receptor signaling network. Cell Comm Sig. 13 (5): 1-
15. 
Blenkiron, C., Goldstein, L. D., Thorne, N. P., et al., 2007. 
MicroRNA  expression  profiling  of  human  breast 
cancer  identifies  new  markers  of  tumor  subtype. 
Genome Biol, 8(10), 214.1–.16.  
Brase,  J.C.,  Wuttig,  D.,  Kuner,  R.,  et  al.,  2010.  Serum 
microRNAs  as  non-invasive  biomarkers  for  cancer. 
Mol Cancer, 9(1), 1–9.  
Chan, H. S., & Zhang, Z. 2009. Liaison amid disorder: non-
native interactions may underpin long-range coupling 
in proteins. Journal of Biology. 8(3): 27.  
Chang, S. & Sharan, S.K., 2012. BRCA1 and microRNAs: 
emerging  networks  and  potential  therapeutic  targets. 
Mol. Cells, 34(5), 425–32.  
Chen,  X.,  Liang,  H.,  Zhang,  J.,  et  al.,  2012.  Secreted 
microRNAs:  a  new  form  of  intercellular 
communication. Trends in cell biology, 22(3), 125–32.  
Cheng,  G.  2015.  Circulating  miRNAs:  roles  in  cancer 
diagnosis,  prognosis  and  therapy.  Advanced Drug 
Delivery Reviews. 81: 75–93. 
Corcoran,  C.,  Friel,  A.  M.,  Duffy,  M.  J.,  et  al.,  2011. 
Intracellular  and  extracellular  microRNAs  in  breast 
cancer. Clin Chem, 57(1), 18–32.  
Cortez,  M.A.,  Bueso-ramos,  C.,  Ferdin,  J.,  et  al.,  2011. 
MicroRNAs in body fluids—the mix of hormones and 
biomarkers. Nat Rev Clin Oncol, 8(8), 467–77.  
Croker,  B.A.,  Kiu,  H.  &  Nicholson,  S.E.,  2009.  SOCS 
regulation of the JAK/STAT signaling pathway. Semin 
Cell Dev Biol, 19(4), 414–22. 
Faraoni, I. Antonetti, F. R., Cardone, J., et al., 2009. MiR-
155  gene:  a  typical  multifunctional  microRNA. 
Biochim Biophys Acta, 1792(6), 497–505.  
Fujimoto,  M.  &  Naka,  T.,  2010.  SOCS1  ,  a  negative 
regulator of cytokine  signals and TLR responses , in 
human liver diseases. Gastroenterol Res Pract, 2010, 
1–7. 
Garzon, R. Marcucci, G., & Croce, C. M. 2006. MicroRNA 
expression and function in cancer. J Mol Med, 12(12), 
580–7.  
Gasparini, P., Cascione, L., Fassan, M., & Lovat, F. 2014. 
MicroRNA  expression  profiling  identifies  a  four 
microRNA  signature  as  a  novel  diagnostic  and 
prognostic biomarker in triple negative breast cancers. 
Oncotarget. 5(5): 1174–84. 
Gupta,  N.  &  Mayer,  D.,  2013.  Interaction  of  JAK  with 
steroid receptor function. JAK-STAT, 2, 37–41. 
Higgs,  G.  &  Slack,  F.,  2013.  The  multiple  roles  of 
microRNA-155 in oncogenesis. J Clin Bioinformatics, 
3, 1–8.  
Huang, C. Li, H., Wu, W., et al., 2013. Regulation of miR-
155  affects  pancreatic  cancer  cell  invasiveness  and 
migration  by  modulating  the  STAT3  signaling 
pathway through SOCS1. Oncol Rep, 30, 1223–30. 
Iorio, M. V & Croce, C.M., 2012. MicroRNA dysregulation 
in cancer : diagnostics , monitoring and therapeutics . 
A comprehensive review. EMBO Mol Med, 4, 143–59. 
Iorio, M. V & Croce, C.M., 2009. MicroRNAs in cancer: 
small  molecules  with  a  huge  impact.  J Clin Oncol, 
27(34), 5848–56.  
Jiang, S.  et al.,  2012. A novel miR-155/miR-143 cascade 
controls  glycolysis  by  regulating  hexokinase  2  in 
breast cancer cells. EMBO J, 31(8), 1985–98.  
Jiang,  S.,  Zhang,  H.  &  Lu,  M.,  2010.  MicroRNA-155 
functions as an oncomiR in breast cancer by targeting 
the Suppressor of Cytokine Signaling 1 gene. Cancer 
Res, 70, 3119–27. 
Johansson,  J.  et  al.,  2013.  MiR-155-mediated  loss  of 
C/EBPβ  shifts  the  TGF-β  response  from  growth 
inhibition  to  epithelial-mesenchymal  transition, 
invasion  and  metastasis  in  breast  cancer.  Oncogene, 
32(50), 5614–24.  
Kong, W. He, L., Coppola, M., et al., 2010. MicroRNA-155 
regulates cell  survival,  growth, and  chemosensitivity 
by targeting FOXO3a in breast cancer. The Journal of 
biological chemistry, 285(23), 17869–79.  
Kosaka,  N.,  Iguchi,  H.  &  Ochiya,  T.,  2010.  Circulating 
microRNA in body fluid: a  new  potential  biomarker 
for  cancer  diagnosis  and  prognosis.  Cancer Sci, 
101(10), 2087–92. 
Liu, J. Mao, Q., Liu, Y., et al., 2013. Analysis of miR-205 
and miR-155 expression in the blood of breast cancer 
patients. Chin J Cancer Res, 25(1), 46–54.  
Lu, Z. Ye, Y., Jiao, D., et al., 2012. MiR-155 and miR-31 
are  differentially  expressed  in  breast  cancer  patients 
and  are  correlated  with  the  estrogen  receptor  and 
progesterone  receptor  status.  Oncology Letters,  4(5), 
1027–32.  
Marini, A. et al.,  2006.  Epigenetic  Inactivation of  Tumor 
Suppressor  Genes  in  Serum  of  Patients  with 
Cutaneous Melanoma. J Invest Dermathol, 126, 422–
431. 
Martin, E.C. Rhodes, L. Elliot, S.,  et al., 2014. microRNA 
regulation  of  mammalian  target  of  rapamycin 
expression  and  activity  controls  estrogen  receptor 
function and RAD001 sensitivity. Mol Cancer, 13(1), 
1–13. 
Murray,  P.J.,  2007.  The  JAK-STAT  signaling  pathway: 
input  and  output integration.  J Immunol,  178,.2623–
29. 
Ragan,  C.,  Zuker,  M.,  Ragan,  M.A.  2011.  Quantitative 
prediction  of  miRNA-mRNA  interaction  based  on 
equilibrium concentrations.  PLoS Compt Biol.  7 (2): 
e10001090. 
Rawlings,  J.S.,  Kristin,  M.  &  Harrison,  D.A.,  2004.  The 
JAK  /  STAT  signaling  pathway.  J Cell Sci,  1(117), 
1281–83. 
Santillán-Benítez, J.G. Mendieta-Zeró, H., Gómez-Oliván, 
L.  M., et al., 2014. JAK2, STAT3 and SOCS3 gene 
expression in women with and without breast cancer. 
Gene, 547(1), 70–6.  
Sasi,  W.  Jiang,  W.  G.,  Sharma,  A.,  et  al.,  2010.  Higher 
expression levels of SOCS 1 , 3 , 4 , 7 are associated 
with earlier tumour stage and better clinical outcome 
in human breast cancer. BMC Cancer, 10(178), 1–13. 
Sasi, W. Sharma, A. K., Mokbel, K., et al., 2014. The role 
of  Suppressors  of  Cytokine  Signalling  in  human 
neoplasms. Mol Biol Int, 2014, 1–24.