this reason that a fixed rotation

has been set for the real robot to complete. In addition,

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

382

the required time was recorded. The virtual robot was

then parameterized so that it could complete the same

rotation at the identical speed.

3.3 Observations

The agent must be aware of the world’s state.

Therefore, the robot needs to keep an eye on the

environment around it.

In our case, a visual observation was used that

mimics the camera image of the real robot. With the

help of a virtual camera, which renders its image into

a texture, the state of the environment can be

observed. In this case, the texture offers the same

resolution as the real camera. Additionally, the

camera must be aligned at the same position and angle

to the ground as its real-world equivalent.

4 LEARNING APPROACH

4.1 Definitions

The sensors of the robot define a set of possible states

of the environment. At each time 𝑡 the robot receives

information about the state 𝑆𝑡 of the environment

from its sensors.

𝑆𝑡 ∈ 𝒮

The robot then has to select an action 𝐴𝑡 out of the

given set of actions

𝐴𝑡 ∈ 𝒜 = {forward, left, right, stop}

The selection of 𝐴𝑡 is based on the reward 𝑅𝑡+1 for

the robot's actions 𝐴𝑡 in a given state 𝑆𝑡 leading to a

new state 𝑆𝑡+1 at time 𝑡.

Figure 2: Robot-Environment Interaction.

4.2 Reinforcement Learning

As long as the environment's behavior can be

depicted with a known deterministic function

𝑓: 𝒮 × 𝒜 ⟶ 𝒮 × ℝ

𝑓(𝑆𝑡 , 𝐴𝑡) ≐ (𝑆𝑡+1, 𝑅𝑡+1)

The action 𝐴𝑡 can be easily chosen as that action

which leads to the maximum sum of all future

rewards. But in reality, this function is often neither

known nor deterministic.

To keep it simple, in the robot domain we

postulate a deterministic environment, i.e. an action

𝐴𝑡 at a state 𝑆𝑡 will always result in a specific

subsequent state 𝑆𝑡+1 with a reward 𝑅𝑡+1 given by a

well-known reward function 𝑟:

𝑟: 𝒮 ⟶ ℝ

𝑟(𝑆𝑡+1) ≐ 𝑅𝑡+1

Further, we expect the reward 𝑅𝑡+1 to deliver a

proper indication of all future rewards due to the lack

of hidden shortcuts in our domain. Therefore, the

function 𝑓 only has to estimate the reward 𝑅𝑡+1 ,

because no follow up calculation of future rewards

based on 𝑆𝑡+1 is needed.

However, at the beginning of the robot's training,

we do not know the deterministic outcome of any

action 𝐴𝑡 at a state 𝑆𝑡. In order to maximize the sum

of all future rewards, the robot has to predict the

reward of any action 𝐴𝑡 at hand. Therefore, the

unknown function 𝑓 is approximated by a neural

network that is trained with the experiences which

have been made during the ongoing trial-and-error

attempts.

At first glance it seems obvious for the robot

always to select that 𝐴𝑡 which has the expected max

sum of future rewards. In doing so, we exploit the

knowledge of our trained model. The physical robot

should follow this policy to avoid damage and

injuries.

During the training of the estimating neural

network, this behavior is not optimal, because

undiscovered actions are then less attractive than

actions providing a low positive reward. As a

consequence, the search for best solutions is

narrowed to already tested actions. Thus, the digital

twin has the permission to select from time to time

unreasonable actions in order to explore new

behavioral patterns (Sutton, R., Barto, A., 2018, p. 3).

4.3 Implementation

4.3.1 System Architecture

For the approximation of the function 𝑓 we use a

learning model. As input we provide the current state

of the robot given by the image of the robot's camera.

During the training phase, the virtual robot performs

an action and the resulting new state is rated. This

calculated reward is the expected outcome of the

learning model.

After a sufficient amount of training the model

can estimate the expected reward in a given state for

any action. At this time, the model can be used to

Reinforcement Learning of Robot Behavior based on a Digital Twin

383

control the "real" physical robot. Therefore, a

standardized interface to both robots is applied (fig. 3).

Figure 3: System Architecture.

The learning model is implemented as a neural

network in TensorFlow, an open source machine

learning library. In addition, the training process can be

visually displayed and monitored with TensorBoard.

This program allows weak points in the choice of

hyperparameters for training to be identified and

subsequently adjusted. (Unity Technologies, 2019a)

4.3.2 Data Preprocessing

The robot's state is given by the camera image. To

reduce the learning effort the image is preprocessed to

shrink the image's complexity and to focus on the

essential data. These preprocessing operations must be

performed for both the real and the virtual camera

image.

First, the image is cropped. Therefore, the upper

and the lower part of the image are cut off. As a result,

the unimportant information of the image is omitted.

For example, curves that are far away but still visible

to the camera are neglected, because they would

otherwise affect the robot's path.

After the image has been cropped, the Canny

algorithm is applied. This algorithm is used for edge

detection and converts the result to a binary image. The

edges are displayed as white pixels while the rest

remains black. This step will be needed later for the

reward function.
Finally, the resolution of the resulting texture is

reduced so that the final image consists of 80x30

pixels.

The same processing steps are carried out for the

camera image of the real robot as for the visual

observation of the simulation.

4.3.3 Rewards

The robot has to receive positive feedback for

following the line. Based on the preprocessed image a

reward function was defined. The binary image is used

to calculate the Center Of Gravity (COG) of the white

pixels (fig. 4).

In a binary image, the COG can be computed

efficiently. The average of the white pixels' X- and Y-

coordinates in the image is calculated. The resulting

point with the average X- and Y-coordinates is called

COG. (Mallick, 2018)

Figure 4: Center Of Gravity (COG).

If the COG is further to the right of the image, we

know that there is a right curve in front of the robot.

The same is true for the other direction. If COG is

located exactly in the middle of the image, a positive

reward of 1 is passed on to the robot. The further away

the COG is from the center of the image, the lower the

reward will be. If the position of the COG reaches one

of the turning points marked in yellow in Figure 4, the

reward changes from positive to negative. Again, the

reward changes as the COG approaches the edge of the

image. However, the negative reward gets bigger and

bigger and rises up to -0.5 at the edge of the image. If

the COG is outside the image, i.e. no longer

recognizable, a fixed reward of -1 is awarded. In

addition, the virtual robot is reset to its training start

point.

Further, small rewards were awarded for different

actions. So, for every decision the digital twin makes,

a small negative reward was forwarded to the agent to

tempt him to find the fastest way. In addition, the move

forward action was given a positive reward, while all

other actions were given small negative rewards. The

reason for this was that the agent should not learn to

turn from right to left on the spot in order to maximize

his reward.

4.4 Evaluation

In order to evaluate the trained model, a test track was

created on a 70cm x100cm paper sheet (Fig. 5).

The test track intentionally lacks sharp curves due

to the robot's limited vision capabilities. The

evaluation is based on several attempts with changing

starting position and direction

(clockwise/counterclockwise).

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

384

Figure 5: Test Track.

4.4.1 Line Tracking

Based on our approach the physical robot was able to

follow a line using a learning model that was trained

with its digital twin.

The robot's movement was quite slow due to the

selection of the stop action which took more time in

the real robot than in the simulation and consequently

influenced the other actions. Therefore, the action

was taken out, so that the robot only had the

possibility to move or rotate but not to stop.

However, a kind of trembling was observed in the

real Cozmo. Too often a left turn came after the

decision to drive right and the other way around in

order to mitigate the effects of the last action.

4.4.2 Improvements

This is why a so-called action mask was introduced

for the next training. With the help of such a mask it

is possible to forbid the robot specific actions after a

previous one was executed. This method was used to

give the robot a kind of memory about its last actions.

If there is a decision to move to the left among its last

actions, it is not allowed to move to the right.

Finally, four models with different memory sizes

were trained and compared. The following illustration

shows a training graphic of the models supplied by

Tensorboard.

The first trained model without any action mask is

visualized by the orange plot in Fig. 6. The model

with adapted action mask and a memory size of one

is represented by the dark blue plot. The colors red

and light blue show the training process for the last

trained models with the memory sizes three and five

respectively.

Figure 6 shows the cumulative reward of each

environment step. A run consists of a maximum of

1500 single steps, which means that the maximum

cumulative reward per episode is 1500.

Figure 6: Cumulative Reward.

It can be seen that the model trained first achieves

the highest cumulative reward fastest, while the light

blue plot with memory size five scores the weakest.

The only serious competition measured by

cumulative reward is the model that considers the last

three actions.

Based on several tries in reality, the training

results of the Unity simulation have been approved:

the introduction of an action mask based on a memory

of its last actions downgrades the robot's ability to

drive curves. The robot can drive curves worse the

larger its memory is designed.

Overall, it turned out that very sharp curves were

a problem for the robot, no matter which model was

used.

5 CONCLUSION

In summary it can be said that it is possible to use

Unity as a simulation environment and to transfer the

resulting model to the real robot. The training can

thus be made more cost-effective and less time-

consuming than it would be without a simulation. The

project demonstrates that it is also possible to use

reinforcement learning with simple means for

realistic application cases.

In addition, the project can be further improved,

for example by using a continuous action space for

the model. The hyper parameters can also be adjusted

to make the training process more effective.

Further, the current status of the project uses the

frame rate of the robot's camera as the decision

frequency. This means that 30 decisions are made per

second on how to proceed. This frequency can be

reduced to achieve better results and to mitigate the

trembling.

Currently, the calculation of the reward is based

on a single image. In further work, the reward could

be calculated using a moving average of the COG

based on the last several images. This approach

Reinforcement Learning of Robot Behavior based on a Digital Twin

385

avoids the usage of action masks and memory,

mitigates trembling but also allows subsequent turns

at sharp curves.

REFERENCES

Anki, 2019a. Die Technik. Retrieved 2019-09-15 from

https://anki.com/de-de/cozmo/cozmo-tech.html

Anki, 2019b. The Future of Consumer Robotics -Now.

Retrieved 2019-08-31 from https://developer.anki.com/

Gearcortex, 2018. Anki Cozmo. Retrieved 2019-09-24

from https://www.tinkercad.com/things/diQp4OfpRl6

Juliani, A., et al.., 2018. Unity: A General Platform for

Intelligent Agents. arXiv:1809.02627 [cs.LG]

Mallick, S., 2018. Find the Center of a Blob (Centroid)

using OpenCv (C++/Python). Retrieved 2019-09-28

from https://www.learnopencv.com/find-center-of-

blob-centroid-using-opencv-cpp-python/

Roland Berger Strategy Consultants, 2014. Industry 4.0,

The New Industrial Revolution: How Europe Will

Succeed. International Conference The Next Industrial

Revolution Manufacturing and Society in the XXI

Century,Turin

Sutton, R., Barto, A., 2018. Reinforcement Learning, MIT

Press, Cambridge, 2nd edition.

Touretzky, D., Gardner-McCune, C., 2018. Calypso for

Cozmo: Robotic AI for Everyone. 49th ACM Technical

Symposium on Computer Science Education, Baltimore

Unity Technologies (2019a). Background: TensorFlow.

Retrieved 2019-09-23 from https://github.com/Unity-

Technologies/ml-

agents/blob/master/docs/Background-TensorFlow.md

Unity Technologies (2019b). Learning-Environment-

Design-Agents. Retrieved 2019-09-16 from

https://github.com/Unity-Technologies/ml-

agents/blob/master/docs/Learning-Environment-

Design-Agents.md

ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

386

