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Abstract: Globally, researchers have been trying to produce the most comprehensive description of introducing fractals 
and utilizing them in different sciences. Their effort lies in elaborating and recruiting the scope of fractals in 
science and applications, such as antenna design, computer software programming. Further, the modern world 
needs the products to be compact, efficient and economically suitable, where fractals bring such 
recommendations. In this review article, we present a briefed description of fractals, types of fractals, merits 
of fractals and, most importantly, fractal generator techniques along with their mathematical techniques and 
software. 

1 INTRODUCTION 

In mathematics, a fractal is a complete, iterative-like, 
and self-alike mathematical set whose Hausdorff 
aspect or direction firmly overrides its topological 
dimension. Fractals are available universally in nature 
because of their predisposition to seem approximately 
identical at different aspects, as appears in the 
consecutively trivial amplifications of the Mandelbrot 
set. Further, fractals have alike arrangements at 
progressively small sizes that is similarly known as 
intensifying symmetry or unfolding symmetry 
(Mandelbrot, 1983). When this repetition is strictly the 
same as the relating generated almost same copy at 
every scale, like what appears in the Menger sponge, a 
fractal has a self-similar arrangement. 

Fractal is an, somehow, irregular or disjointed 
geometric shape, which can be sub-partitioned in 
parts, where each part is roughly a smaller copy of a 
whole fractal object (Paul, 1991). It is a natural 
phenomenon or a mathematical expression, which has 
a repeating pattern that displays at every scale. If the 
replication is the same at every scale, it is called a 
self-similar pattern. Fractals can also be nearly the 
same at different levels and includes the idea of a 
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detailed pattern that repeats itself. As seen in nature, 
most physical systems, structures, objects and works 
are not east-to-recognize systematic geometric and 
are not mathematically calculated shapes of the 
standard geometry. 

Many patterns of fractals can be generated by 
utilizing inspirations from the areas of natural 
sciences. An example of such an inspiration is the 
diffusion-limited aggregation (DLA) that describes, 
apart from other descriptions, the diffusion-
aggregation of zinc ions in an electrolytic solution on 
electrodes. Other examples of naturally generated 
fractals because of their ultimate structure are the 
flowers, vegetables, etc. Fractal would appear when 
analyzing ice particles; hence, it shows a dramatic 
presentation of fractal growths as monitored by 
utilizing a specialized telescopic tool. Further, fractal 
shows itself in the structure of many living organs and 
bodies of animals. For instance, fractal patterns have 
a critical role in fortifying and shaping the shell in 
snails, where their shells revolve in an obvious way 
of fractal shape. Such observation is noticeable in 
almost every aspect of life (Douglas et al., 2003). In 
addition, Large-scale objects like galaxies and small-
scale items like atoms are all offering different forms 



of fractal generating initiatives. Moreover, movements, 
motion, and interpolation mathematical processes in 
science exhibit stochastic models that contain fractal 
behavior; hence, every single item in the universe can 
initiate a fractal behavior at some point. 

This reviewing work is mostly dedicated for the 
techniques by which fractals are generated, because 
fractals have templates and/or functions with a 
prototype item. At that point, the prototype grows 
within some patterns to build the whole structure of 
the fractal body. The paper, however, has been 
divided into many divisions to comprehend and 
visualize a full panorama of what to discuss about 
fractal initiation and how to generate fractals. The 
first division talks about an explanation of where the 
idea of fractals have come from. In the next division, 
merits of utilizing fractals are discussed, whereas the 
following section collects many fractal generation 
techniques with some supporting explanation. 
Moreover in this work, the next section depicts the 
mathematical representation of fractal generation. 
Before the conclusion and references, the final 
section mentions the computer software programs 
dedicated for fractals. 

2 FRACTALS CONCEPT  

There have been tremendous number of researchers 
and mathematicians around the globe trying to 
elaborate the key philosophy of the fractal spreading 
in the universe. The apparent behavior of natural 
fractal pattern expose an attitude of the nature to build 
living and non-living objects that mimic their own 
items; i.e. as if the nature’s printer types the same 
generator with different scaling factors to have such 
infinite-like patterns; hence, nature would select the 
simplest procedure to fill space and size. At that point, 
the simplest way would be to accumulate almost-
similar structures in, somehow, different styles to 
expose the final product. 

Artificial fractals are useful to express and 
modulate objects that may contain a base to start 
from, such as decorations, computer images, civil 
structures, architecture, interpolation, engineering 
tools, economics, etc. The most important merit of 
artificial fractals is the ability to comprehend current 
solution needs and to create the suitable fractal 
texture that fits the different desires. On the other 
hand, natural fractals follow the needs of nature, 
without an exact explanation as mentioned earlier. 
However, it still needs further discovery to explain 
the origin of fractals and why/how it has reached such 
forms, but it is probably not able to explain without 

utilizing deeper physical, mathematical theories and 
maybe super computers and algorithms. 

3 MERITS OF USING FRACTALS 

Fractals have grabbed many properties into account, 
inspired primarily from nature. Depending on the 
field that uses iterative geometric properties, merits 
of fractals can be classified into some items as listed 
(Douglas et al., 2003). 

1. In-fit size structure. 
2. Low profile packages 
3. Conformal 
4. Broadband and/or multiband  
5. Fast growing attitude 
6. Predictable approach throughput 
7. Easiness of programming and modelling 
8. Fashion style and artistic design 
9. Forecast of many life representations 
10. Key to explain prospective and existing 

theorems. 
According to the aforementioned and other 

properties, fractals and similar geometric designs 
have become the desirable figures with respect to 
researchers, designers, and programmers. 

4 AGGREGATION OF SOME 
FRACTAL GENERATION 
FIGURES 

Over ages, mathematicians and scientists have found 
and developed fractal shapes depending on the 
application they intend to adopt. This section presents 
a comprehensive overview of some common fractal 
geometries that have been developed or discovered. 
These designs have been used in developing modern 
and innovative designs of technological and 
engineering system structures, such as demographic 
mapping, computer software, systems models, 
microwave assemblies and antennas. 

4.1 Sierpinski Gasket 

The first iterations in the construction of the 
Sierpinski gasket are shown in Figure 1. The process 
of the geometry of such construction is a fractal 
beginning with an equilateral triangle, as illustrated in 
the first stage of Figure 1. The next iteration in the 
construction is to remove a central triangle that is 
located at the mid of the original triangle. This newly 
removed triangle has vertices at the centers of each 



side of the original triangle as shown in Stage 1. This 
process repeats itself for the remaining three 
triangles, as shown in Stage 2, 3, and 4 for the same 
figure. Consequently, the Sierpinski-gasket fractal is 
generated by carrying out this consecutive process an 
infinite amount of times. Further, Sierpinski gasket is 
an example of a generally self-similar fractal. From 
an RF engineering viewpoint, a practical clarification 
of Figure (1) is that the black triangular areas 
characterize a metallic conductor; while the white 
triangular areas characterize regions where metal has 
been removed (Douglas et al., 2003). 

 
Figure 1: Sierpinski-gasket fractal construction. 

4.2 Fracal by Entrenches 

In this design, a new idea of patterning a fractal antenna 
comes in a reality, where a circular patch that contains 
entrenches was utilized in this process, as shown in 
Figure 2. The process of this design takes the manner 
of internally enclosed circles of entrenches. Further, 
the first far tire has a designated number of slots, where 
other tires have the same number as well with smaller 
size of slots in each circle. 

 
Figure 2: Fractal of entrenches. 

4.3 Koch Snowflake Fracta 

This design is another pattern of fractals, and is well 
 

mentioned by many researchers around the world. For 
instance, it takes its shape primarily from the 
microscopic-scale design of a snowflake unit. 

The design starts out as a solid equilateral triangle 
like the Sierpinski gasket, as illustrated in Figure 2. 
Nevertheless, unlike the Sierpinski gasket that is 
formed by downgrading the size of the triangles from 
the original structure, the Koch snowflake is 
accumulated by adding downgrading triangles into 
the structure in an iterative style, as in Figure 3 
(Douglas et al., 2003). 

 
Figure 3: Koch snowflake fractal iterations. 

4.4 Self-similarity Fractals 

It refers to objects that contain smaller copies or 
duplicates of itself at arbitrary scales. Figure 4 shows 
an example of a natural self-similarity fractal. Such 
fractal can further be divided into three items of self-
similarity fractals. 

4.4.1 Exact Self-similarity Fractal 

The fractal is the same at diverse balances. Such 
fractal is the sturdiest kind of the self-similarity type.  

4.4.2 Quasi-self-similarity Fractal 

The fractal is about to be alike at diverse balances. 
This one is a fewer specific system of self-similarity 
type. Such fractals comprehend minor duplicates of 
the whole fractal in slanted forms. 

4.4.3 Statistical Self-similarity 

It is the weakest type of self-similarity; hence, this 
fractal has computational or statistical measurements 
that are preserved across scales. However, most 
famous definitions of fractals imply some meaning of 
statistical self-similarity (a dimension of a fractal is a 
numerical measurement that is kept across scales). 
Further, random fractals are kind of fractals that are 
computationally or statistically self-similar, but 
neither quasi-self-similar nor exactly self-similar 
(Nicoletta, 2013). 



 
Figure 4: Barnsley fern exhibiting self-similarity fractal 
behavior. 

4.5 Pixel-covering Method Fractal 

It is useful to compute the fractal dimensions of 
objects, such as leaves, based on many plant species 
acquired from several places for the sake of plant 
classification and identification. Therefore, both 
contour fractal dimension and the contour & nervure 
fractal dimension can distinguish leaves between 
different types effectively despite a little deficiencies. 
The process works by adding the fractal dimension of 
nervure details into the whole classification system 
that can determine leaves more robustly than that of 
contour and contour & nervure. Figure 5 depicts a 
classification process by using pixel-covering method 
(Wei et al., 2009). 

 
Figure 5: A classification process by pixel-covering 
method. 

4.6 Fractals for Geo-chemical 
Exploration Data of a Geological 
Area 

In this type of fractals, multi-fractal method is carried 
out to process up to 1:200000 stream sediment geo-
chemical examination data of a geographical area. 
Fractal dimension characteristics of a number of 
elements connected with minerals are gained based 
on (C-A) fractal technique, in addition to diverse geo-

chemical anomaly stages and components mixtures 
(Shili Liao et al., 2012). 

4.7 Growing-to-the-inside Fractals 

This technique in generating fractals was proposed by 
some researchers. Abolfazl Azari proposed an 
example of such design (Abolfazl, 2011). The design 
takes the shape of octagonal arrays formed by placing 
elements in an equilateral triangular net. Hence, these 
arrays can be viewed as involving of a single item at 
the center, bounded by several concentric eight 
element circular arrays. Figure 6 depicts the iterations 
of the proposed design of such fractal. 

 
Figure 6: The iterations of the proposed fractal by 
(Abolfazl, 2011). 

4.8 Space Filling Techniques as 
Fractals 

Space filling techniques can serve as a method of 
generating fractals. They take the merit of packing 
extra lines and curves as the rank of the technique gets 
higher. For instance, the most famous techniques to fill 
spaces are Hilbert, Peano, Moore, Dragon, Gosper, 
Koch techniques. Figure 7 shows three patterns that fill 
spaces in a deterministic mathematical style. 

 
Figure 7: Three curves for filling spaces as fractals 
(teachout). 

4.9 Three-dimensional Fractals 

They exist in nature and mathematics and cover many 
aspects of fractalism in nature and artificial 



computations. Most natural fractals are, somehow, in 
the form of 3D pattern; hence, they mostly change 
their way of spreading in more than one plane. 
Moreover, some examples of three-dimensional 
fractals are DNA, neurons, natural or artificial 
surfaces, soil, clouds, etc. Figure 8 exposes an 
example of a natural three-dimensional fractal. 

 
Figure 8: A 3-D fractal shape. 

4.10 Fractals of Multi-scroll Chaotic 
Attractors 

Attractors are sets of numerical values of a system 
that goes to evolve, though they sometimes look 
complicated and random. In fractals, sets of multi-
scroll chaotic attractors are hard to simulate and to be 
put in a mathematical model to represent the fractal 
structure. However, Lu Chen attractor and the 
modified Chua chaotic attractor are examples of 
modeling attractors and are applicable to comprehend 
the fractal implementation. Figure 9 shows an 
example of a multi-scroll chaotic attractor fractal. 

 
Figure 9: Fractal of multi-scroll chaotic attractors. 

5 MATHEMATICAL 
REPRESENTATION OF 
FRACTAL INITIATION 

Fractals have wide scopes of mathematical 
characterization that fill a specific boundary of 
occupation. Further, large number of fractals are 
deterministic, i.e. they commonly can be predicted by 

utilizing mathematical and logical formulas. In 
addition, it is likely to have fractals that are hard or 
impossible to obtain a computational formula of 
representation. In such a case many naturally built 
fractal shapes, such as coral reefs, trees, landscapes, 
etc. As indicated by many researchers around the 
world, it is not completely known the precise reason 
that explains the mathematical patterning of fractals 
in nature. The following lists some mathematical 
patterns of fractal characterization. 

5.1 Fractal Interpolation 

Chih-Chin Huang, Shu-Chen Cheng, and Yueh Min 
Huang in the refrence (Chih-Chin et al., 2010) 
investigated a new algorithm to generate a new 
interpolation scheme. Such an algorithm is helpful in 
the techniques concerning generating and forecasting 
fractal numbers out of a few numbers. Figure 10 
shows an example of fractal interpolation of images. 

 
Figure 10: Fractal interpolation of images (Pantelis et al., 
2007). 

5.2 Iterated Function Systems 

Iterated function systems, or (IFS), represent a very 
various technique for properly generating a wide-
ranging useful fractal structures. Such iterated 
function systems stand on the application of a series 
of affine transformations as in figure 11 (Douglas et 
al., 2003). 

 
Figure 11: the construction of the standard Koch curve via 
an iterated function system (IFS) approach. 



5.3 Circulation of Fractals 

As an example of such technique is what appears 
earlier in this article in the item [Fractal by 
entrenches]. When the designer used multi-circles of 
entrenches (18 circle per rotation) that have the same 
characteristics with different scales. 

5.4 Super-formula 

Johan Gielies presented this formula. Such a formula 
mostly describes the natural fractal phenomenon 
(Nicoletta, 2013). The following equation describes 
the general formula of this theory. 𝑟 ൌ 𝑓ሺ∅ሻ ଵට൫หభೌౙ౩ ሺర ∅ሻห൯మା൫หభೌౙ౩ ሺర ∅ሻห൯యభ  

5.5 Logarithmic Fractals 

This technique is mostly useful in the fractals that 
relate to natural organs. Figure 5 represents a vital 
organ having such technique (Wei et al., 2009). 

5.6 Pseudo Random Key-stream 
Generator 

Pseudo random number generators have played a 
critical research point due to the demand on quality-
encoded content that is essential in all of the structure 
of the communication networks. Such technique has 
many examples and can be found in variety of 
research papers as in figure 12. 

 
Figure 12: Example of Pseudo Random Keystream 
Generator using Fractals (Sherif et al., 2013). 

5.7 Space filling Curvature Formulas  

There are many formulas to represent such 
curvatures, such as Cantor function, Tietze extension 
theorem, Euclidean metric, Lindenmayer system, L-
System, segment division, Weierstrass function, other 
deterministic and un-deterministic methods. Figure 

13 shows an example of Cantor function that has a 
fractal extension in its higher order formulas. 

 
Figure 13: A graph of Iterative Construction of Cantor 
function. 

5.8 NP Generator Model 

It includes iterating a Narrow Pulse within a specific 
shape as in figure 14. 

 
Figure 14: A model of NP generator for a square patch 
(Mahatthanajatuphat et al., 2007). 

5.9 Triangular Sub-divisions 

This kind of fractal formation may exist in fractal-
related computer processors and arrays (Wainer, 
1988). An example of such generator can be shown in 
figure 15. 

 
Figure 15: A sub-divisions method process (Wainer, 1988). 

5.10 Multi-scroll Chaotic Attractor 
Generator 

Many models represent such structures and have an 
evolving approach, resembling Lu Chen and the 
modified Chua chaotic attractors. Figure 16 shows an 
example of a system of fractal processes and 
transformation Φ (Bouallegue, 2011). 



 
Figure 16: System of fractal processes and transformation 
as an example of Multi-scroll chaotic attractor generator. 

5.11 Random Iteration Algorithm 

The preliminary set is a single point and at each point 
of iteration, only one of the essential affine 
transformations is used to compute the following 
level (Ankit et al., 2014). Moreover, Hsuan T. Chang 
presented a group of decoded images by the random 
iteration algorithm as in figure 17 (Hsuan, 2001). 

 
Figure 17: Decoded images of fractals by the random 
iteration algorithm: (a) Sierpin´ski triangle, (b) fern, (c) 
castle, and (d) snowflake. 

5.12 Stochastic Fractal Search (SFS) 
Algorithm 

Such algorithm is considered to be a development of 
Evolutionary Algorithms (EAs), and it uses the 
diffusion merit that is seen frequently in random 
fractals. The particles in such algorithm discover the 
searching space more powerfully and is used 
optimization processes (Salimi, 2015). 

6 FRACTAL-GENERATING 
SOFTWARE 

Fractal generation software represents every kind of 
software of graphics generating images of fractals. 
However, there are numerous programs of fractal 
generation obtainable, together open and profitable. 
Mobile applications are accessible to play with fractal 
designs. Various programmers generate fractal 
software for their interest due to the innovation and 
due to the challenges in comprehending the related 
mathematical problems. Therefore, generating 
fractals has directed many large difficulties and 
projects for pure mathematics. 

Mainly, there are two key approaches of two-
dimensional generation of fractals. First of which is 
to conduct a process of iteration to simplify 
calculations by recursion generation (Daniel, 2017). 
On the other hand, the other chief approach is with 
Iterated-Function-Systems (IFS) that consist of an 
amount of affine alterations. In method number one, 
every pixel within fractal images is assessed based on 
a function and, at that time, colored, beforehand the 
similar procedure is conducted to the following pixel. 
Hence, the previous technique characterizes the 
traditional stochastic method, whereas the second 
builds a linear model of fractals. Utilizing recursion 
have permitted program operators to generate 
complicated images over modest direction [19-21]. 
• Chaotica: A commercialized fractal art software 

and renderer prolonging flam3 as well as 
Apophysis function. 

• Apophysis: An open-source fractal flame 
software intended for Microsoft Windows and 
Macintosh. 

• Fractint: Free software to display numerous 
types of fractals. The software was created on 
MS-DOS, after that transported to the Atari ST, 
Macintosh and Linux.   

• Electric Sheep: An open-source spread screen 
saving software, and was established by S. 
Draves. 

• Kalles Fraktaler: A free Windows built fractal 
zooming program. 

• Milkdrop: A hardware with accelerated music 
visualizing plugin intended for Winamp that was 
initially advanced by R. Geiss. 

• XaoS: A fractal zooming software with 
interaction. 

• Fyre: An open source cross-platform apparatus 
intended for creating images centered about 
histograms of repeated chaotic functions. 



• OpenPlaG: It generates fractal by sketching 
modest functions and is PHP based. 

• MojoWorld Generator: It was a commercial 
fractal landscape initiator intended for Windows. 

• Sterling: Freeware fractal generator software 
inscribed with C language. 

• Picogen: A freeware open source cross platform 
terrain initiator written in C++. 

• Terragen: A generator of fractal terrain, which 
can handle animations in Mac OS X and 
Windows. 

• Wolfram Mathematica: Dedicated for many 
computer science software and for creating 
fractal images as well. 

• Ultra Fractal: A rendering generator for fractals 
in Mac OS X and Windows. 

7 CONCLUSION 

In this research-reviewing article, the authors give a 
summarized idea of collecting what many researchers 
have been investigating in the field of fractals. During 
decades, the concept of understanding fractals in 
nature has led to employ this idea in the industrialized 
and artificial forms. Backed from its history, area of 
fractals is developing in terms of classification, 
benefits, future employment, further understanding 
and relation with life origins. It is expected, in 
addition, that such field in researching fractals and 
utilizing it in modern-life employment would 
enhance the efforts in finding new algorithms to 
expand the atmosphere that fractals deploy. 
Furthermore, there is a fact that utilizing fractals in 
the fields of microwave and antenna engineering has 
practically occupied the most complicated and 
expanded effort by engineers and researchers through 
theory, simulation, and prototyping. 

For the sake of future direction, fractal generating 
techniques will develop further to comprehend the 
increasing demands in variety of applications; hence, 
the incoming trend is seeking for more compact and 
practical designs and concepts. 
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