ACKNOWLEDGEMENTS 
This paper was written within the scope of a COVID-
19  project  supported  by  the  supervisory  ministry 
MENFPESRS and the CNRST of Morocco with the 
aim  of  prevention  and  forecast  the  spread  of  the 
COVID-19 pandemic.  
REFERENCES 
Abiodunab, O. I., Jantana, A., Omolarac, A. E., Dadad, K. 
V., Mohamede, N. A., & Arshad, H. (2018). State-of-
the-art  in  artificial  neural  network  applications:  A 
survey. Heliyon, 4(11), No e00938. 
Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P. B., Joe, 
B., & Cheng, X. (2020). AI and Machine Learning for 
Understanding  Biological  Processes.  Physiological 
Genomics, 52(4), 200-202. 
Amo-Boateng, M. (2020). Tracking and Classifying Global 
COVID-19  Cases  by  using  1D  Deep  Convolution 
Neural Network. medRxiv, No 2020.06.09.20126565. 
Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: 
automatic  detection  from  X-ray  images  utilizing 
transfer  learning  with  convolutional  neural  networks. 
Physical and Engineering Sciences in Medicine, 43, 
635–640. 
Azarafza, M., Azarafza, M., & Tanha, J. (2020). COVID-
19  Infection  Forecasting  based  on  Deep  Learning  in 
Iran.  medRxiv. 
doi:https://doi.org/10.1101/2020.05.16.20104182 
Bai, S., Kolter, J. Z., &  Koltun, V.  (2018).  An Empirical 
Evaluation  of  Generic  Convolutional  and  Recurrent 
Networks  for  Sequence  Modeling.  arXiv,  No 
arXiv:1803.01271 . 
Barman, A. (2020). Time Series Analysis and Forecasting 
of  COVID-19  Cases  Using  LSTM  and  ARIMA 
Models. arXiv, No 2006.13852. 
Binieli,  M.  (2018,  10  16).  Machine learning: an 
introduction to mean squared error and regression 
lines.  Retrieved  08  02,  2020,  from 
https://www.freecodecamp.org/news/machine-
learning-mean-squared-error-regression-line-
c7dde9a26b93/ 
Bouhamed,  H.  (2020).  Covid-19  Cases  and  Recovery 
Previsions  with  Deep  Learning  Nested  Sequence 
Prediction  Models  with  Long  Short-Term  Memory 
(LSTM)  Architecture.  International Journal of 
Scientific Research in Computer Science and 
Engineering, 8(2), 10-15. 
Bratsas, C., Koupidis, K., Grau, J. M., Giannakopoulos, K., 
Kaloudis,  A.,  &  Aifadopoulou,  G.  (2020).  A 
Comparison  of  Machine  Learning  Methods  for  the 
Prediction  of  Traffic  Speed  in  Urban  Places. 
Sustainability , 12(1), No 142. 
Chai, T., & Draxler, R. R. (2014). Root mean square error 
(RMSE) or mean absolute error (MAE)? – Arguments 
against avoiding RMSE in the literature. Geoscientific 
Model Development, 7(3), 1247-1250. 
Chimmula,  V.  K.,  &  Zhang,  L.  (2020).  Time  series 
forecasting of COVID-19 transmission in Canada using 
LSTM  networks.  Chaos Solitons Fractals, 135,  No 
109864. 
Dutta, S., Bandyopadhyay, S., & Kim, T.-H. (2020). CNN-
LSTM  Model  for  Verifying  Predictions  of  Covid-19 
Cases.  Asian Journal of Computer Science and 
Information Technology, 5(4), 25-32. 
Frank, R. J., Davey, N., & Hunt, S. P. (2001). Time Series 
Prediction and Neural Networks. Journal of Intelligent 
and Robotic Systems, 31, 91–103. 
Ganatra, N., & Patel, A. (2018). A Comprehensive Study of 
Deep Learning Architectures, Applications and Tools. 
INTERNATIONAL JOURNAL OF COMPUTER 
SCIENCES AND ENGINEERING, 6(12), 701-705. 
Gozes,  O.,  Frid-Adar,  M.,  Greenspan,  H.,  Browning,  P., 
Zhang,  H.,  Ji,  W.,  .  .  .  Siegel,  E.  (2020).  Rapid  AI 
Development  Cycle  for  the  Coronavirus  (COVID-19) 
Pandemic:  Initial Results for  Automated  Detection  & 
Patient  Monitoring  using  Deep  Learning  CT  Image 
Analysis. arXiv, No arXiv2003.05037. 
Hansen,  C.  (2019,  10  16).  Optimizers Explained - Adam, 
Momentum and Stochastic Gradient Descent. Retrieved 
08  25,  2020,  from 
https://mlfromscratch.com/optimizers-explained/#/ 
Hidaka,  A.,  &  Kurita,  T.  (2017).  Consecutive 
Dimensionality  Reduction  by  Canonical  Correlation 
Analysis  for  Visualization  of  Convolutional  Neural 
Networks.  Proceedings of the ISCIE International 
Symposium on Stochastic Systems Theory and its 
Applications, 160-167. 
Huang, C.-J.,  Chen, Y.-H., Ma, Y., & Kuo,  P.-H. (2020). 
Multiple-Input  Deep  Convolutional  Neural  Network 
Model for COVID-19 Forecasting in China. medRxiv, 
https://doi.org/10.1101/2020.03.23.20041608. 
Islam, M. Z., & Asraf, A. (2020). A combined deep CNN-
LSTM network for the detection of novel coronavirus 
(COVID-19)  using  X-ray  images.  Informatics in 
Medicine Unlocked, 20, No 100412. 
Kamal,  I.  M.,  Bae, H.,  Sunghyun,  S.,  &  Yun, H. (2020). 
DERN: Deep Ensemble Learning Model for Short- and 
Long-Term  Prediction  of  Baltic  Dry  Index.  Applied 
Sciences, 10(4), No 1504. 
Kathuria, C. (2019, 12 5). Regression — Why Mean Square 
Error?  Retrieved  08  02,  2020,  from 
https://towardsdatascience.com/https-medium-com-
chayankathuria-regression-why-mean-square-error-
a8cad2a1c96f 
Lim, B., & Zohren, S. (20). Time Series Forecasting With 
Deep  Learning:  A  Survey.  arXiv,  No 
arXiv:2004.13408. 
Metsky,  H.,  Freije,  C.,  Kosoko-Thoroddsen,  T.-S.  S.,  & 
Myhrvold,  C.  (2020).  CRISPR-based  COVID-19 
surveillance  using  a  genomically-comprehensive 
machine  learning  approach.  bioRxiv,  No 
bioRxiv2020.02.26.967026. 
Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Soufie, 
G.  J.  (2020).  Deep-COVID:  Predicting  COVID-19