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Abstract: A reinforcement learning approach using a physical robot is cumbersome and expensive. Repetitive execution 

of actions in order to learn from success and failure requires time and money. In addition, misbehaviour of 

the robot may also damage or destroy the test bed. Therefore, a digital twin of a physical robot has been used 

in our research work to train a model within the simulation environment Unity. Later on, the trained model 

has been transferred to a real-world scenario and used to control a physical agent. 

1 INTRODUCTION 

Smart solutions for production processes are key for 

a competitive manufacturing industry. While the 

number of multipurpose industrial robots has 

significantly increased (Roland Berger Strategy 

Consultants, 2014), the adaption of robot behavior to 

frequently changing processes is still time-

consuming. 

Machine learning offers a promising approach to 

reduce the adaption effort. Due to the lack of new 

process training data, reinforcement learning 

algorithms have to be used to explore an efficient 

robot behavior strategy based on trial and error. 

However, an error in an industrial shop floor 

environment may result not only in damaged goods 

and equipment, but also (possibly deadly) injuries. 

Thus, the exploration has to be done in a simulated 

environment by the robot's digital twin. The findings 

of that exploration lead step by step to a successively 

improved behavior model. 

Later on, the trained behavior model can be used 

to control the physical robot with the best practices 

that have been discovered during the simulation and 

to avoid the detected misbehaviors. In contrary to the 

simulation domain, the robot's behavior is shifted 

from explore to exploit. 

Within this paper, we show the soundness of this 

approach using a prototype based on the physical 

robot Cozmo that is usually used as an educational toy 
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in student AI classes (Touretzky, D., Gardner-

McCune, C., 2018). The digital twin was built and 

operated within the Unity development platform. 

While originally designed as a workbench for 3D 

game development, the platform has been evolving to 

a serious simulation tool. The open source Unity ML-

Agent Toolkit provides the architecture to train digital 

twins (Juliani, A., et al., 2018). 

As a testing scenario the robot's task is to follow a 

line which is printed on the floor. As long as the line 

can be detected the robot tries to follow it. Otherwise 

the attempt is reset and restarted.  

2 ROBOT 

2.1 Cozmo 

Cozmo is a small toy robot produced by a company 

called Anki. It is equipped with a caterpillar drive, a 

lift and a small 128x64 pixel display. In addition, it 

has sensors like a camera, a cliff sensor and an 

accelerometer. The robot also creates a WIFI network 

for other devices (e.g. mobile phones) to connect. 

Besides the physical robot, Anki also provides an 

appropriate open source Python SDK in order to 

interact with it. A few lines of code can be used to get 

the raw data from Cozmo's sensors or control its 

movement. (Anki, 2019a; Anki, 2019b)  
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2.2 Actions 

Cozmo is primarily designed to work as a virtual 

companion. Therefore, its behavior creates the 

impression of a personality. For this purpose, it is for 

instance able to recognize different human faces and 

to differentiate between cats and dogs.  

However, the most important actions for the 

approach of following a line are movement, taking 

pictures and setting the lift as well as the head height. 

While positioning the robot's lift and head is only 

needed at the start to get an optimal view of the scene 

in front of the robot, the real challenge is the 

permanent control of the movement. 

In order to keep things simple, the movement was 

limited to a finite set of actions. Consequently, the 

robot was forced to use one of the predefined actions 

move forward, turn left, turn right or stop. Each of 

these options can only be carried out in a certain speed 

that is given by the physics of the engine and the 

geometry of the robot itself. Turn left and turn right 

lead to a short speed difference of the left and the right 

caterpillar resulting in a slight change of the robot's 

heading of only a few degrees. 

2.3 Observations 

One of the robot's sensors is a camera, which can be 

found in the bottom half of its head and whose 

pictures are accessible via SDK after subscribing to 

the proper event.  

The robot needs its camera to identify the line 

drawn on the ground in front of it. Accordingly, the 

head height must be set to the minimum to let the 

camera focus on the ground. Additionally, the lift is 

not allowed to cover the line and must be set to the 

maximum height.  

As a result, the camera shows a 640x480 pixel 

image of the line on the ground, which can be used as 

state information for reinforcement learning.  

3 DIGITAL TWIN 

3.1 Unity 

A 3D-model of the robot was used to visualize the 

digital twin in Unity. This scaled CAD-model was 

originally created in Tinkercad, an online CAD-

program (Gearcortex, 2018).  

After reducing the number of the model's 

polygons, it was imported into Unity. Based on this 

3D-data, the virtual camera was placed. The position 

corresponds to the spot within the real robot. In 

addition, the Cozmo SDK was used to get the head 

angle from the physical robot in order to replicate it 

on the virtual camera.  

A comparison between the image of the virtual 

and the real camera was made. For this purpose, an 

object was positioned right on the edge of the 

particular camera's field of view. Afterwards, the 

distance between the object and the specific camera 

was measured. As a result, the virtual camera was 

adjusted to match the real-world camera.  

Finally, the Unity components Boxcollider and 

Rigidbody were added to the digital twin. These 

scripts ensure that the virtual Cozmo can be moved. 

Moreover, it can collide with other objects in the 

Unity scene (Fig. 1). 

 

Figure 1: Model of the Digital Twin. 

3.2 Actions 

The virtual Cozmo uses the same discrete action 

space as the physical robot. The actions correspond 

with the movement states of the real robot, namely 

move forward, turn left, turn right and stop.  

In order to reproduce the different possibilities in 

the virtual environment, the exact movement 

characteristics of the real robot must be known. The 

API can indeed be used to set the speed of the 

physical robot. However, to achieve proper results the 

actual behavior has been measured. This applies to 

both, the forward motion and the rotary motion.  

In order to simulate this speed in virtual mode, a 

distance was defined. The times which the real as well 

as the virtual Cozmo needed to complete the distance 

were measured. By comparing the required times of 

the robots, the speed of the virtual robot was adjusted 

until the times coincided.  

The same procedure was performed for the 

rotation speed. It is for this reason that a fixed rotation 

has been set for the real robot to complete. In addition, 
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the required time was recorded. The virtual robot was 

then parameterized so that it could complete the same 

rotation at the identical speed. 

3.3 Observations 

The agent must be aware of the world’s state. 

Therefore, the robot needs to keep an eye on the 

environment around it.  

In our case, a visual observation was used that 

mimics the camera image of the real robot. With the 

help of a virtual camera, which renders its image into 

a texture, the state of the environment can be 

observed. In this case, the texture offers the same 

resolution as the real camera. Additionally, the 

camera must be aligned at the same position and angle 

to the ground as its real-world equivalent. 

4 LEARNING APPROACH 

4.1 Definitions 

The sensors of the robot define a set of possible states 

of the environment. At each time 𝑡 the robot receives 

information about the state 𝑆𝑡  of the environment 

from its sensors.  

𝑆𝑡 ∈ 𝒮 

The robot then has to select an action 𝐴𝑡  out of the 

given set of actions  

𝐴𝑡 ∈ 𝒜 = {forward, left, right, stop} 

The selection of 𝐴𝑡 is based on the reward 𝑅𝑡+1 for 

the robot's actions 𝐴𝑡 in a given state 𝑆𝑡 leading to a 

new state 𝑆𝑡+1 at time 𝑡. 

 

Figure 2: Robot-Environment Interaction. 

4.2 Reinforcement Learning 

As long as the environment's behavior can be 

depicted with a known deterministic function 

𝑓: 𝒮 × 𝒜 ⟶  𝒮 × ℝ 

𝑓(𝑆𝑡 , 𝐴𝑡) ≐ (𝑆𝑡+1, 𝑅𝑡+1) 

The action 𝐴𝑡  can be easily chosen as that action 

which leads to the maximum sum of all future 

rewards. But in reality, this function is often neither 

known nor deterministic.  

To keep it simple, in the robot domain we 

postulate a deterministic environment, i.e. an action 

𝐴𝑡  at a state 𝑆𝑡  will always result in a specific 

subsequent state 𝑆𝑡+1 with a reward 𝑅𝑡+1 given by a 

well-known reward function 𝑟: 

𝑟: 𝒮 ⟶ ℝ 

𝑟(𝑆𝑡+1) ≐ 𝑅𝑡+1 

Further, we expect the reward 𝑅𝑡+1  to deliver a 

proper indication of all future rewards due to the lack 

of hidden shortcuts in our domain. Therefore, the 

function 𝑓  only has to estimate the reward  𝑅𝑡+1 , 

because no follow up calculation of future rewards 

based on  𝑆𝑡+1 is needed.  

However, at the beginning of the robot's training, 

we do not know the deterministic outcome of any 

action 𝐴𝑡 at a state 𝑆𝑡. In order to maximize the sum 

of all future rewards, the robot has to predict the 

reward of any action 𝐴𝑡  at hand. Therefore, the 

unknown function 𝑓  is approximated by a neural 

network that is trained with the experiences which 

have been made during the ongoing trial-and-error 

attempts. 

At first glance it seems obvious for the robot 

always to select that 𝐴𝑡 which has the expected max 

sum of future rewards. In doing so, we exploit the 

knowledge of our trained model. The physical robot 

should follow this policy to avoid damage and 

injuries. 

During the training of the estimating neural 

network, this behavior is not optimal, because 

undiscovered actions are then less attractive than 

actions providing a low positive reward. As a 

consequence, the search for best solutions is 

narrowed to already tested actions. Thus, the digital 

twin has the permission to select from time to time 

unreasonable actions in order to explore new 

behavioral patterns (Sutton, R., Barto, A., 2018, p. 3).  

4.3 Implementation 

4.3.1 System Architecture 

For the approximation of the function 𝑓  we use a 

learning model. As input we provide the current state 

of the robot given by the image of the robot's camera. 

During the training phase, the virtual robot performs 

an action and the resulting new state is rated. This 

calculated reward is the expected outcome of the 

learning model.  

After a sufficient amount of training the model 

can estimate the expected reward in a given state for 

any action. At this time, the model can be used to 

Reinforcement Learning of Robot Behavior based on a Digital Twin

383



control the "real" physical robot. Therefore, a 

standardized interface to both robots is applied (fig. 3).   

 

Figure 3: System Architecture. 

The learning model is implemented as a neural 

network in TensorFlow, an open source machine 

learning library. In addition, the training process can be 

visually displayed and monitored with TensorBoard. 

This program allows weak points in the choice of 

hyperparameters for training to be identified and 

subsequently adjusted. (Unity Technologies, 2019a) 

4.3.2 Data Preprocessing 

The robot's state is given by the camera image. To 

reduce the learning effort the image is preprocessed to 

shrink the image's complexity and to focus on the 

essential data. These preprocessing operations must be 

performed for both the real and the virtual camera 

image. 

First, the image is cropped. Therefore, the upper 

and the lower part of the image are cut off. As a result, 

the unimportant information of the image is omitted. 

For example, curves that are far away but still visible 

to the camera are neglected, because they would 

otherwise affect the robot's path.  

After the image has been cropped, the Canny 

algorithm is applied. This algorithm is used for edge 

detection and converts the result to a binary image. The 

edges are displayed as white pixels while the rest 

remains black. This step will be needed later for the 

reward function.  
Finally, the resolution of the resulting texture is 

reduced so that the final image consists of 80x30 

pixels. 

The same processing steps are carried out for the 

camera image of the real robot as for the visual 

observation of the simulation.  

4.3.3 Rewards 

The robot has to receive positive feedback for 

following the line. Based on the preprocessed image a 

reward function was defined. The binary image is used 

to calculate the Center Of Gravity (COG) of the white 

pixels (fig. 4).  

In a binary image, the COG can be computed 

efficiently. The average of the white pixels' X- and Y- 

coordinates in the image is calculated. The resulting 

point with the average X- and Y-coordinates is called 

COG. (Mallick, 2018) 

 

Figure 4: Center Of Gravity (COG). 

If the COG is further to the right of the image, we 

know that there is a right curve in front of the robot. 

The same is true for the other direction. If COG is 

located exactly in the middle of the image, a positive 

reward of 1 is passed on to the robot. The further away 

the COG is from the center of the image, the lower the 

reward will be. If the position of the COG reaches one 

of the turning points marked in yellow in Figure 4, the 

reward changes from positive to negative. Again, the 

reward changes as the COG approaches the edge of the 

image. However, the negative reward gets bigger and 

bigger and rises up to -0.5 at the edge of the image. If 

the COG is outside the image, i.e. no longer 

recognizable, a fixed reward of -1 is awarded. In 

addition, the virtual robot is reset to its training start 

point. 

Further, small rewards were awarded for different 

actions. So, for every decision the digital twin makes, 

a small negative reward was forwarded to the agent to 

tempt him to find the fastest way. In addition, the move 

forward action was given a positive reward, while all 

other actions were given small negative rewards. The 

reason for this was that the agent should not learn to 

turn from right to left on the spot in order to maximize 

his reward. 

4.4 Evaluation 

In order to evaluate the trained model, a test track was 

created on a 70cm x100cm paper sheet (Fig. 5). 

The test track intentionally lacks sharp curves due 

to the robot's limited vision capabilities. The 

evaluation is based on several attempts with changing 

starting position and direction 

(clockwise/counterclockwise). 
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Figure 5: Test Track. 

4.4.1 Line Tracking 

Based on our approach the physical robot was able to 

follow a line using a learning model that was trained 

with its digital twin. 

The robot's movement was quite slow due to the 

selection of the stop action which took more time in 

the real robot than in the simulation and consequently 

influenced the other actions. Therefore, the action 

was taken out, so that the robot only had the 

possibility to move or rotate but not to stop.  

However, a kind of trembling was observed in the 

real Cozmo. Too often a left turn came after the 

decision to drive right and the other way around in 

order to mitigate the effects of the last action. 

4.4.2 Improvements 

This is why a so-called action mask was introduced 

for the next training. With the help of such a mask it 

is possible to forbid the robot specific actions after a 

previous one was executed. This method was used to 

give the robot a kind of memory about its last actions. 

If there is a decision to move to the left among its last 

actions, it is not allowed to move to the right.  

Finally, four models with different memory sizes 

were trained and compared. The following illustration 

shows a training graphic of the models supplied by 

Tensorboard.  

The first trained model without any action mask is 

visualized by the orange plot in Fig. 6. The model 

with adapted action mask and a memory size of one 

is represented by the dark blue plot. The colors red 

and light blue show the training process for the last 

trained models with the memory sizes three and five 

respectively.  

Figure 6 shows the cumulative reward of each 

environment step. A run consists of a maximum of 

1500 single steps, which means that the maximum 

cumulative reward per episode is 1500.  

 

Figure 6: Cumulative Reward. 

It can be seen that the model trained first achieves 

the highest cumulative reward fastest, while the light 

blue plot with memory size five scores the weakest. 

The only serious competition measured by 

cumulative reward is the model that considers the last 

three actions.  

Based on several tries in reality, the training 

results of the Unity simulation have been approved: 

the introduction of an action mask based on a memory 

of its last actions downgrades the robot's ability to 

drive curves. The robot can drive curves worse the 

larger its memory is designed.  

Overall, it turned out that very sharp curves were 

a problem for the robot, no matter which model was 

used. 

5 CONCLUSION 

In summary it can be said that it is possible to use 

Unity as a simulation environment and to transfer the 

resulting model to the real robot. The training can 

thus be made more cost-effective and less time-

consuming than it would be without a simulation. The 

project demonstrates that it is also possible to use 

reinforcement learning with simple means for 

realistic application cases.  

In addition, the project can be further improved, 

for example by using a continuous action space for 

the model. The hyper parameters can also be adjusted 

to make the training process more effective.  

Further, the current status of the project uses the 

frame rate of the robot's camera as the decision 

frequency. This means that 30 decisions are made per 

second on how to proceed. This frequency can be 

reduced to achieve better results and to mitigate the 

trembling.  

Currently, the calculation of the reward is based 

on a single image. In further work, the reward could 

be calculated using a moving average of the COG 

based on the last several images. This approach 
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avoids the usage of action masks and memory, 

mitigates trembling but also allows subsequent turns 

at sharp curves. 
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