5  CONCLUSIONS 
Nanoparticles  were  successfully  synthesized  using 
AgNO
3
 and Langsat  leaf  extract  with  the  recorded 
wavelength peak at 398 nm. The approximate size of 
the LL-AgNP is 44 nm.  Based on the results that are 
obtained,  we  conclude  that  the  LL-AgNP  shows 
antibacterial activity against Gram-negative bacteria 
Escherichia coli  and  Gram-positive  bacteria 
Staphylococcus aureus.  The  LL-AgNP  MIC  is 
observed at 6.25% on Escherichia coli and  25% on 
Staphylococcus aureus. The MBC is observed at 25% 
on  Escherichia coli  but  no  bactericidal  activity  is 
observed  on  Staphylococcus aureus.  Further  tests 
with  different  strains,  concentrations,  and  methods 
are suggested to add more diversity from the findings 
of this study. 
REFERENCES 
Abbaszadegan,  A.,  Ghahramani,  Y.,  Gholami,  A., 
Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., & 
Sharghi, H. (2015). The Effect of Charge at the Surface 
of  Silver  Nanoparticles  on  Antimicrobial  Activity 
against Gram-Positive and Gram-Negative Bacteria: A 
Preliminary  Study.  Journal of Nanomaterials,  2015, 
720654. https://doi.org/10.1155/2015/720654 
Amirjani,  A.,  Firouzi,  F.,  &  Haghshenas,  D.  F.  (2020). 
Predicting the Size of Silver Nanoparticles from Their 
Optical  Properties.  Plasmonics. 
https://doi.org/10.1007/s11468-020-01121-x 
Badiah, H. I., Seedeh, F., Supriyanto, G., & Zaidan, A. H. 
(2019).  Synthesis  of  Silver  Nanoparticles  and  the 
Development  in  Analysis  Method.  IOP Conference 
Series: Earth and Environmental Science,  217(1). 
https://doi.org/10.1088/1755-1315/217/1/012005 
Bae,  E.,  Lee,  B.  C.,  Kim,  Y.,  Choi,  K.,  &  Yi,  J.  (2013). 
Effect  of  agglomeration  of  silver  nanoparticle  on 
nanotoxicity depression. Korean Journal of Chemical 
Engineering,  30(2),  364–368. 
https://doi.org/10.1007/s11814-012-0155-4 
Ballottin, D., Fulaz, S., Souza, M. L., Corio, P., Rodrigues, 
A. G., Souza, A. O., … Tasic, L. (2016). Elucidating 
Protein Involvement in the Stabilization of the Biogenic 
Silver  Nanoparticles.  Nanoscale Research Letters, 
11(1). https://doi.org/10.1186/s11671-016-1538-y 
Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. 
A.,  Mohan,  N.  M.,  Martins,  M.,  &  Fernandes,  A.  R. 
(2018).  Nano-strategies  to  fight  multidrug  resistant 
bacteria-"A  Battle  of  the  Titans".  Frontiers in 
Microbiology,  9(JUL),  1–26. 
https://doi.org/10.3389/fmicb.2018.01441 
Castiglioni, S., Cazzaniga, A., Locatelli, L., & Maier, J. A. 
M.  (2017).  Silver  nanoparticles  in  orthopedic 
applications:  New  insights  on  their  effects  on 
osteogenic  cells.  Nanomaterials,  7(6). 
https://doi.org/10.3390/nano7060124 
Durán,  N.,  Durán,  M.,  de  Jesus,  M.  B.,  Seabra,  A.  B., 
Fávaro,  W.  J.,  &  Nakazato,  G.  (2016).  Silver 
nanoparticles: A new view on  mechanistic aspects on 
antimicrobial  activity.  Nanomedicine: 
Nanotechnology, Biology, and Medicine,  12(3),  789–
799. https://doi.org/10.1016/j.nano.2015.11.016 
Ganesan, P., Reegan, A. D., David, R. H. A., Gandhi, M. 
R., Paulraj, M. G., Al-Dhabi, N. A., & Ignacimuthu, S. 
(2017).  Antimicrobial  activity of  some  actinomycetes 
from Western Ghats of Tamil Nadu, India. Alexandria 
Journal of Medicine,  53(2),  101–110. 
https://doi.org/10.1016/j.ajme.2016.03.004 
González, A. L., Noguez, C., Beránek, J., & Barnard, A. S. 
(2014). Size, Shape, Stability, and Color of Plasmonic 
Silver  Nanoparticles.  The Journal of Physical 
Chemistry C,  118(17),  9128–9136. 
https://doi.org/doi:10.1021/jp5018168 
Kailasa,  S.  K.,  Park,  T.-J.,  Rohit,  J.  V.,  &  Koduru,  J.  R. 
(2019).  Antimicrobial  activity  of  silver  nanoparticles. 
In  Nanoparticles in Pharmacotherapy. 
https://doi.org/10.1016/b978-0-12-816504-1.00009-0 
Kawas,  H.  (2016).  How Plant  Extract  Affect  and Reduce 
AgNO3? Retrieved February 21, 2020, from Reserach 
Gate  website: 
https://www.researchgate.net/post/how_plant_extract_
affect_and_reduce_AgNO3 
Khodashenas, B., & Ghorbani, H. R. (2019). Synthesis of 
silver  nanoparticles  with  different  shapes.  Arabian 
Journal of Chemistry,  12(8),  1823–1838. 
https://doi.org/10.1016/j.arabjc.2014.12.014 
Linlin,  W.,  Chen,  H.,  &  Longquan,  S.  (2017).  The 
antimicrobial activity of nanoparticles: present situation 
and  prospects  for  the  future.  International Journal of 
Nanomedicine,  12,  1227–1249. 
https://doi.org/10.2147/IJN.S121956 
Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & 
Chen, W. (2020). Antibacterial activity and mechanism 
of linalool against Pseudomonas aeruginosa. Microbial 
Pathogenesis,  141,  1469–1487. 
https://doi.org/10.1016/j.micpath.2020.103980 
Mandal, D., Kumar Dash, S., Das, B., Chattopadhyay, S., 
Ghosh, T.,  Das,  D.,  &  Roy,  S.  (2016).  Bio-fabricated 
silver nanoparticles preferentially targets Gram positive 
depending    on  cell  surface  charge.  Biomedicine & 
Pharmacotherapy = Biomedecine & 
Pharmacotherapie,  83,  548–558. 
https://doi.org/10.1016/j.biopha.2016.07.011 
Noah,  N.  (2019).  Green  synthesis:  Characterization  and 
application of silver  and gold nanoparticles. In Green 
Synthesis, Characterization and Applications of 
Nanoparticles.  https://doi.org/10.1016/b978-0-08-
102579-6.00006-x 
Nolan,  R.  (2018).  Colloidal  Silver  vs  Nano  Silver. 
Retrieved  August  14,  2020,  from 
https://elementasilver.com/blog/colloidal-silver-vs-
nano-silver/ 
Ovais, M. (2016). The Reason for Green Colour of Silver 
Nanoparticle.  Retrieved  February  17,  2020,  from