
Leveraging Clustering and Natural Language Processing to
Overcome Variety Issues in Log Management

Tobias Eljasik-Swoboda1 a and Wilhelm Demuth2
1ONTEC AG, Ernst-Melchior-Gasse 24/DG, 1100 Vienna, Austria

2Schoeller Network Control GmbH, Ernst-Melchior-Gasse 24/DG, 1100 Vienna, Austria

Keywords: Industrial Applications of AI, Intelligence and Cybersecurity, Machine Learning, Natural Language
Processing, Trainer/Athlete Pattern, Log Analysis, Log Management, Event Normalization, Security
Information and Event Management, Big Data.

Abstract: When introducing log management or Security Information and Event Management (SIEM) practices,
organizations are frequently challenged by Gartner’s 3 Vs of Big Data: There is a large volume of data which
is generated at a rapid velocity. These first two Vs can be effectively handled by current scale-out architectures.
The third V is that of variety which affects log management efforts by the lack of a common mandatory format
for log files. Essentially every component can log its events differently. The way it is logged can change with
every software update. This paper describes the Log Analysis Machine Learner (LAMaLearner) system. It
uses a blend of different Artificial Intelligence techniques to overcome variety issues and identify relevant
events within log files. LAMaLearner is able to cluster events and generate human readable representations
for all events within a cluster. A human being can annotate these clusters with specific labels. After these
labels exist, LAMaLearner leverages machine learning based natural language processing techniques to label
events even in changing log formats. Additionally, LAMaLearner is capable of identifying previously known
named entities occurring anywhere within the logged event as well identifying frequently co-occurring
variables in otherwise fixed log events. In order to stay up-to-date LAMaLearner includes a continuous
feedback interface that facilitates active learning. In experiments with multiple differently formatted log files,
LAMaLearner was capable of reducing the labeling effort by up to three orders of magnitude. Models trained
on this labeled data achieved > 93% F1 in detecting relevant event classes. This way, LAMaLearner helps log
management and SIEM operations in three ways: Firstly, it creates a quick overview about the content of
previously unknown log files. Secondly, it can be used to massively reduce the required manual effort in log
management and SIEM operations. Thirdly, it identifies commonly co-occurring values within logs which
can be used to identify otherwise unknown aspects of large log files.

1 INTRODUCTION

Computers and network components like switches,
routers or firewalls create log files that list events
occuring on them. Originally, these log files were
only used for troubleshooting problems after errors
have occurred. Since then, technology has been
developed that can react immediately to the
occurrence of specific events within logs. More
interesting use cases arise when one combines log
files from multiple machines to get a bigger picture of
events occuring within the IT environment of an
organization. The process of generating, transmitting,

a https://orcid.org/0000-0003-2464-8461

storing, analyzing and disposing of log data is
referred to as log management (Kent and Souppaya,
2006). Centrally collecting log files from different
components provides a number of tangible
advantages. Firstly, log files can be accessed even if
the machine that originally generated them is no
longer available. Secondly, central analysis and
correlation is only possible if the relevant log files are
centrally stored. The widespread deployment of
modern computing and networking machinery
generates challenges for organizations attempting to
leverage central log management. These challenges
are similar to those expressed by Gartner (2011) as
the three Vs of Big Data:

Eljasik-Swoboda, T. and Demuth, W.
Leveraging Clustering and Natural Language Processing to Overcome Variety Issues in Log Management.
DOI: 10.5220/0008856602810288
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 2, pages 281-288
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

281

Firstly there is the problem of volume: The
generated amount of log files can easily reach
Terabytes. Secondly there is the problem of velocity
as depending on what is happening in the computing
environment, log files can be generated at a rapid
pace. Scale-out architectures, that distribute the
workload across multiple machines are capable of
handling these volume and velocity problems
effectively (Singh and Reddy, 2014). The third
problem of big data is variety. In the case of log
management, it stems from the lack of a mandatory
norm for log formats. Essentially, every log file is
different. Manually interpreting enormous amounts
of such log data can easily overwhelm a human being
that attempts this task (Varanadi, 2003).

The process of transforming heterogenous log
formats to a common output that is centrally stored is
also referred to as event normalization (Teixeira,
2017). This is mainly achieved by using parsers that
apply regular expressions to extract specific values
from logs in previously known formats. These are
subsequently stored in a normalized fashion within
searchable databases. The data quality within these
databases is strongly dependant on the parsing
quality. Even though parsing rules for common log
files are freely shared on the Internet, these usually
only match highly specific fields such as time stamps
and source ip adresses. The essential unstructured,
natural language message gets frequently stored as a
string.

Security Information and Event Management
(SIEM) attempts to leverage centrally managed logs
to increase the IT security of an organization
(Williams and Nicolett, 2005). In practice, specific
event types are oftentimes visualized by occurrence
per time frame. For instance the amount of failed log
in attempts per hour. One can also define alert rules
that trigger automated stepts. An example for such an
alert rule are to inform a human being if there are
more than 10 firewall rejections per minute or that
malware was detected on a computer within the
network (Swift, 2010). Currently, the only way to
identify specific events is to know the log format in
advance and having a pattern that can match to the
specific event during normalization. As pointed out,
there is no norm for log events. Additionally, the
format of the log file can change with updates of the
utilized software. Therefore, the implementation and
updating of Log Management and SIEM systems are
labor intensive.

In this work, we introduce the Log Analysis
Machine Learner (LAMaLearner). It uses a blend of
different artificial intelligence techniques in order to
minimize the effort of implementing SIEM and log

management practices within organizations. This is
especially relevant for Small or Medium Enterprises
(SMEs) that oftentimes do not possess the necessary
human resources to employ large teams focusing on
log management and SIEM. To do so, this paper
outlines the relevant state of the art and technology of
this field in section 2. Section 3 describes our
underlying model which is followed up by section 4
that provides some details about the implementation
of this technology. Section 5 evaluates the
effectiveness of LAMaLearner for a number of
different log file formats and provides information
about the time and effort that was saved by using
LAMaLearner for Log Management projects. Last
but not least, section 6 finishes with our conclusions
about the usage of AI to overcome variety challenges
in log management and SIEM.

2 STATE OF THE ART

There are many tools for log management. Some
frequently mentioned commercial options are Splunk,
IBM QRadar, Loggly, Logentries, and sumo logic
(Splunk, 2019) (IBM, 2019) (Loggly, 2019)
(Logentries, 2019) (Sumo Logic, 2019). Most of the
aforementioned systems are cloud based and require
a connection to the provider in order to perform the
necessary log management. A popular open source
solution is the Elastic Stack (formerly known as ELK
Stack), which is maintained by the company
ElasticSearch which also offers support for the
solution (Elastic, 2019). This company’s full-text
search engine goes by the same name and is an
integral part of the Elastic Stack. Another popular
open source solution is Graylog which is maintained
and supported by the company of the same name
(Graylog, 2019). To the best of our knowledge, all
these log management solutions either require manual
pattern defintions to match relevant known events or
provide taxonomies of relevant events for specific
systems. None use artificial intelligence technology
for this purpose. In the context of log management,
AI technologies are frequently used for anomaly
detection of aggregated event occurences per time
frame instead of the identification and representation
of relevant events (Splunk, 2019) (IBM, 2019)
(Elastic, 2019).

A detailed examination of these log management
technologies as well as all contemporary AI
techniques goes well beyond the scope of this paper.
Therefore the remainder of this section focuses on
relevant approaches useful for overcoming the
aforementioned log management variety problem.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

282

Vaarandi (2003) proposes a data clustering
algorithm for mining patterns from event logs.
Different from other text clustering approaches, this
algorithm has the key insight, that log messages are
actually created by fixed patterns in which variables
are substituted by their specific values. Vaarandi’s
algorithm uses this insight by the creation of 1-
regions, which are specific terms at specific positions
within multiple events. Events that share multiple 1-
regions are candidates for clusters. The 1-regions
essentially provide the fixed parts of the message
while the intermediate words form the variables that
are used in the messages. Vaarandi’s algorithm works
in O(|events|) time as it only needs to iterate a fixed
amount of times over the events to identify 1-regions
and group common events into clusters. It also
outputs a representative pattern that can be used as
regular expression to match to all events making up
the cluster.

Besides the clustering of events and generation of
representations for these clusters, interactive labeling
and machine learning based text categorization are
important corner stones of LAMaLearner. The Cloud
Classifier Committee (C3) is a collection of
microservices that ease the implementation of text
categorization solutions (Swoboda et al., 2016). In
their work, Eljasik-Swoboda et al. (2019) extended
the core C3 idea and described two relevant concepts:
Firstly, the trainer/athlete pattern which allows scale-
out for machine learning based text categorization
tasks. Here, a trainer node computes a model that is
shared with athlete nodes. The actual inference work
is performed by the athlete nodes.

Secondly, the TFIDF-SVM was proposed. This
service implements the trainer/athlete pattern and uses
the LibSVM library to implement Support Vector
Machines (SVMs) for supervised machine learning
(Chang and Lin, 2011). Besides the SVMs, TFIDF-
SVM works with a feature extraction and selection
method that is inspired by the TFIDF formula common
for information retrieval (1). It essentially measures the
importance of how representative certain terms (tk) are
for certain documents (d).

tfidf(tk,di)=#(tk,di)*log(|TS|/#TS(tk)) (1)

The TFIDF-SVM trainer service selects the most

relevant features based on their TFIDF values and
combines them with a SVM model that is evaluated
using n-fold cross-validation. TFIDF-SVM was
evaluated in the challenging argument stance
recognition task and achieved up to .96 F1 for
previously unknown arguments about the same topic
it was trained on. Encouragingly, it was also able to

achieve up to .6 F1 when determining the stance of
arguments for previously unseen topics. This
suggests that TFIDF-SVM models can be transferred
to new problems with completely unseen data without
modification. The aforementioned is highly
interesting for the log analysis use case as not
knowing the precise format of new log files is the
overall challenge this research aims to overcome.

Chawla et al. (2002) introduced the Synthetic
Minority Over-sampling Technique (SMOTE). The
idea is to overcome issues arising from imbalanced
datasets by synthetically oversampling minority
classes so that the acutal machine learning model is
trained on a more balanced dataset. This is crucial for
the log analysis problem because relevant error
messages are oftentimes few and far between
repeatedly occuring success messages.

Named-entity recognition is the act of identifying
specific named entities, such as locations from text
(Jurafsky, 2009). These could be names or locations
in which multiple strings can point to the same entity
or type of entity. For instance, Malta and Austria are
both countries. The next section illustrates how these
design patterns and techniques are used to create
LAMaLearner.

3 MODEL

LAMaLearner starts its operation without any
information about the log format and content. To start
working with log messages, LAMaLearner
implements a key-value store for evens: A numerical
key is used to identify an object that contains a
message string and a time string. As there can be
many different time formats, LAMaLearner ignores
the time value only offering this field for users to
read. It can also be left empty.

As soon as LAMaLearner is provided with events,
it can create clusters of events with corresponding
representations by using a modified version of
Vaarandi’s algorithm described in section 2. Our
modification is in the identification of nested clusters,
so that LAMaLearner can also compute sub-clusters
of found outer clusters. This operation however
requires the comparison of all clusters with each other,
so that this operation requires O(|events|+|clusters|²)
steps. Vaarandi’s algorithm has a threshold hyper-
parameter that determines in how many events the
same term has to occur at the same place to be
considered a 1-region (see section 2). Increasing this
parameter decreases the amount of clusters that are
found. The result set also displays all stored events that
do not fit into any of the generated clusters.

Leveraging Clustering and Natural Language Processing to Overcome Variety Issues in Log Management

283

The individual cluster representations are a
sequence of fixed 1-region terms F={f1,…,fn}
intermixed with variable terms V={v1,…,vm}. For all
events within one cluster, F is identical, while the
values for V contain different terms. We use this
property for the created clusters for two additional
analysis steps: Firstly, the detection of named entities.
In the current version, we use lists of terms or regular
expressions to represent named entities such as
usernames, DNS names, IP addresses, and email
addresses. Identifying named entities for F is
performed by matching f1,…,fn to the stored entities.
As v1,…,vm are lists of different values per event that
was assigned to the cluster, these are actually each a
list of different terms. Therefore, LAMaLearner
attempts to identify, if all terms within ∈ are
matching to the same regular expression. This can be
used in the cluster representation by creating
representations such as Router {hostname} interface
{ip} down in which {hostname} and {ip} are named
entities represented by common regular expressions.

The identification of F and V per cluster also
yields another opportunity for analysis. Namely the
identification of commonly co-occurring variables in
V. A matrix of how often variable values co-occur in
the same event can be computed. Without additional
knowledge about the analyzed log files, one can infer
related values within clusters. For instance co-
occurring hostnames and IP addresses or Microsoft
Active Directory Security Identifier and human
readable user names. These commonly co-occurring
values are provided to the user after clustering events.

This way, users can quickly gain an overlook about
the available messages within the analyzed log files.
Depending on their required application, users can start
to annotate messages accordingly. Examples for
appropriate labels largely depend on the analyzed log
files. Practical examples from an Apache Tomcat
application log file are success, exception, database
connection terminated, SQL syntax error and client
caused db error. Example labels for security log files
can be successful logins, failed logins, and malware
detected.

In comparison to annotating thousands of
individual events, this clustering step compresses the
task to annotating tens of clusters, massively speeding
up the process. Annotated clusters are stored in a
portable way. This means, that every cluster object
contains a list of annotated labels. LAMaLearner
implements the trainer/athlete pattern to compute its
models. The trainer node extends the TFIDF-SVM
approach with the synthetic minority oversampling
technique as follows:

Labelled clusters form the documents for which a
TFIDF-matrix is computed. As cluster labels are
known, the amount of clusters per label is also known.
To present the subsequent process with a more
balanced problem, LAMaLearner generates synthetic
samples for all minority classes by randomly
concatenating terms occurring in existing cluster
representations of the minority labels. For the sake of
repeatability, LAMaLearner performs this process
using a fixed random seed. After this creation of
synthetic samples, there is an equal amount of
training samples for each class. Additionally,
LAMaLearner computes the average amount of labels
that are assigned to each existing sample cluster.
LAMaLearner subsequently uses the same feature
extraction scheme as described by Eljasik-Swoboda
et al. (2019). To do so, it only takes real samples into
account. This means, that it ignores the synthetically
generated samples for its feature extraction and
selection scheme.

After determining relevant terms for feature
extraction and selection, LAMaLearner triggers an n-
fold cross-validation process. It is important to note,
that only real labelled clusters are used as evaluation
samples. The generated synthetic samples are only
used for training. As with TFIDF-SVM, LibSVM is
used to compute hyperplanes capable of identifying
appropriate labels. While TFIDF-SVM works with an
assignment threshold to determine if documents
should be assigned to a certain label, LAMaLearner
extends this decision with the average amount of
assignments learned from its un-augmented training
set. It is noteworthy, that for this supervised learning
process, the exact positioning of terms within events
is intentionally ignored. This information is only used
for the unsupervised clustering phase. The purpose
for ignoring the exact positioning of relevant terms is
to create robustness against changing formats. While
the ordering of specific terms can change with every
software update, semantic shift happens much slower.
For example logged terms like failure, exception,
fatal, or malware don’t change in meaning depending
on where they are in the log message.

After n models have been computed, the best is
selected. The selection metric (precision, recall, F1,
microaverage, macroaverage) can be selected before
training. This best model is then stored by the trainer
node, so that any athlete node can obtain the model
by querying it. The model object also contains
relevant metadata about the model. Besides
information about the creator, log type and use case it
has been trained for, detailed evaluation results are
stored.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

284

Figure 1: LAMaLearner overall learning process: Firstly, unknown event messages are collected in nested clusters. These can
be labeled in < 1% of the time necessary to label all individual messages. Based on these labelled clusters, a model capable
of labelling clusters and individual messages is computed. It contains its effectiveness evaluation. This model can successfully
be used to label previously unknown log messages in the same and different formats. If mistakes occur, these can be corrected
and the model can be improved.

This way, whenever an athlete node is using this
model, users can display how effective the used
model was during evaluation.

A LAMaLearner athlete node needs an active
model so that it can automatically annotate any event
or cluster with a label. A big advantage of SVMs is
their speed and low resource consumption. Combined
with the feature selection scheme, large amounts of
events can rapidly be automatically labelled. This
task can easily be scaled out across multiple
machines. LAMaLearner also allows for the
definition of fixed rules. These rules are made up of
indicator terms which occurrence strongly suggest a
specific label. Rule based results can be combined
with the active model either using a logic AND or a
logic OR operator. In addition to label individual
events, the before mentioned approach to identify
named entities is used on every event message. These
allow for filtering of labels in combination with
entities and values, for instance to display only failure
events for specific usernames.

Besides manually annotating clusters,
LAMaLearner can also work with manually
annotated events to increase the size of its training
and evaluation set. This allows for an interactive
training loop in which false results can be corrected
and a new training process can be triggered to further
increase a model’s effectiveness. Labels are assigned
with a risk score which is a value indicating the
urgency of events having this label. As multiple labels
can be assigned to each event or cluster,

LAMaLearner computers an overall risk score per
cluster or label using formula 2.

∏ , ∗| |

| |
 (2)

The formula to compute the overall risk of event

or cluster i r(ei) is the product of the individual
probabilities for this event or cluster to have label j
p(ei,lj) computed by the model and fixed rules
multiplied with the assigned risk of label j rj. The
utilized SVMs output a probability for an assigned
label. Indicator terms are also configured with a
probability to indicate certain labels. LAMaLearner
automatically removes unlikely labels from the label
set of event or cluster i li. Therefore it seldom
multiplies all label risks per event only concentrating
on relevant values. LAMaLearner can be configured
with an overall risk threshold. Whenever an instance
identifies an event or cluster of a higher risk score
than this threshold, it can call a freely configurable
external program via CLI. This can be used to raise
alarms or initiate automated further actions
depending on the detected labels. We chose this
multiplication based method of computing overall
risk values per cluster or event as it allows for
negation. For instance one can model different
aspects of a log managed environment with different
base risk values. E.g. error messages in firewalls can
be regarded as more important than those of storage

Leveraging Clustering and Natural Language Processing to Overcome Variety Issues in Log Management

285

components. One can also model success messages
with a negative risk value. This means, that success
messages of different components get negative risk
scores while error messages obtain risk scores in
relation to the base risk score of impacted component
class.

4 IMPLEMENTATION

The core idea behind Hadoop’s popular MapReduce
programming model is to move the program to where
the data resides instead of the other way around (Dean
and Ghemawat, 2008). We took this idea to mind
when designing LAMaLearner in a way that it can
easily be transferred to where ever necessary and
scaled out where possible. This way, potentially
sensible information contained within log files do not
have to leave a secured network environment. To
meet this objective, we based LAMaLearner on Java
and packaged it as fat jar file. It communicates via a
REST/JSON interface. This way, it can operate on
any platform that supports java and has a network
interface, allowing for integration into many existing
log management technologies. In order to ease direct
interaction with LAMaLearner, it also renders a Web
GUI which is based on JavaScript and communicates
with the underlying REST/JSON interface. To do so,
LAMaLearner is based on the Dropwizard framework
(Dropwizard, 2019). All relevant data is stored in
memory.

The creation of clusters or assignment of labels to
uploaded events can be triggered by sending POST
requests to the appropriate resources. Hyper-
parameters for these processes are transferred as
JSON objects to the LAMaLearner instance.
LAMaLearner keeps track of whether a clustering or
event labelling process is in progress. If that is the
case, a new process cannot be triggered. While events
are clustered, annotated with labels, or a new model
is computed, LAMaLearner returns a progress list
that indicates how many of the necessary steps have
been performed. In order to keep the web server
responsive and maintain the ability to query the
LAMaLearner instance for existing results, all
clustering, labelling and model creation processes are
executed in independent threads.

This setup is very flexible and has no external
dependencies except for Java. Intentionally,
LAMaLearner does not implement a database to
persistently store events, clusters, labelled events or
created models. All data is kept in memory and can
be exported as JSON object which in turn can be
imported into another instance. As log files

themselves are usually not stored as JSON objects,
this creates the need to interact with an existing log
management solution that is capable of packaging log
entries into JSON objects and trigger LAMaLearner.
It also has to be able to store results and process them
further, for instance by triggering alerts if there are
more than 10 firewall rejections within a specific time
interval. For this purpose we use an in-house
technology called Modular Abstract Data processing
Tool (MAD2).

This piece of software can collect log files from
lots of different source systems. Using a relational
data format, Huffman encoding and a multitude of
compression algorithms, MAD2 can reduce the
storage requirements for log files. A single instance
can also process up to 10.000 events per second,
making this software the interface between the actual
log files and the LAMaLearner AI.

5 EVALUATION

LAMaLearner is a useful tool for exploring new
unknown log formats and processing them into a
labelled form for further downstream analysis. To
evaluate its capabilities, it was tested with different
real life log files. The person inspecting these log files
had no prior knowledge about the environments they
have been created in.

The first tested log file was a Microsoft-
Windows-Security-Auditing log file. The analyzed
part of the log file contained 10,000 events. Using a
threshold of 2, LAMaLearner condensed the
messages to 79 nested clusters. Manual inspection
showed that the events contained mainly three types
of events: Successful logins, successful logoffs, and
login failures. These clusters were then annotated
with the labels success and failure. LAMaLearner
was able to create a model with F1=1. In combination
with named-entity based filtering, users can quickly
identify which users or hosts are involved in failures.
Additionally, the variable co-occurrence feature of
the clustering process allowed matching Microsoft
Security Identifier to the human readable user name
only from automatically analyzing the log files.

Interestingly, the same model was then used on a
Check Point Firewall log which had a vastly different
format. In a manual evaluation of 50 events,
LAMaLearner was capable to tell successful
connections (label success) from rejected connections
(label failure).

In another test, LAMaLearner was presented with
a mixed collection of events coming from three
different source systems: Microsoft-Windows-

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

286

Security-Auditing logs, Check Point firewall logs,
and an Apache webserver access log. This mix
contained 18,110 events. LAMaLearner created 47
nested clusters with an assignment threshold of 5 (56
with an assignment threshold of 2). A model capable
of telling different source systems apart obtained an
overall .93 F1 value. In both these cases, the
clustering approach reduced the time necessary to
label a large quantity of events by more than two
orders of magnitude. This means that the time
required to annotate log events for machine learning
purposes was reduced to less than 1% of the original
amount of required time. The learned models were
highly effective in detecting the correct label for any
event. On a Windows 10 machine with an Intel I7-
7870 (4 cores, 2.9 GHz) and 16 GB RAM,
LAMaLearner is capable of labeling >10,000 events
per second. Besides this core use case of correctly
classifying events without requiring predefined
regular expressions, LAMaLearner also provides
interesting insights into unknown log files.
Specifically by clustering the afore mentioned Check
Point firewall log revealed which type of network
traffic was routed over this firewall.

An interesting observation was made when
analyzing the log files of an Apache Tomcat
application server log. 963 events logged in one day
were grouped into 56 clusters. Upon first view, four
reasonable labels were determined: Success, static
exception, database connection terminated, and
exception. The 56 clusters from that day were
manually annotated with these labels and a model
with F1=1 was computed. As evaluation, the model
was tasked with labelling the events of the next day
of this specific server. The second day’s log file
contained 1,713 messages that were quickly labeled
with the available labels. Inspection revealed that
known types of events were correctly labelled. There
however were new types of events that were either
interpreted as success or exception. The first one was
an SQL Syntax Error that has been logged in the
application server log file. The second one was a
client caused database error, where a user attempted
to delete an entry that didn’t exist. By labeling these
events, an updated model that can determine these
different labels with F1=1 was easily created. Besides
having the ability to track security related entries in a
SIEM platform, this revealed potential errors in
existing software that one might not have noticed in
production.

Another interesting result was obtained by
leaving the world of classical information technology
components and analyzing the log files of an
industrial control computer. 1601 Events were

clustered into 54 clusters. Manual inspection has
shown that there are three general classes of events
within the log file: General status information,
malfunction, and exceeding thresholds. Using
LAMaLearner, these can subsequently be visualized
in a dashboard and enable the operator of the
environment with a quick overview about what has
happened in previous time intervals. This provides
operators with a quick update about the environment
on shift changes. Named-entity based filtering and
correlation between variable values in clusters also
allowed to quickly filtering which component failed
or exceeded its threshold. In case of exceeding
thresholds, the values can then quickly be checked
and actual malfunctions can get investigated. As this
can be performed on multiple control systems at once,
a much better overview is gained.

As last experiment, we generated an artificial log
file in two different formats. It contained 1000 events
which LAMaLearner clustered to 8 high-level
clusters (two of which contained a large collection of
sub-clusters). This artificial log contained events
about simulated traffic over two different network
routers. The two high level clusters each represented
a different router. Their sub-clusters were
connections from different peers to these routers.
Overall 98 peers were simulated, each of which had
their own cluster. The clusters found in the first log
file were annotated with the labels nominal and
failure. The latter was used for interface outages.
Again, a high effectiveness model (F1=1) was
generated by LAMaLearner. This model was then
applied to label the events of the second log. The
second log file contained the same information per
event but had a completely different ordering of the
individual variables and different accompanying
words and characters between those. In this second
log file, the model was also able to identify nominal
and failure events with F1=1. Even though this last
experiment was not conducted with a real-life log file,
it illustrates LAMaLearner’s robustness against
changing log formats as soon as models to label said
formats have been learned.

6 CONCLUSIONS AND FUTURE
WORK

In this work, we have introduced a flexible method to
overcome variety issues in log management by
engineering multiple state of the art AI methods into
a single powerful solution. Our contributions can
reduce the amount of manual effort in log

Leveraging Clustering and Natural Language Processing to Overcome Variety Issues in Log Management

287

management projects dramatically. It can also shine a
light on previously undiscovered log file entries as it
allows their exploration in a reasonable time frame.
Additionally frequently logged variables such as
hostnames or users can be identified for further
investigation. These capabilities are highly
interesting for small or medium enterprises that intent
or have to use log management but do not have the
necessary personnel to successfully implement such a
practice. It also is not limited to information
technology security logs but can also be used within
industrial applications to reveal hidden patterns
within such environments. Because of its practical
implementation, LAMaLearner can be introduced
into any relevant system architecture and can handle
large amounts of data by having been designed to
scale out form the beginning. The fact that no
connection to an external provider is necessary and
explanations for labeling decisions can be generated
the same way as explained by Eljasik-Swoboda et al.
(2019) make this software safe to use under strict
privacy legislature like the European Union’s GDPR
(EU, 2016).

In future works we will use LAMaLearner
generated event labeling results as input for time
series anomaly detection and regression computation.
The current version is limited to identify named
entities from single words. As of now, word n-grams
cannot be analyzed. Therefore additional ways to
create a named entity recognition (NER) component
minimizing manual effort in its definition will also be
researched.

REFERENCES

Chang, C., Lin, C., LIBSVM: A library for support vector
machines, ACM Transactions on Intelligent Systems and
Technology, volume 2, issue 3, pp 27:1 –27:27, 2011

Chawla, N. V., Bowyer, K. W., Hall, L. O., Keelmeyer, W.
P. 2002. SMOTE: Synthetic Minority Over-sampling
Technique, Journal of Artificial Intelligence Research,
Issue 16, pp. 321-357

Dean, J., Ghemawat S., 2008. MapReduce: simplified data
processing on large clusters. In Communications of the
ACM issue 51, pp. 107-113.

Dropwizard 2019, Production-ready, out of the box.
https://dropwizard.io Accessed September 12, 2019

Elastic, 2019. Open Source Search & Analytics
Elasticsearch | Elastic https://elastic.co Accessed
September 12, 2019

Eljasik-Swoboda, T., Engel, F., Hemmje, M., 2019. Using
Topic Specific Features for Argument Stance
Recognition. In: Proceedings of the 8th international
conference on data science, technology and applications
(DATA 2019), DOI: 10.5220/0007769700130022

Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of
personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance); OJ
L 119, 4.5.2016, p. 1–88;

Gartner, 2011. Gartner Says Solving ‘Big Data’ Challenge
Involves More Than Just Managing Volumes of Data,
http://www.gartner.com/newsroom/id/1731916
Published June 27, 2011 Accessed May 2, 2016

Graylog, 2019. Industry Leading Log Management | Graylog
https://graylog.org Accessed September 12, 2019

IBM, 2019. IBM QRadar SIEM – Overview,
https://www.ibm.com/us-en/marketplace/ibm-qradar-
siem Accessed September 12, 2019

Jurafsky, D., Martin, J. J., 2009. Speech and language
processing. An introduction to natural language
processing, computational linguistics and speech
recognition. 2nd edition, Upper Saddle River, N.J.,
London: Pearson Prentice Hall (Prentice Hall series in
aritificial intelligence), pp 761 ff.

Kent, K., Souppaya, M., 2006. Guide to Computer Security
Log Management, Recommendations of the National
Institute of Standards and Technology (NIST), DOI:
10.6028/NIST.SP.800-92

Logentries, 2019. Logentries: Log Management & Analysis
Software Made Easy. https://logentries.com Accessed
September 12, 2019

Loggly, 2019. Log Analysis | Log Management by Loggly
https://loggly.com Accessed September 12, 2019

Singh, D., Reddy, C. K., 2014. A survey on platforms for
big data analytics, Journal of Big Data. DOI:
10.1186/s40537-014-0008-6

Splunk, 2019. SIEM, AIOps, Application Management,
Log Management, Machine Learning, and Compliance.
https://splunk.com Accessed September 12, 2019

Sumo Logic, 2019. Log Management & Security Analysis,
Continuous Intelligence, Sumo Logic.
https://sumologic.com Accessed September 12, 2019

Swift, D., 2010. Successful SIEM and Log Management
Strategies for Audit and Compliance, White Paper
SANS Institute, https://www.sans.org/reading-
room/whitepapers/auditing/paper/33528 Accessed
September 5, 2019

Swoboda, T., Kaufmann, M., Hemmje, M. L., Toward
Cloud-based Classification and Annotation Support,
Proceedings of the 6th International Conference on
Cloud Computing and Services Science (CLOSER
2016) – Volume 2, pp. 131-237, 2016

Teixeira, A., 2017. Get over SIEM event normalization.
https://medium.com/@ateixei/get-over-siem-event-
normalization-595fc36559b4 Accessed Sept. 16, 2019

Varanadi, R., 2003. A Data Clustering Algorithm for
Mining Patterns from Event Logs. In: Proceedings of
the 2003 IEEE Workshop on IP Operations and
Management, ISBN: 0-7803-8199-8

Williams, A. T., Nicolett, M., 2005. Improve IT Security
with Vulnerability Management, Gartner Research ID
G00127481

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

288

