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Abstract: Graph mapping is an important aspect for interconnection networks used for communication between 
processors in parallel systems. Some parallel algorithms use communication structures which can be 
represented by Hex-Cells HC. In order to run these algorithms on Two-Dimension 2D Mesh multiprocessor 
system, without changing the current topology and the running application, their communication graphs 
need to be embedded into 2D mesh. In this paper, we have developed an algorithm for embedding Hex-
Cells HC(i) into 2D  mesh M(2i,4i-1), where i = 1,2,3,…..i.e. To measure the efficiency of the algorithm, a 
comparison is done between 2D Mesh and Tree-hypercube in terms of dilation, congestion and expansion. 
As a result, the embedding of Hex-cells into 2D Mesh has dilation 1, congestion 1, expansion (4i-1)/3i, 
where i is the level of HC which is better than Tree-hypercube. Moreover, 2D Mesh embeds hex-cells for 
any level whereas Tree-hypercube embeds hex-cells for two levels. 
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1 INTRODUCTION 

Chang and Chen (1997) state that one of the most 
important characteristics of any interconnection 
network is that it should be able to simulate any 
other interconnection networks without any costs. 
This feature puts such interconnection network a 
good candidate for working in general purpose 
parallel machine. Chang and Chen(1997) and Xinbo 
at al (2018),and Peng at al (2018) state that graph 
embedding is an important feature of parallel 
computing in order to convert from one network to 
another so that every element and edge in the guest 
graph is transformed into a node and edge in the host 
graph. This embedding has two benefits, the first 
reduces the time that processes spend by exchanging 
information among them, and the second reduces the 
total time because some processes are busy while 
others are not. This enhances the communication 
between processes as well as overcoming the 
congestion problem while the processes are 
communicating with each other. Additionally, there 
is also an important advantage of embedding, which 
is: If the guest graph is transferred to the host graph, 
the host graph can simulate the guest graph work 
(execute tasks in parallel) without any losses. If the  
 

guest graph is included in the host graph and there is 
less delay, less congestion, and less expansion, then 
the inclusion is optima. Thus, the goal of the 
embedding is to minimize the dilation, the 
congestion and the expansion cost. Reducing delay 
leads to reduced processes time and reduced 
congestion leads to reduced pressure in the host 
graph and reduced expansion reduces the hardware 
required in the host graph.  

2D mesh is the popular general purpose networks 
with fixed node degree Emad (2008)) symmetry 
Grama at al (2003), and has the ability to embed 
other regularly networks. These characteristics of the 
2D Mesh network make it able to map other 
networks efficiency. The problem of mapping Hex-
Cells HC(d) network into 2D-Mesh has not attracted 
the attention of researchers towards it.  

In this paper, We have developed an algorithm 
for embedding hex-cells HC(i) into 2D  mesh M (2i, 
4i-1), where i = 1,2,3,…..i.e. To measure the 
efficiency of the algorithm, a comparison is done 
between 2D Mesh and Tree-hypercube in terms of 
dilation, congestion and expansion. As a result, the 
embedding of Hex-cells into 2D Mesh has dilation 1, 
and congestion 1, expansion (4i-1)/3i, where i is the 
level of HC which is better than Tree-hypercube.  
 



Moreover, 2D Mesh embeds hex-cells for any level 
whereas Tree-hypercube embeds hex-cells only for 
two levels. 

Section 2 presents related works, section 3 
presents meshes, section 4 presents hex-cell 
network, section 5 presents embedding hex-cells into 
2d mesh, section 6 presents embedding hex-cells 
into 2d mesh with wraparound link(torus), and 
section 7 summarizes and concludes the paper. 

2 RELATED WORKS 

Mesh is one of the most commonly used 
interconnection networks and, therefore, embedding 
between different meshes becomes a basic 
embedding problem. Not only does an efficient 
embedding between meshes allow one mesh-
connected computing system to efficiently simulate 
another, but it also provides a useful tool for solving 
other embedding problems. This work shows an 
embedding of an s1* t1 mesh into an s2 * t2 mesh, 
where si <= ti (i = 1, 2), s1t1 = s2t2, such that the 
minimum dilation and congestion can be achieved 
and presents a lower bound on the dilations and 
congestions of such embeddings for different cases. 
Also, the work presents an embedding with dilation 
└s1/s2┘ + 2 and congestion └s1/s2┘ + 4 for the 
case s1 =>s2, both of which almost match the lower 
bound ┌s1/s2┐. Finally, for the case s1 < s2, the 
work presents an embedding which has a dilation 
less than or equal to 2* sqrt(s1), Shen (1997). 
Sang and Hyeong (1996) considered the problem of 
embedding complete binary trees into meshes using 
the row-column routing and obtained the following 
results: a complete binary tree with 2p-1 nodes can 
be embedded (1) with link congestion one into a 
9/8(√2p)×9/ 8(√2p) mesh when p is even and a 
√(9/8*2p)×√(9/8*2p) mesh when p is odd, and (2) 
with link congestion two into a √(2p)×√(2p) mesh 
when p is even, and a √(2p-1)×√(2p-1) mesh when p 
is odd . Yang at al (2008), state that embedding torus 
in hexagonal honeycomb torus, states that a number 
of parallel algorithms admit a static torus-structured 
task graph. Hexagonal honeycomb torus (HHT) 
networks are considered as good candidates for 
interconnection networks. To execute a torus-
structured parallel algorithm efficiently on an HHT, 
it is necessary to include the tasks to processors such 
that the communication overhead is minimum. This 
paper showed that a (3n, 2n) torus can be included 
into an nth-order HHT with congestion 4, dilation 3, 
expansion 1 and load factor 1. Consequently, a (3n, 
2n) torus task graph can be executed on an nth-order 

HHT efficiently using a parallel algorithm. In 
Michael (2008), states that an undirected source 
graph G was included in a host graph EM. This 
paper presented an algorithm which was showed 
how to map G into EM with time and space O(|V |2) 
using the new ideas of islands and bridges. An island 
is a subgraph in the host graph which was mapped 
from one node in the guest graph while a bridge is 
an edge connecting two islands which was mapped 
from one edge in the guest graph. This work was 
motivated in real applications related to quantum 
computing and there was a need to map source 
graphs efficiently in the extended grid. CAHIT 
(1998) state that, a cubic tree is a tree in which all its 
internal vertices are of degree three except pendent 
vertices. This paper explores embedding cubic trees 
into rectangular grid of minimum size such that the 
edges are either horizontal or vertical segments. The 
method is based on the minimum area embedding of 
the three complete binary trees. The author gives 
necessary and sufficient conditions for cubic trees 
embeddable into a rectangular grid. 

3 MESHES 

In a Mesh network, the nodes are arranged in a k 
dimensional lattice of width w, giving a total of wk 
nodes or w*w in the case of 2D Mesh. Usually k=1 
(linear array) or k=2 (2D array or 2D Mesh). 
Communication is allowed only between 
neighboring nodes. All interior nodes are connected 
to 2k other nodes, Mehdipourm (2016). A two-
dimensional Mesh illustrated in Figure 1(a) is an 
extension of the linear array to two-dimensions. 
Each dimension has p nodes with a node identified 
by a two-tuple (i,j). Every node (except those on the 
periphery) is connected to four other nodes whose 
indices differ in any dimension by one. A variety of 
regularly structured computations map very 
naturally to a 2D Mesh. For this reason, 2D Meshes 
were often used as in parallel machines Grama at al 
(2003). Some data transfers in 2D Mesh may require 
2((w*w)½-1) links to be traversed. This can be 
reduced by using wraparound connections between 
nodes on same row or column as in Figure 1(b) or 
when k=3 (three dimensions) as in Figure 1(c) 
Mehdipourm (2016). 

 



a) 

 

b) 

 

c) 

Figure 1: Meshes :(a) k=2 , w=4 without wraparound,  
(b) k=2 , w=3 with wraparound, and (c) k=3 ,w=3 with 
wraparound. 

4 HEX-CELL NETWORK 

A hex-cell network which has a depth d is defined 
by HC (d) and is constructed recursively using 
hexagonal cells, each hexagon has six nodes. HC (d) 
has d levels numbered from 1 to d, where, level 1 is 
the level with one hexagon cell. Level 2 is the six 
hexagon cells surrounding the hexagon at level 1. 
Level 3 is the 12 hexagon cells surrounding the six 
hexagons at level 2, as shown in Figure 2 the HC(d) 
network levels are labeled from 1 to d. Each level i 
has Ni nodes, which are the processing elements 
interconnected in a ring structure. Addressing nodes 
in HC is shown in Figure 3, Sharieh, et al, (2008). 

 
Figure 2: (a) HC (one level) (b) HC (two levels) (c) HC 
(three levels). 

 
Figure 3: Addressing nodes in HC. 

In HC(d), the number of nodes at level i is : Ni = 
6(2i -1). The total number of nodes in HC(d) is : N = 
6d2. The number of links in HC(d) is L = 9d2  -3d. 
The diameter of HC(d) is 4d-1. 

5 EMBEDDING HEX-CELLS 
INTO 2D MESH WITHOUT 
WRAPAROUND LINK 

s * t 2D Mesh, M, is a network in which the nodes 
are ordered in a Mesh of s rows numbered from 0 to 
s - 1 from top to bottom, and t columns numbered 
from 0 to t – 1 from left to right. The node at row i 
and column j is defined as M(i,j). The 2D Mesh is 
one of the most important networks and has received 
extensive studies due to numbers of reasons, among 
them many data structures especially arrays and 
matrices, fit into a Mesh-connected system. 
Moreover, some real multiprocessor computer 
systems have been produced based on Meshes. The 
study of mapping between meshes is used in many 
applications. One application is to allow a mesh to 
simulate other meshes of various ratios, which mean 
matrices of various shapes can be efficiently mapped 
to a mesh-connected system Shen (1997). Hex-cell 
can be included into 2D Mesh by including hex-cell 
nodes into 2D mesh nodes, and hex-cell edges into 2D 
Mesh edges; without adding edges (i.e. dilation 1), 
 



Map_Hex-Cell_Into_2 D_Mesh( int d)  // d is  depth of Hex_cell network 

{ 

int node(2*d,4*d-1) 

max_columns_in_row =( 4 * d – 1) //determine the maximum columns in each row 

First_row_element=d-1  //determine the first element in each row 

For j=1 to d-1 

max_columns_in_row = max_columns_in_row -2   // end of  loop 

For i=1 to d-1 

{ 

For j=1 to max_columns_in_row 

{ 

node (i,j+ First_row_element)  in 2D Mesh = node (i,j) in HC 

if(i>1 and (link is found between node (i,j) and node (i-1,j-1) in HC) and d>1) 

Connect Node (i, j) in 2D Mesh with node (i-1, j) in 2D Mesh through a link 

// end of if statement 

}// end of internal loop 

First_row_element = First_row_element-1 
max_columns_in_row = max_columns_in_row +2 

}// end of external loop 

For i=d to d+1 

{ 

For j=1 to max_columns_in_row 

{ 

node (i,j)  in 2D Mesh = node (i,j) in HC 

if(i>1 and (link is found between node (i,j) and node (i-1,j-1) in HC) and d>1) 

Connect Node (i, j) in 2D Mesh with node (i-1, j) in 2D Mesh through a link 

// end of if statement 

}// end of internal loop 

}// end of external loop 

First_row_element = 1  

For i=d+2 to 2*d 

{ 

max_columns_in_row = max_columns_in_row -2 

For j=1 to max_columns_in_row 

Figure 4: The mapping algorithm of Hex-Cells HC(d) into 2D Mesh M(2d,4d-1). 



{ 

node (i,j+ First_row_element)  in 2D Mesh = node (i,j) in HC 

if(i>1 and (link is found between node (i,j) and node (i-1,j-1) in HC) and d>1) 

Connect Node (i, j) in 2D Mesh with node (i-1, j) in 2D Mesh through a link 

// end of if statement 

}// end of internal loop 

First_row_element = First_row_element +1 

}// end of external loop 

}// end of  Mapping function 

Figure 4: The mapping algorithm of Hex-Cells HC(d) into 2D Mesh M(2d,4d-1) (cont.). 

congestion 1 and with lower expansion. Smaller 
dilation leads to shorter communication delay where 
the host graph (2D Mesh) emulate the guest graph 
(hex-cell), and smaller expansion leads to more 
efficient utilization of the processor where the host 
graph (2D Mesh) emulates the guest graph (Hex-
Cell). In the next section, the algorithm for mapping 
hex-cell into 2D mesh, M (i,j) is presented. 

5.1 The Proposed Algorithm for 
Embedding Hex-Cells into 2D Mesh 

We have designed an algorithm for embedding hex-
cell HC(d) into 2D Mesh M(i,j) , where i=2d, j=4d-1 
where d=1,2,3,…; without having additional number 
of edges when mapping edges of hex-cell (i.e. 
dilation one and congestion one), with expansion 1 
when d =1, expansion 1.16 when d =2, expansion 
1.22 when d=3 and expansion 1.3 for any value of d 
where d>10. Mapping nodes of hex-cell into nodes 
of 2D Mesh is done by mapping the addresses and 
edges of the hex-cell into the addresses and edges of 
2D Mesh. Algorithm for embedding hex-cells into 
2D Mesh networks is in Figure 4. 
 

5.2 Examples on the Embedding 
Algorithm, and Discussion 

Example 5.2.1; mapping hex-cell HC(1) (Figure 5) 
into 2D Mesh M(2,3). Figure 6 illustrates this 
example. In figures of 2D Mesh, the addresses 
within the nodes are for 2D Mesh and the addresses 
above the nodes are for HC. 

Example 5.2.2; mapping hex-cell HC(2) 
(Figure 7) into 2D Mesh M(4,7), Figure 8 illustrates 
this example.  

 
Figure 5: HC(1). 

 
Figure 6: Mapping of HC(1) into  M(2,3). 

Example 5.2.3; mapping hex-cell HC(3) (Figure 9) 
into 2D Mesh M(6,11), Figure 10 illustrates this 
example. 

This process continues in the same manner for 
mapping any level of hex-cells into 2D Mesh. 

 
Figure 7: HC(2). 



 
Figure 8: Mapping of HC(2) into  M( 4,7). 

 
Figure 9: HC(3). 

 
Figure 10: Mapping of HC(3) into  M( 6, 11). 

5.3 A Note about Mapping Hex-Cells 
into 2D Mesh 

In the following table, we list the total number of 
nodes in HC(d), M(2d,4d-1), and the number of 

extra nodes in the embedding of hex-cell into 2D 
Mesh. 
 



Table 1: Number of extra nodes in embedding hex-cells into 2D Mesh. 

D Total number of nodes in HC(d) Total number of nodes in M(2d,4d-1) Number of extra nodes in 
embedding  

1 6 6 0 
2 24 28 4 
3 54 66 12 
4 96 120 24 
5 150 190 40 

Table 2: Comparison among TH and 2D Mesh after embedding HC into them. 

d Total number 
of  nodes in 
HC(d) 

Total number 
of  nodes in 
TH(2,2d) 

Total number  
of  nodes in 
M(2d,4d-1) 

Number of extra nodes in 
embedding HC(d) into  
TH (2,2d) 

Number of extra nodes in 
embedding HC(d) into  
M(2d,4d-1) 

1 6 7 6 1 0 
2 24 31 28 7 4 
3 54 127 66 73 12 
4 96 511 120 415 24 
5 150 2047 190 1897 40 

 

 
Figure 11: Comparison among TH and 2D Mesh after embedding HC into them. 

5.4 Comparison between  
Tree-Hypercube TH Qatawneh 
(2008) and 2D Mesh  

From the above table, and Figure 1, we notice that 
when mapping hex-cells into 2D Mesh, the number 
of extra nodes is less than the number of extra nodes 
when mapping hex-cells into tree-hypercube and 
therefore the expansion of embedding HC(d) into 
M(2d,4d-1) is less than expansion of embedding 
HC(d)  into TH (2,2d). 

 

6 EMBEDDING HEX-CELLS 
INTO 2D MESH WITH 
WRAPAROUND LINK 

The most common topology attainable with nodes of 
four links is the mesh or square grid. By connecting 
the ends of the mesh around, a Torus is produced, 
Wilson.  

Hex-Cells can be embedded into 2D mesh with 
wraparound link in the same way of embedding hex-
cells into 2D mesh without wraparound link by the 
same algorithm mentioned above in section 5. But 
the benefit of wraparound link in the 2D mesh lies in 
the routing where the short path from the source to 
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the destination is less than that of 2D mesh without 
wraparound link because the diameter of torus is less 
than that of 2D mesh without wraparound link. 

Example 6.1.1; mapping hex-cell HC(1) (Figure 
12) into torus, M(2,3). Figure 13 illustrates this 
example. In figures of torus, the addresses within the 
nodes are for torus and the addresses above the 
nodes are for HC. 

 
Figure 12: HC(1). 

 
Figure 13: Mapping of HC(1) into  torus(2,3). 

Example 6.1.2; mapping hex-cell HC(2) 
(Figure 14) into 2D mesh M(4,7), Figure 15 
illustrates this example. 

 
Figure 14: HC(2). 

 
Figure 15: Mapping of HC(2) into torus(4,7). 

As before, this process continues in the same 
manner for mapping any level of hex-cells into 2D 
mesh with wraparound link (torus). 

7 CONCLUSIONS AND FUTURE 
WORK 

One of the most important characteristics of any 
interconnection network is that it should be able to 
simulate any other interconnection networks without 
any costs. This feature puts such interconnection 
network a good candidate for working in general 
purpose parallel machine. Graph embedding is an 
important feature of parallel computing in order to 
convert from one network to another so that every 
element and edge in the guest graph is transformed 
into a node and edge in the host graph.  

In this paper, We have developed an algorithm 
for including hex-cells HC(i) into 2D  mesh M (2i, 
4i-1), where i = 1,2,3,…..i.e. To measure the 
efficiency of the algorithm, a comparison is done 
between 2D Mesh and Tree-hypercube in terms of 
dilation, congestion and expansion. As a result, 
including Hex-cells into 2D Mesh has dilation 1, 
congestion 1, and expansion (4i-1)/3i, where i is the 
level of HC which is better than Tree-hypercube. 
Moreover, 2D Mesh embeds hex-cells for any level 
whereas Tree-hypercube embeds hex-cells only for 
two levels. 

For future work, we suggest mapping hex-cells 
into other topologies that have diameter less than 
that of hex-cells, such as X-Torus and An nth-order 
HHT, and with lower dilation, congestion and 
expansion as possible.  
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