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Abstract: When introducing log management or Security Information and Event Management (SIEM) practices, 
organizations are frequently challenged by Gartner’s 3 Vs of Big Data: There is a large volume of data which 
is generated at a rapid velocity. These first two Vs can be effectively handled by current scale-out architectures. 
The third V is that of variety which affects log management efforts by the lack of a common mandatory format 
for log files. Essentially every component can log its events differently. The way it is logged can change with 
every software update. This paper describes the Log Analysis Machine Learner (LAMaLearner) system. It 
uses a blend of different Artificial Intelligence techniques to overcome variety issues and identify relevant 
events within log files. LAMaLearner is able to cluster events and generate human readable representations 
for all events within a cluster. A human being can annotate these clusters with specific labels. After these 
labels exist, LAMaLearner leverages machine learning based natural language processing techniques to label 
events even in changing log formats. Additionally, LAMaLearner is capable of identifying previously known 
named entities occurring anywhere within the logged event as well identifying frequently co-occurring 
variables in otherwise fixed log events. In order to stay up-to-date LAMaLearner includes a continuous 
feedback interface that facilitates active learning. In experiments with multiple differently formatted log files, 
LAMaLearner was capable of reducing the labeling effort by up to three orders of magnitude. Models trained 
on this labeled data achieved > 93% F1 in detecting relevant event classes. This way, LAMaLearner helps log 
management and SIEM operations in three ways: Firstly, it creates a quick overview about the content of 
previously unknown log files. Secondly, it can be used to massively reduce the required manual effort in log 
management and SIEM operations. Thirdly, it identifies commonly co-occurring values within logs which 
can be used to identify otherwise unknown aspects of large log files. 

1 INTRODUCTION 

Computers and network components like switches, 
routers or firewalls create log files that list events 
occuring on them. Originally, these log files were 
only used for troubleshooting problems after errors 
have occurred. Since then, technology has been 
developed that can react immediately to the 
occurrence of specific events within logs. More 
interesting use cases arise when one combines log 
files from multiple machines to get a bigger picture of 
events occuring within the IT environment of an 
organization. The process of generating, transmitting, 
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storing, analyzing and disposing of log data is 
referred to as log management (Kent and Souppaya, 
2006). Centrally collecting log files from different 
components provides a number of tangible 
advantages. Firstly, log files can be accessed even if 
the machine that originally generated them is no 
longer available. Secondly, central analysis and 
correlation is only possible if the relevant log files are 
centrally stored. The widespread deployment of 
modern computing and networking machinery 
generates challenges for organizations attempting to 
leverage central log management. These challenges 
are similar to those expressed by Gartner (2011) as 
the three Vs of Big Data:  
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Firstly there is the problem of volume: The 
generated amount of log files can easily reach 
Terabytes. Secondly there is the problem of velocity 
as depending on what is happening in the computing 
environment, log files can be generated at a rapid 
pace. Scale-out architectures, that distribute the 
workload across multiple machines are capable of 
handling these volume and velocity problems 
effectively (Singh and Reddy, 2014). The third 
problem of big data is variety. In the case of log 
management, it stems from the lack of a mandatory 
norm for log formats. Essentially, every log file is 
different. Manually interpreting enormous amounts 
of such log data can easily overwhelm a human being 
that attempts this task (Varanadi, 2003).  

The process of transforming heterogenous log 
formats to a common output that is centrally stored is 
also referred to as event normalization (Teixeira, 
2017). This is mainly achieved by using parsers that 
apply regular expressions to extract specific values 
from logs in previously known formats. These are 
subsequently stored in a normalized fashion within 
searchable databases. The data quality within these 
databases is strongly dependant on the parsing 
quality. Even though parsing rules for common log 
files are freely shared on the Internet, these usually 
only match highly specific fields such as time stamps 
and source ip adresses. The essential unstructured, 
natural language message gets frequently stored as a 
string.  

Security Information and Event Management 
(SIEM) attempts to leverage centrally managed logs 
to increase the IT security of an organization 
(Williams and Nicolett, 2005). In practice, specific 
event types are oftentimes visualized by occurrence 
per time frame. For instance the amount of failed log 
in attempts per hour. One can also define alert rules 
that trigger automated stepts. An example for such an 
alert rule are to inform a human being if there are 
more than 10 firewall rejections per minute or that 
malware was detected on a computer within the 
network (Swift, 2010). Currently, the only way to 
identify specific events is to know the log format in 
advance and having a pattern that can match to the 
specific event during normalization. As pointed out, 
there is no norm for log events. Additionally, the 
format of the log file can change with updates of the 
utilized software. Therefore, the implementation and 
updating of Log Management and SIEM systems are 
labor intensive.  

In this work, we introduce the Log Analysis 
Machine Learner (LAMaLearner). It uses a blend of 
different artificial intelligence techniques in order to 
minimize the effort of implementing SIEM and log 

management practices within organizations. This is 
especially relevant for Small or Medium Enterprises 
(SMEs) that oftentimes do not possess the necessary 
human resources to employ large teams focusing on 
log management and SIEM. To do so, this paper 
outlines the relevant state of the art and technology of 
this field in section 2. Section 3 describes our 
underlying model which is followed up by section 4 
that provides some details about the implementation 
of this technology. Section 5 evaluates the 
effectiveness of LAMaLearner for a number of 
different log file formats and provides information 
about the time and effort that was saved by using 
LAMaLearner for Log Management projects. Last 
but not least, section 6 finishes with our conclusions 
about the usage of AI to overcome variety challenges 
in log management and SIEM.  

2 STATE OF THE ART 

There are many tools for log management. Some 
frequently mentioned commercial options are Splunk, 
IBM QRadar, Loggly, Logentries, and sumo logic 
(Splunk, 2019) (IBM, 2019) (Loggly, 2019) 
(Logentries, 2019) (Sumo Logic, 2019). Most of the 
aforementioned systems are cloud based and require 
a connection to the provider in order to perform the 
necessary log management. A popular open source 
solution is the Elastic Stack (formerly known as ELK 
Stack), which is maintained by the company 
ElasticSearch which also offers support for the 
solution (Elastic, 2019). This company’s full-text 
search engine goes by the same name and is an 
integral part of the Elastic Stack. Another popular 
open source solution is Graylog which is maintained 
and supported by the company of the same name 
(Graylog, 2019). To the best of our knowledge, all 
these log management solutions either require manual 
pattern defintions to match relevant known events or 
provide taxonomies of relevant events for specific 
systems. None use artificial intelligence technology 
for this purpose. In the context of log management, 
AI technologies are frequently used for anomaly 
detection of aggregated event occurences per time 
frame instead of the identification and representation 
of relevant events (Splunk, 2019) (IBM, 2019) 
(Elastic, 2019).  

A detailed examination of these log management 
technologies as well as all contemporary AI 
techniques goes well beyond the scope of this paper. 
Therefore the remainder of this section focuses on 
relevant approaches useful for overcoming the 
aforementioned log management variety problem.  
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Vaarandi (2003) proposes a data clustering 
algorithm for mining patterns from event logs. 
Different from other text clustering approaches, this 
algorithm has the key insight, that log messages are 
actually created by fixed patterns in which variables 
are substituted by their specific values. Vaarandi’s 
algorithm uses this insight by the creation of 1-
regions, which are specific terms at specific positions 
within multiple events. Events that share multiple 1-
regions are candidates for clusters. The 1-regions 
essentially provide the fixed parts of the message 
while the intermediate words form the variables that 
are used in the messages. Vaarandi’s algorithm works 
in O(|events|) time as it only needs to iterate a fixed 
amount of times over the events to identify 1-regions 
and group common events into clusters. It also 
outputs a representative pattern that can be used as 
regular expression to match to all events making up 
the cluster.  

Besides the clustering of events and generation of 
representations for these clusters, interactive labeling 
and machine learning based text categorization are 
important corner stones of LAMaLearner. The Cloud 
Classifier Committee (C3) is a collection of 
microservices that ease the implementation of text 
categorization solutions (Swoboda et al., 2016). In 
their work, Eljasik-Swoboda et al. (2019) extended 
the core C3 idea and described two relevant concepts: 
Firstly, the trainer/athlete pattern which allows scale-
out for machine learning based text categorization 
tasks. Here, a trainer node computes a model that is 
shared with athlete nodes. The actual inference work 
is performed by the athlete nodes. 

Secondly, the TFIDF-SVM was proposed. This 
service implements the trainer/athlete pattern and uses 
the LibSVM library to implement Support Vector 
Machines (SVMs) for supervised machine learning 
(Chang and Lin, 2011). Besides the SVMs, TFIDF-
SVM works with a feature extraction and selection 
method that is inspired by the TFIDF formula common 
for information retrieval (1). It essentially measures the 
importance of how representative certain terms (tk) are 
for certain documents (d). 
 

tfidf(tk,di)=#(tk,di)*log(|TS|/#TS(tk)) (1)
 
The TFIDF-SVM trainer service selects the most 

relevant features based on their TFIDF values and 
combines them with a SVM model that is evaluated 
using n-fold cross-validation. TFIDF-SVM was 
evaluated in the challenging argument stance 
recognition task and achieved up to .96 F1 for 
previously unknown arguments about the same topic 
it was trained on. Encouragingly, it was also able to 

achieve up to .6 F1 when determining the stance of 
arguments for previously unseen topics. This 
suggests that TFIDF-SVM models can be transferred 
to new problems with completely unseen data without 
modification. The aforementioned is highly 
interesting for the log analysis use case as not 
knowing the precise format of new log files is the 
overall challenge this research aims to overcome. 

Chawla et al. (2002) introduced the Synthetic 
Minority Over-sampling Technique (SMOTE). The 
idea is to overcome issues arising from imbalanced 
datasets by synthetically oversampling minority 
classes so that the acutal machine learning model is 
trained on a more balanced dataset. This is crucial for 
the log analysis problem because relevant error 
messages are oftentimes few and far between 
repeatedly occuring success messages.  

Named-entity recognition is the act of identifying 
specific named entities, such as locations from text 
(Jurafsky, 2009). These could be names or locations 
in which multiple strings can point to the same entity 
or type of entity. For instance, Malta and Austria are 
both countries. The next section illustrates how these 
design patterns and techniques are used to create 
LAMaLearner. 

3 MODEL 

LAMaLearner starts its operation without any 
information about the log format and content. To start 
working with log messages, LAMaLearner 
implements a key-value store for evens: A numerical 
key is used to identify an object that contains a 
message string and a time string. As there can be 
many different time formats, LAMaLearner ignores 
the time value only offering this field for users to 
read. It can also be left empty. 

As soon as LAMaLearner is provided with events, 
it can create clusters of events with corresponding 
representations by using a modified version of 
Vaarandi’s algorithm described in section 2. Our 
modification is in the identification of nested clusters, 
so that LAMaLearner can also compute sub-clusters 
of found outer clusters. This operation however 
requires the comparison of all clusters with each other, 
so that this operation requires O(|events|+|clusters|²) 
steps. Vaarandi’s algorithm has a threshold hyper-
parameter that determines in how many events the 
same term has to occur at the same place to be 
considered a 1-region (see section 2). Increasing this 
parameter decreases the amount of clusters that are 
found. The result set also displays all stored events that 
do not fit into any of the generated clusters.  
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The individual cluster representations are a 
sequence of fixed 1-region terms F={f1,…,fn} 
intermixed with variable terms V={v1,…,vm}. For all 
events within one cluster, F is identical, while the 
values for V contain different terms. We use this 
property for the created clusters for two additional 
analysis steps: Firstly, the detection of named entities. 
In the current version, we use lists of terms or regular 
expressions to represent named entities such as 
usernames, DNS names, IP addresses, and email 
addresses. Identifying named entities for F is 
performed by matching f1,…,fn to the stored entities. 
As v1,…,vm are lists of different values per event that 
was assigned to the cluster, these are actually each a 
list of different terms. Therefore, LAMaLearner 
attempts to identify, if all terms within ∈  are 
matching to the same regular expression. This can be 
used in the cluster representation by creating 
representations such as Router {hostname} interface 
{ip} down in which {hostname} and {ip} are named 
entities represented by common regular expressions.  

The identification of F and V per cluster also 
yields another opportunity for analysis. Namely the 
identification of commonly co-occurring variables in 
V. A matrix of how often variable values co-occur in 
the same event can be computed. Without additional 
knowledge about the analyzed log files, one can infer 
related values within clusters. For instance co-
occurring hostnames and IP addresses or Microsoft 
Active Directory Security Identifier and human 
readable user names. These commonly co-occurring 
values are provided to the user after clustering events. 

This way, users can quickly gain an overlook about 
the available messages within the analyzed log files. 
Depending on their required application, users can start 
to annotate messages accordingly. Examples for 
appropriate labels largely depend on the analyzed log 
files. Practical examples from an Apache Tomcat 
application log file are success, exception, database 
connection terminated, SQL syntax error and client 
caused db error. Example labels for security log files 
can be successful logins, failed logins, and malware 
detected.  

In comparison to annotating thousands of 
individual events, this clustering step compresses the 
task to annotating tens of clusters, massively speeding 
up the process. Annotated clusters are stored in a 
portable way. This means, that every cluster object 
contains a list of annotated labels. LAMaLearner 
implements the trainer/athlete pattern to compute its 
models. The trainer node extends the TFIDF-SVM 
approach with the synthetic minority oversampling 
technique as follows:  

Labelled clusters form the documents for which a 
TFIDF-matrix is computed. As cluster labels are 
known, the amount of clusters per label is also known. 
To present the subsequent process with a more 
balanced problem, LAMaLearner generates synthetic 
samples for all minority classes by randomly 
concatenating terms occurring in existing cluster 
representations of the minority labels. For the sake of 
repeatability, LAMaLearner performs this process 
using a fixed random seed. After this creation of 
synthetic samples, there is an equal amount of 
training samples for each class. Additionally, 
LAMaLearner computes the average amount of labels 
that are assigned to each existing sample cluster. 
LAMaLearner subsequently uses the same feature 
extraction scheme as described by Eljasik-Swoboda 
et al. (2019). To do so, it only takes real samples into 
account. This means, that it ignores the synthetically 
generated samples for its feature extraction and 
selection scheme.  

After determining relevant terms for feature 
extraction and selection, LAMaLearner triggers an n-
fold cross-validation process. It is important to note, 
that only real labelled clusters are used as evaluation 
samples. The generated synthetic samples are only 
used for training. As with TFIDF-SVM, LibSVM is 
used to compute hyperplanes capable of identifying 
appropriate labels. While TFIDF-SVM works with an 
assignment threshold to determine if documents 
should be assigned to a certain label, LAMaLearner 
extends this decision with the average amount of 
assignments learned from its un-augmented training 
set. It is noteworthy, that for this supervised learning 
process, the exact positioning of terms within events 
is intentionally ignored. This information is only used 
for the unsupervised clustering phase. The purpose 
for ignoring the exact positioning of relevant terms is 
to create robustness against changing formats. While 
the ordering of specific terms can change with every 
software update, semantic shift happens much slower. 
For example logged terms like failure, exception, 
fatal, or malware don’t change in meaning depending 
on where they are in the log message. 

After n models have been computed, the best is 
selected. The selection metric (precision, recall, F1, 
microaverage, macroaverage) can be selected before 
training. This best model is then stored by the trainer 
node, so that any athlete node can obtain the model 
by querying it. The model object also contains 
relevant metadata about the model. Besides 
information about the creator, log type and use case it 
has been trained for, detailed evaluation results are 
stored. 
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Figure 1: LAMaLearner overall learning process: Firstly, unknown event messages are collected in nested clusters. These can 
be labeled in < 1% of the time necessary to label all individual messages. Based on these labelled clusters, a model capable 
of labelling clusters and individual messages is computed. It contains its effectiveness evaluation. This model can successfully 
be used to label previously unknown log messages in the same and different formats. If mistakes occur, these can be corrected 
and the model can be improved. 

This way, whenever an athlete node is using this 
model, users can display how effective the used 
model was during evaluation. 

A LAMaLearner athlete node needs an active 
model so that it can automatically annotate any event 
or cluster with a label. A big advantage of SVMs is 
their speed and low resource consumption. Combined 
with the feature selection scheme, large amounts of 
events can rapidly be automatically labelled. This 
task can easily be scaled out across multiple 
machines. LAMaLearner also allows for the 
definition of fixed rules. These rules are made up of 
indicator terms which occurrence strongly suggest a 
specific label. Rule based results can be combined 
with the active model either using a logic AND or a 
logic OR operator. In addition to label individual 
events, the before mentioned approach to identify 
named entities is used on every event message. These 
allow for filtering of labels in combination with 
entities and values, for instance to display only failure 
events for specific usernames. 

Besides manually annotating clusters, 
LAMaLearner can also work with manually 
annotated events to increase the size of its training 
and evaluation set. This allows for an interactive 
training loop in which false results can be corrected 
and a new training process can be triggered to further 
increase a model’s effectiveness. Labels are assigned 
with a risk score which is a value indicating the 
urgency of events having this label. As multiple labels 
can be assigned to each event or cluster, 

LAMaLearner computers an overall risk score per 
cluster or label using formula 2.  
 

∏ , ∗| |

| |
 (2)

 
The formula to compute the overall risk of event 

or cluster i r(ei) is the product of the individual 
probabilities for this event or cluster to have label j 
p(ei,lj) computed by the model and fixed rules 
multiplied with the assigned risk of label j rj. The 
utilized SVMs output a probability for an assigned 
label. Indicator terms are also configured with a 
probability to indicate certain labels. LAMaLearner 
automatically removes unlikely labels from the label 
set of event or cluster i li. Therefore it seldom 
multiplies all label risks per event only concentrating 
on relevant values. LAMaLearner can be configured 
with an overall risk threshold. Whenever an instance 
identifies an event or cluster of a higher risk score 
than this threshold, it can call a freely configurable 
external program via CLI. This can be used to raise 
alarms or initiate automated further actions 
depending on the detected labels. We chose this 
multiplication based method of computing overall 
risk values per cluster or event as it allows for 
negation. For instance one can model different 
aspects of a log managed environment with different 
base risk values. E.g. error messages in firewalls can 
be regarded as more important than those of storage 
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components. One can also model success messages 
with a negative risk value. This means, that success 
messages of different components get negative risk 
scores while error messages obtain risk scores in 
relation to the base risk score of impacted component 
class.  

4 IMPLEMENTATION 

The core idea behind Hadoop’s popular MapReduce 
programming model is to move the program to where 
the data resides instead of the other way around (Dean 
and Ghemawat, 2008). We took this idea to mind 
when designing LAMaLearner in a way that it can 
easily be transferred to where ever necessary and 
scaled out where possible. This way, potentially 
sensible information contained within log files do not 
have to leave a secured network environment. To 
meet this objective, we based LAMaLearner on Java 
and packaged it as fat jar file. It communicates via a 
REST/JSON interface. This way, it can operate on 
any platform that supports java and has a network 
interface, allowing for integration into many existing 
log management technologies. In order to ease direct 
interaction with LAMaLearner, it also renders a Web 
GUI which is based on JavaScript and communicates 
with the underlying REST/JSON interface. To do so, 
LAMaLearner is based on the Dropwizard framework 
(Dropwizard, 2019). All relevant data is stored in 
memory.  

The creation of clusters or assignment of labels to 
uploaded events can be triggered by sending POST 
requests to the appropriate resources. Hyper-
parameters for these processes are transferred as 
JSON objects to the LAMaLearner instance. 
LAMaLearner keeps track of whether a clustering or 
event labelling process is in progress. If that is the 
case, a new process cannot be triggered. While events 
are clustered, annotated with labels, or a new model 
is computed, LAMaLearner returns a progress list 
that indicates how many of the necessary steps have 
been performed. In order to keep the web server 
responsive and maintain the ability to query the 
LAMaLearner instance for existing results, all 
clustering, labelling and model creation processes are 
executed in independent threads.  

This setup is very flexible and has no external 
dependencies except for Java. Intentionally, 
LAMaLearner does not implement a database to 
persistently store events, clusters, labelled events or 
created models. All data is kept in memory and can 
be exported as JSON object which in turn can be 
imported into another instance. As log files 

themselves are usually not stored as JSON objects, 
this creates the need to interact with an existing log 
management solution that is capable of packaging log 
entries into JSON objects and trigger LAMaLearner. 
It also has to be able to store results and process them 
further, for instance by triggering alerts if there are 
more than 10 firewall rejections within a specific time 
interval. For this purpose we use an in-house 
technology called Modular Abstract Data processing 
Tool (MAD2).  

This piece of software can collect log files from 
lots of different source systems. Using a relational 
data format, Huffman encoding and a multitude of 
compression algorithms, MAD2 can reduce the 
storage requirements for log files. A single instance 
can also process up to 10.000 events per second, 
making this software the interface between the actual 
log files and the LAMaLearner AI.  

5 EVALUATION 

LAMaLearner is a useful tool for exploring new 
unknown log formats and processing them into a 
labelled form for further downstream analysis. To 
evaluate its capabilities, it was tested with different 
real life log files. The person inspecting these log files 
had no prior knowledge about the environments they 
have been created in.  

The first tested log file was a Microsoft-
Windows-Security-Auditing log file. The analyzed 
part of the log file contained 10,000 events. Using a 
threshold of 2, LAMaLearner condensed the 
messages to 79 nested clusters. Manual inspection 
showed that the events contained mainly three types 
of events: Successful logins, successful logoffs, and 
login failures. These clusters were then annotated 
with the labels success and failure. LAMaLearner 
was able to create a model with F1=1. In combination 
with named-entity based filtering, users can quickly 
identify which users or hosts are involved in failures. 
Additionally, the variable co-occurrence feature of 
the clustering process allowed matching Microsoft 
Security Identifier to the human readable user name 
only from automatically analyzing the log files. 

Interestingly, the same model was then used on a 
Check Point Firewall log which had a vastly different 
format. In a manual evaluation of 50 events, 
LAMaLearner was capable to tell successful 
connections (label success) from rejected connections 
(label failure).  

In another test, LAMaLearner was presented with 
a mixed collection of events coming from three 
different source systems: Microsoft-Windows-
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Security-Auditing logs, Check Point firewall logs, 
and an Apache webserver access log. This mix 
contained 18,110 events. LAMaLearner created 47 
nested clusters with an assignment threshold of 5 (56 
with an assignment threshold of 2). A model capable 
of telling different source systems apart obtained an 
overall .93 F1 value. In both these cases, the 
clustering approach reduced the time necessary to 
label a large quantity of events by more than two 
orders of magnitude. This means that the time 
required to annotate log events for machine learning 
purposes was reduced to less than 1% of the original 
amount of required time. The learned models were 
highly effective in detecting the correct label for any 
event. On a Windows 10 machine with an Intel I7-
7870 (4 cores, 2.9 GHz) and 16 GB RAM, 
LAMaLearner is capable of labeling >10,000 events 
per second. Besides this core use case of correctly 
classifying events without requiring predefined 
regular expressions, LAMaLearner also provides 
interesting insights into unknown log files. 
Specifically by clustering the afore mentioned Check 
Point firewall log revealed which type of network 
traffic was routed over this firewall.  

An interesting observation was made when 
analyzing the log files of an Apache Tomcat 
application server log. 963 events logged in one day 
were grouped into 56 clusters. Upon first view, four 
reasonable labels were determined: Success, static 
exception, database connection terminated, and 
exception. The 56 clusters from that day were 
manually annotated with these labels and a model 
with F1=1 was computed. As evaluation, the model 
was tasked with labelling the events of the next day 
of this specific server. The second day’s log file 
contained 1,713 messages that were quickly labeled 
with the available labels. Inspection revealed that 
known types of events were correctly labelled. There 
however were new types of events that were either 
interpreted as success or exception. The first one was 
an SQL Syntax Error that has been logged in the 
application server log file. The second one was a 
client caused database error, where a user attempted 
to delete an entry that didn’t exist. By labeling these 
events, an updated model that can determine these 
different labels with F1=1 was easily created. Besides 
having the ability to track security related entries in a 
SIEM platform, this revealed potential errors in 
existing software that one might not have noticed in 
production.  

Another interesting result was obtained by 
leaving the world of classical information technology 
components and analyzing the log files of an 
industrial control computer. 1601 Events were 

clustered into 54 clusters. Manual inspection has 
shown that there are three general classes of events 
within the log file: General status information, 
malfunction, and exceeding thresholds. Using 
LAMaLearner, these can subsequently be visualized 
in a dashboard and enable the operator of the 
environment with a quick overview about what has 
happened in previous time intervals. This provides 
operators with a quick update about the environment 
on shift changes. Named-entity based filtering and 
correlation between variable values in clusters also 
allowed to quickly filtering which component failed 
or exceeded its threshold. In case of exceeding 
thresholds, the values can then quickly be checked 
and actual malfunctions can get investigated. As this 
can be performed on multiple control systems at once, 
a much better overview is gained.  

As last experiment, we generated an artificial log 
file in two different formats. It contained 1000 events 
which LAMaLearner clustered to 8 high-level 
clusters (two of which contained a large collection of 
sub-clusters). This artificial log contained events 
about simulated traffic over two different network 
routers. The two high level clusters each represented 
a different router. Their sub-clusters were 
connections from different peers to these routers. 
Overall 98 peers were simulated, each of which had 
their own cluster. The clusters found in the first log 
file were annotated with the labels nominal and 
failure. The latter was used for interface outages. 
Again, a high effectiveness model (F1=1) was 
generated by LAMaLearner. This model was then 
applied to label the events of the second log. The 
second log file contained the same information per 
event but had a completely different ordering of the 
individual variables and different accompanying 
words and characters between those. In this second 
log file, the model was also able to identify nominal 
and failure events with F1=1. Even though this last 
experiment was not conducted with a real-life log file, 
it illustrates LAMaLearner’s robustness against 
changing log formats as soon as models to label said 
formats have been learned.  

6 CONCLUSIONS AND FUTURE 
WORK 

In this work, we have introduced a flexible method to 
overcome variety issues in log management by 
engineering multiple state of the art AI methods into 
a single powerful solution. Our contributions can 
reduce the amount of manual effort in log 
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management projects dramatically. It can also shine a 
light on previously undiscovered log file entries as it 
allows their exploration in a reasonable time frame. 
Additionally frequently logged variables such as 
hostnames or users can be identified for further 
investigation. These capabilities are highly 
interesting for small or medium enterprises that intent 
or have to use log management but do not have the 
necessary personnel to successfully implement such a 
practice. It also is not limited to information 
technology security logs but can also be used within 
industrial applications to reveal hidden patterns 
within such environments. Because of its practical 
implementation, LAMaLearner can be introduced 
into any relevant system architecture and can handle 
large amounts of data by having been designed to 
scale out form the beginning. The fact that no 
connection to an external provider is necessary and 
explanations for labeling decisions can be generated 
the same way as explained by Eljasik-Swoboda et al. 
(2019) make this software safe to use under strict 
privacy legislature like the European Union’s GDPR 
(EU, 2016). 

In future works we will use LAMaLearner 
generated event labeling results as input for time 
series anomaly detection and regression computation. 
The current version is limited to identify named 
entities from single words. As of now, word n-grams 
cannot be analyzed. Therefore additional ways to 
create a named entity recognition (NER) component 
minimizing manual effort in its definition will also be 
researched.  
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